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ABSTRACT 

The objective of this paper is to study the on an unsteady MHD flow, radiation and mass transfer of a viscous 
incompressible conducting fluid past on impulsively started infinite vertical porous plate with variable temperature in the 
presence of homogeneous chemical reaction is studied. The governing equations are solved by using the finite element 
method. The expression for velocity, temperature and concentration has been obtained. Some important applications of 
physical interest for different type motion of the plate are discussed. The results obtained have also been presented 
numerically through graphs to observe the effects of various parameters and the physical aspects of the problem. 
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NOMENCLATURE 
 

0B     External magnetic field 
C ′       Species concentration in the fluid 

wC ′
    Concentration of the plate 

∞′C       Concentration in the fluid far away from the plate 
 C       Dimensionless concentration 

pC    Specific heat at constant pressure 

 g     Acceleration due to gravity 

ΓG   Thermal Grashof number 
Gc   Mass Grashof number 
 R      Radiation parameter 
 k       Thermal conductivity of the fluid 

 τK    Chemical reaction parameter 
 M     Magnetic field parameter 
D       Mass diffusivity 

 ΓP      Prandtl number 

 CS    Schmidt number fluid near the plate 

 wT ′     Temperature of the plate 

 ∞′T    Temperature of the fluid far away from the plate 

 t′      Time 
 t       Dimensionless time 

  u′   Velocity of the fluid in the x-direction 

  οu   Velocity of the plate 

  u    Dimensionless velocity 
y′    Coordinate axis normal to the plate 
y     Dimensionless coordinate axis normal to the plate 

 
Greek symbols 
α    Thermal conductivity 
β      Volumetric coefficient of thermal expansion 

∗β      Volumetric coefficient of expansion with concentration 
µ      Coefficient of viscosity 
ν       Kinematic viscosity 
ρ      Density of the fluid 
σ      Electric conductivity 
θ       Dimensionless temperature 
η       Similarity parameter 
 
INTRODUCTION 

Natural convection in a fluid saturated porous 
medium is of fundamental importance in many industrial 
and natural problems. Few examples of the heat transfer 
by natural convection can be found in geophysics and 
energy related engineering problems such as natural 
circulation in geothermal reservoirs, aquifers, porous 
insulations, solar power collectors, spreading of pollutants 
etc. Natural convection occurs due to the spatial variations 
in density, which is caused by the non-uniform distribution 
of temperature or/and concentration of a dissolved 
substance. Kandaswamy et al., [1] were presented to 
investigate the effects of thermo physic and variable 
viscosity on MHD mixed convective heat and mass 
transfer of viscous, incompressible and electrically 
conducting fluid past a porous wedge in the presence of 
chemical reaction. Also Anjali devi and Kandaswamy [2] 
studied an approximate solution for the steady laminar 
flow along a semi- infinite horizontal plate in the presence 
of species concentration and chemical reaction. The 
effects of thermal radiation on unsteady free convective 
flow over a moving vertical over a moving vertical plate 
with mass transfer in the presence of homogeneous first 
order chemical reaction analyzed by Muthukumara swamy 
et al., [3]. MHD effects on moving vertical plate with 
homogeneous chemical reaction studied by Nield and 
Bejan [4], Cheng and Minkowyez [5], Prasad and Kulacki 
[6] and Angirasa and Peterson [7] in which natural 
convection caused by immersing a hot surface in a fluid-
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saturate porous medium at constant ambient temperature 
has been considered. Also a few studies are found when 
the porous medium is thermally stratified, i.e., the ambient 
temperature is not uniform and it varies as a linear 
function of stream wise direction. This phenomena on has 
its applications in hot dike complexes in volcanic region 
for heating of ground water, development of advanced 
technologies for nuclear waste management, separation 
process in chemical engineering etc. Rees and Lage [8], 
 Takhar and Pop [9], Tewari and Singh [10] 
analytically analyzed free convection from a vertical plate 
immersed in a thermally stratified porous medium under 
boundary layer assumptions. On the other hand, Angirasa 
and Peterson [11], Rathish Kumar et al., [12] and Rathis 
Kumar and Singh [13] have numerically investigated the 
natural convection process in a thermally stratified porous 
medium.  

Stewartson [14] presented analytic solution to the 
viscous flow past an impulsively started semi-infinite 
horizontal plate whereas Hall [15] solved the problem of 
Stewartson [14] by finite-difference method. Soundalgekar 
[16] first presented an exact solution to the flow of a 
viscous incompressible fluid past a impulsively started 
infinite vertical plate by the Laplace transform technique. 
The fluid considered in this study was pure air or water. 
However, in nature, availability of pure air or water is very 
difficult. It is usually a very complicated phenomenon; 
however, by introducing suitable assumptions, the 
governing equations can be simplified. These simplified 
equations were derived by Gebhart [17] by assuming the 
concentration level to be very low. This enabled us to 
neglect Soret-Dufur effects. The solution to this problem 
governed by coupled linear differential equations was 
derived by the Laplace-transform technique. Free 
convection flow with mass-transfer past a semi-infinite 
vertical plate was presented by Gebhart and Pera [18]. 
Similarity solutions were presented by Gebhart [17]. In all 
these studies the concentration level at the plate was 
assumed to be constant and at low level, which is true in 
some cases. Many times, mass is supplied at the plate at 
constant rate in the presence of species concentration and 
such a situation has not been studied in case of an 
impulsively started infinite vertical isothermal plate. Such 
a study will be found useful in chemical, aerospace and 
other engineering applications. Raptis [19] investigate the 
steady flow of a viscous fluid through a very porous 
medium bounded by a porous plate subject to a constant 
suction velocity by the presence of thermal radiation. 
Abdus Sattar and Hamid Kalim [20] investigated 
the unsteady free convection interaction with 
thermal radiation in a boundary layer flow past a 
vertical porous plate. 

Chambre and Young [21] have analyzed a first 
order chemical reaction in the neighborhood of a 
horizontal plate. Boundary layer flow on moving 
horizontal surfaces was studied by Sakiadis [22]. The 
effects of transversely applied magnetic field, on the flow 
of an electrically  conducting fluid past an impulsively 
started infinite isothermal vertical plate was studied by 

Soundalgekar et al., [23]. MHD effects on impulsively 
started vertical infinite plate with variable temperature in 
the presence of transverse magnetic field studied by 
Soundalgekar et al., [24]. 

 

In the present paper, effect of thermal radiation 
on an unsteady MHD vertical porous plate in the presence 
of homogeneous chemical reaction has been studied. The 
problem is governed by the system of coupled non-linear 
partial differential equations whose exact solutions are 
difficult to obtain, if possible. So, Galerkin finite element 
method has been adopted for its solution, which is more 
economical from computational point of view.  
 
MATHEMATICAL ANALYSIS 

MHD flow of a viscous incompressible fluid past 
an impulsively started infinite vertical plate with variable 
temperature and uniform mass diffusion in the presence of 
homogeneous chemical reaction is studied. Here the x' -
axis is taken along the plate in vertically upward direction 
and the y'-axis is taken normal to the plate. Initially, the 
plate and fluid are at the same temperature and 
concentration. At time 't >0. The plate is given an impulse 
motion in the vertical direction against gravitational field 

with constant velocity οu . The plate temperature is raised 
linearly. With time and the concentration level near the 
plate is also raised to wc . A transverse magnetic field of 
uniform strength οB  is assumed to be applied normal to 
the plate. The induced magnetic field and viscous 
dissipation is assumed to be negligible. It is also assumed 
that there exists a homogeneous first order chemical 
reaction between the fluid and species concentration. 
The governing equations are : 
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With the following initial and boundary conditions 
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On introducing the following non -dimensional quantities: 
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By using non-dimensional variables the 
governing equations (1) to (4) leads to: 
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The last term in (8) represents homogeneous first 
order chemical reaction, τK  being the dimensionless 
reaction rate constant. 

The initial and boundary condition in 
dimensionless form are: 
 

)9(
0,0,0

01,,1:0
0,0,0,0

⎪
⎭

⎪
⎬

⎫

∞→→→=
====>
≤===

yasCu
yatCtut
tyallforCu

θ
θ

θ

 

 
METHOD OF SOLUTION 

 
The Galerkin expansion for the differential 

equation (6) becomes: 
 

)10(01
)(

)(

2

)(2
)( =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−

∂
∂

+
∂
∂

∫ dyRNu
t

u
y
uN e

eey

y

eK

J

T

 

 

Where
   

Pr
)1(,1,1

RA
K

MNCGGR C
+

=+=+= Γθ
  

Let the linear piecewise approximation solution be: 
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Neglecting the first term in equation (11), we get:  
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Where hyyl jk
e =−=)( and dot denotes the 

differentiation with respect to t. 
We write the element equations for the elements 

ii yyy ≤≤−1  and kj yyy ≤≤  assemble three element 
equations, we obtain: 
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Now put row corresponding to the node i to zero, 
from Equation (12) the difference schemes is: 
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Applying Crank-Nicholson method to the above 
equation then we gets: 
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Where                  

NkrA +−= 621   NkrA 41282 +−=       
 

NkrA +−= 623   NkrA −+= 624  
 

NkrA 41285 −−=    NkrA −+= 626  
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Applying similar procedure to equation (11) and 
(12) then we gets: 
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Where 
 

 ArB 311 −=          rAB 642 +=                   

 ArB 313 −=        ArB 314 +=  

 ArB 645 −=       ArB 316 +=  
 

Γ+−= kKSrSC CC 621                
 

Γ++= kKSrSC CC 41282  
Γ+−= kKSrSC CC 623            

 

Γ−+= kKSrSC CC 624    
 

Γ−−= kKSrSC CC 41285  
 

Γ−+= kKSrSC CC 626  
 

Here 2h
kr =  and kh,  are the mesh sizes along y -

direction and t  -direction, respectively. Index i  refers to 
the space and j  refers to the time. In Equations (13)-(15), 
taking i  = 1(1) n and using initial and boundary 
conditions (9), the following system of equations are 
obtained: 
 

3)1(1== iBXA iii                                      (16) 
 
Where iA  ’s are matrices of order n and ii BX ,  ’s column 
matrices having n - components. The solutions of above 
system of equations are obtained by using Thomas 
algorithm for velocity, temperature and concentration. 
Also, numerical solutions for these equations are obtained 
by C-programme. In order to prove the convergence and 
stability of finite element method, the same C-programme 
was run with slightly changed values of h and k and no 
significant change was observed in the values of u,θ and 
C. Hence, the finite element method is stable and 
convergent. 
 
RESULTS AND DISCUSSIONS 

As a result of the numerical calculations, the 
dimensionless velocity, temperature and concentration 
distributions for the flow under consideration are obtained 
and their behavior have been discussed for variations in 
the governing parameters viz., the thermal Grashof 
number 

ΓG  Mass Grashof number CG , Radiation 
parameter R, Magnetic field parameter M, permeability 

parameter K, Prandtl number 
ΓP , Schmidt number CS , and 

Chemical reaction parameter 
τK  Here we fixed t = 0.2.  

The influence of the Magnetic field parameter M 
thermal on the velocity is presented in Figure-1. Magnetic 
field parameter signifies the relative effect of the thermal 
buoyancy force to the viscous hydrodynamic force in the 
boundary layer. As expected, it is observed that, while all 
other participating parameters are held constant and 
Magnetic field parameter M is increased it is seen that 
velocity decreases in general. Further, it is noticed that we 
move far away from the plate, the fluid velocity goes 
down. 
 

 
 

Figure-1. Effects of M on velocity. 
 

The influence of the Mass Grashof number Gc on 
the velocity is presented in Figure-2. It is observed that, 
while all other parameters are held constant and velocity 
increases with an increase in Mass Grashof number Gc. 
 

 
 

Figure-2. Effects of CG  on velocity. 
 

The influence of the Grashof number 
ΓG  on the 

velocity is presented in Figure-3. Increase in the Grashof 
number 

ΓG  contributes to the increase in velocity when all 
other parameter that appears in the velocity field are held 
constant. 
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Figure-3. Effects of CG on velocity. 
 

Figure-4 shows the velocity profiles for different 
permeability parameters K. It is clearly seen that, as K 
increases, the peak values of the velocity tend to increase. 
While all other participating parameters are held constant. 
 

 
 

Figure-4. Effects of K on velocity. 
 

The influence of the Schmidt number Sc on the 
velocity is presented in Figure-5. It is observed that, while 
all other participating parameters are held constant and the 
increases schmidth number CS contributes the decrease in 
the velocity. 
 

 
 

Figure-5. Effects of CS  on the velocity. 

Influence of the Schmidth number CS  on the 
concentration is presented in Figure-6. It is observed that, 
while all other participating parameters are held constant 
and the increases schmidth number CS  contributes the 
decrease in the concentration. 
 

 
 

Figure-6. Effects of CS  on the concentration. 
 

The influence of dimensionless chemical reaction 
parameter τK  on the velocity of the fluid medium has 
been shown in Figure-7. It is absorb that increase in 
chemical reaction contributes to the decrease in velocity 
when all other parameters that appears in the velocity field 
are held constant. 
 

 
 

Figure-7. Effects of τK on velocity. 
 

The influence of dimensionless chemical reaction 
parameter τK  on the concentration is shown in Figure-8. 
It is absorb that increase in chemical reaction contributes 
to the decrease in concentration while all other parameters 
that appears in the concentration field are held constant. 
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Figure-8. Effects of τK  on the concentration. 
 

The Effect of Prandtle number ΓP  on the velocity 
field has been illustrated in Figure-9. It observed that the 
velocity field increase with decreasing Prandtle number 

ΓP  while all other parameter that appears in the velocity 
field are held constant. 
 

 
 

Figure-9. Effect of ΓP on the velocity. 
 

The Effect of Prandtle number ΓP  on the 
temperature field has been illustrated in Figure-10. It is 
observed that the temperature field decrease with 
increasing Prandtle number ΓP  while all other parameters 
that appear in the temperature field are held constant.  

 
 

Figure-10. Effect of ΓP on the temperature. 

The influence of the Radiation Parameter R on 
the velocity is presented in Figure-11. Increase in the 
Radiation Parameter R contributes to the increase in 
velocity when all other parameter that appears in the 
velocity field is held constant. 
 

 
 

Figure-11. Effect of R on velocity. 
 

The influence of the Radiation Parameter R on 
the temperature is presented in Figure-12. Increase in the 
Radiation Parameter R contributes to the increase in 
temperature when all other parameter that appears in the 
velocity field is held constant. 
 

 
 

Figure-12. Effect of R on the temperature. 
 
CONCLUSIONS 

In this paper, the governing equation for the 
radiation effects on an unsteady MHD vertical porous 
plate in the presence of homogeneous chemical reaction 
has been studied. Employing the highly efficient finite 
element method, the leading equations are solved 
numerically. The results illustrate the flow characteristics 
for the velocity, temperature, concentration, it is found that 
when the Grashof numbers increase, the concentration 
buoyancy effects enhance, and thus the fluid velocity 
increases. The velocity as well as the temperature increase 
s with as increase in the Radiation parameter. The velocity 
as well as the concentration decreases with an increase in 
the chemical reaction parameter. Also, when the Schmidt 
number increases, the concentration level decreases the 
fluid velocity. When the Schmidt number or the chemical 
reaction parameter increases, the velocity decreases. The 
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velocity as well as the temperature decreases with an 
increase in Prandtle number.  
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