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 Abstract - In this paper, we present the dynamic 
modeling of a 3D-Hybrid underwater eel-like robot using 
recursive algorithms based on the Newton-Euler equations. 
The robot is composed of a sequence of parallel modules 
connected in serie. The algorithm gives the head 
accelerations and the joint torques as a function of the 
cartesian positions, velocities and accelerations of the 
platform of the modules. The proposed algorithm can be 
considered as a generalization of the recursive Newton-Euler 
inverse dynamic algorithm of serial manipulators with fixed 
base. The proposed algorithm is easy to implement and to 
simulate whatever the number of degrees of freedom of the 
robot. An example with 12 parallel modules is presented. 
 
Index Terms – hybrid robots, parallel robots, dynamic 
modeling, mobile robot, autonomous structures, Eel-like robot. 
 

I. INTRODUCTION 

        Recently, many projects are devoted for the design 
and control of anguilliform robots owing to their potential 
in specific underwater applications including inspection, 
and endoscope [1],[2],[3]. The work presented in this 
paper is realized in the framework of the project “Robot 
Anguille” supported by the French CNRS. On previous 
work [14], we have presented the modelling of a 3D serial 
eel-like robot using Newton-Euler algorithms taking into 
account the case where the base is mobile. In this paper, 
we treat the hybrid  mechanical structure, which 
corresponds to the real prototype realized within the 
project  “Robot Anguille”.  
        The main characteristic of this system is that the 
acceleration of the base must be determined as a function 
of the modules motions. To develop the dynamic models 
for such a structure, we propose to use recursive Newton-
Euler algorithms generalizing those proposed for rigid 
manipulators [4],[5],[7],[8], and makes use of a new 
method for the dynamic modelling of parallel robots 
[15][16]. The proposed algorithm is easy to implement  
using numerical calculation and its computational 
complexity can be improved by using some techniques of 
symbolic method [6],[7]. Assuming local controllers to 
realize the desired cartesian position, velocities and 
accelerations, this model can be used for the dynamic 
simulation of the eel-like robot.    

II. GEOMETRIC MODELING OF THE STRUCTURE 

        The system treated in this paper is an eel-like robot 
whose structure is composed of a sequence of n parallel 
modules connected in serie. Each parallel module  is 
equivalent to a spherical joint. It is designed  based on the 
principle of extensor and flexor muscle [17]: see Figure 1:  
 

  
Figure 1: Structure and CAD model of the parallel module 

 
The parallel modules have the same structure and 
dimension. Each module (see Figure 1) is composed of  a 
base 0, 3 legs 1, 2, 3, and a platform 4. Each leg 
contains one actuated joint using DC motor. 
     The actuators are placed on the base, whereas the 
platform contains electronic circuits devoted to the 
control. For reasons of optimum space exploitation, each 
structure is connected in opposition compared to the 
previous one. The resulting robot is shown on Figure 2. 

Figure 2: Assembly of the modules 

III. KINEMATIC MODELING OF THE STRUCTURE 

The modules are numbered from 1 to n, the head, 
numbered as link 0, is the base of the first module, 
whereas the tail is the platform  of module n. We assign a 
frame Σk attached to the platform of each module k, such 

Head Module 1 Module 3 
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that the xk axis is taken along the central line of the robot, 
and the zk axis is along the yaw axis represented in Figure 
1 by 1 2A A , thus frame Σk-1 is fixed with the base of 
module k. 
The transformation matrix from frame Σk-1 to frame Σk is 
expressed as a function of the following parameters : 

• [ ] T
k k k kθ φ ψ=Θ  the roll, pitch and yaw angles, 

• dk: the distance between zk-1 and zk along xk-1. 
 
The homogeneous transformation matrix, which defines 
frame Σk relative to frame Σk-1 is given by the matrix: 
k-1

k k k k k

k k k k k k

k k k k k k k k k k k k

k k k k k k k k k k k k

 ( ,d ) ( , ) ( , ) ( , )
Cφ Cψ -Cφ Sψ Sφ d

Sθ Sφ Cψ Cθ Sψ -Sθ Sφ Sψ Cθ Cψ -Sθ Cφ 0
-Cθ Sφ Cψ Sθ Sψ Cθ Sφ Sψ Sθ Cψ Cθ Cφ 0

0 0 0 1

T Trans x Rot x Rot y Rot z= θ ϕ ψ =

⎡ ⎤
⎢ ⎥+ +⎢ ⎥
⎢ ⎥+ +
⎢ ⎥
⎣ ⎦

 (1) 

   
In the following the upper-left exponent indicates the 
projection frame.  We note that the orientation matrix 
k-1Rk of frame Σk with respect to frame Σk-1 is the (3 3)×  
upper-left sub-matrix of  k-1Tk, whereas the position vector 
k-1Pk  is equal to the upper-right (3 1)×  sub-matrix. 
The matrix wT0 between the world fixed frame Σw  and the 
frame fixed with the head frame Σ0 is supposed known at 
t 0= . It will be updated by integrating the head 
acceleration.  
The Cartesian velocities and accelerations of the platform 
of the modules are calculated using the following 
recursive equations for k = 1,…,n: 

k k k-1
k k-1 k-1 k

k-1 k
3x3 k-1

ˆ⎡ ⎤−
= ⎢ ⎥

⎣ ⎦

R R P
0 R

T  (2) 

k k k 1 k k
k k 1 k 1 k k

-
- - wV T V a= +  (3) 

k k
k RPY κ= Ωw Θ  (4) 

k k k k
k k k kξ= +γ wa    (5) 

k k k
k RPY k RPY k= +Ω Ωw Θ Θ   (6) 

( )k k-1 k-1 k-1
k-1 k-1 k-1 kk

k
k k

k-1 k

ˆ ˆ
ξ

ˆ

⎡ ⎤⎡ ⎤
⎣ ⎦⎢ ⎥=

⎢ ⎥⎣ ⎦

R ω ω P

wω
 (7) 

k k k 1 k
k k 1 k 1 kγ

-
- -V T V= +  (8) 

With: 
k-1

kP̂  (3 3)×  skew matrix associated with k-1
k ,P  

kV   (6 1)×  kinematic screw vector of link k, given by: 

          
TT T

k k k⎡ ⎤= ⎣ ⎦V V ω  (9) 

kV   linear velocity of the origin of frame Σk, 

kω   angular velocity of frame Σk, 

kw  (3 1)×  relative angular velocity of the platform k with 
respect to its base, 

k
ka  a 6 3( )×  projection matrix between the relative 

velocity of module k and the (6 1)× relative screw vector 
such that: 
k k k

k k k= wv a   (10) 
 
since the parallel module is equivalent to a spherical joint: 

Tk
k 3 3 d3×= ⎡ ⎤⎣ ⎦0 Ia   (11) 

 
k

RPYΩ (3 3)×  matrix giving k
kw  in terms of kΘ  defined 

by: 
k k k

k k k-1
RPY k k k k-1 RPY

k

Cφ Cψ Sψ 0
-Cφ Sψ Cψ 0

Sφ 0 1
Ω R Ω

⎡ ⎤
⎢ ⎥= =⎢ ⎥
⎢ ⎥⎣ ⎦

 (12) 

with: 
k

k-1
RPY k k k

k k k

1 0 Sφ
0 Cθ -Sθ Cφ
0 Sθ Cθ Cφ

Ω
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

  (13) 

 
IV. INVERSE DYNAMIC MODEL 

The Inverse Dynamic Model gives the joint torques 
and the acceleration of the head as a function of platform 
positions, velocities and accelerations. In this section, we 
present the recursive Newton-Euler algorithm for 
computing the inverse dynamic model of eel like robot 
with hybrid structure. We will make use of the inverse 
dynamic modelling of one module as developed in [16]. 
 
A. Dynamic model of one parallel module  

This model is calculated using the following equation: 

( )
T3

k T k T k k ik
k k k k ek ik

ki 1=

⎛ ⎞∂
= + + ⎜ ⎟

∂⎝ ⎠
∑ q

Γ J H
q

Fa f  (14) 

with: 
kΓ  vector of actuator torques, 

kF   total external wrench on the platform of module k, 

ekf  wrench (forces and moments) exerted by the module 
k on the environment, 

ikH  the inverse dynamic model of  leg i of module k, 

ikq  vector of the joint velocities of leg i of module k, 

kq  vector of the motorized joint velocities of module k: 
T

k k,1 k,2 k,3q q qq ⎡ ⎤= ⎣ ⎦   (15) 
Equation (14) can be rewritten in a simplified form: 

( )T T
k k k k ek bkΓ J H= + +Fa f    (16) 

 
where Hbk is the sum of the dynamic models of the legs 
expressed on the platform Cartesian space. 
The joint positions, velocities and accelerations of the legs 
are calculated using the inverse kinematic models of the 
legs, which are given in appendix.  
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The total external wrench on the platform is calculated 
using Newton-Euler equation: 

( )
( )

k k k
k k kk k k

k k k k k k
k k k

⎡ ⎤× ×
⎢ ⎥= +
⎢ ⎥×⎣ ⎦

ω ω MS

ω I ω
F J V  (17) 

where : 
kJ  6 6×( )  is the spatial inertia matrix of the platform of 

module k: 

          
k

k d3 kk
k k k

k k

ˆM
ˆ

⎡ ⎤−
= ⎢ ⎥

⎢ ⎥⎣ ⎦

I MS

MS I
J        (18)  

k
kI    inertia tensor of module k with respect to frame Σk, 

d3I    3 3×( )  identity matrix, 

kM    mass of module k, 
kMS  first moments of module k. 

 
When connecting the modules in serie the equilibrium 
equation of each module is given by (Figure 3): 
 

 
Figure 3: Forces and moments on module k 

 
( )k k k k 1 T k 1 k

k k bk k k 1 ek
+ +

+= + + +F F Tf f f   (19) 
where: 

kf  (6 1)×   wrench exerted on module k by module k – 1. 

bkF  represent the resultant of total wrenches of the links 
of all the legs of module k. Details of its computation can 
be found on [15]. In fact, in our case, the inertial 
parameters of the legs of the modules are negligible 
compared to those of the base and the platform so we can 
consider that bk bk andH 0 0F .  

B. Recursive calculation of the inverse dynamic model of 
Eel-like robot  

The inverse dynamic algorithm presented here consists of 
three recursive equations (A forward, then a backward, 
then a forward). 

i) Forward recursive calculation 

        In this first step we calculate for each module the 
screw transformation matrices, the kinematic screw 
vector, and the elements of the accelerations and wrenches 
on the modules that are independent of the acceleration of 
the robot head ( 0 0,V ω ). Thus we calculate for k = 1,…,n: 

k
k-1T , k

kV   and k
kγ  using (2), (3) and (5)respectively. 

We calculate also k
kβ  representing the elements of the 

Newton-Euler equations, which are independent of the 
module accelerations: 

( )
( )

k k k
k k kk k

k ek k k k
k k k

⎡ ⎤× ×
⎢ ⎥= +
⎢ ⎥×⎣ ⎦

ω ω MS
β

ω I ω
f  (20) 

ii) Backward recursive equations 

        In this second step we obtain the head acceleration 
using the inertial parameters of the composite body, where 
the composite body k consists of the inertial parameters of 
the platforms of modules k, …, n. Note that the platform 
of module k-1 is the base of module k. 
Using (17) and (20), the equilibrium equation (19)  can be 
rewritten as: 
k k k k k 1 T k 1

k k k k k k 1β + +
+= + +J V Tf f  (21)  

 
Applying the Newton-Euler equations on the composite 
module k and since n 1

n 1 0+
+ =f , (21) can be rewritten as: 

k k c k k c
k k k kβ= +J Vf  (22) 

With: 
k c k k 1 T k 1 c k 1

k k k k 1 k
+ + +

+= +J J T J T  (23) 
k c k k 1 T k 1 c k 1 T k 1 c k 1

k k k k 1 k k 1 k 1γ+ + + + +
+ + += + +β β βT T J  (24) 

 
k c

kJ  is the spatial inertial matrix of the composite link k. 
For k = 0, since f0 0  is equal to zero, we obtain using (22): 

( ) 10 0 c 0 c
0 0 0

−
= −V J β  (25) 

iii) Forward recursive equations: for k=1,…,n 

In this last step, we calculate the acceleration of module k, 
then the wrench k

kf applied onto the module k and finally 
the motor torques:  
k k k 1 k

k k 1 k 1 kγ
-

- -V T V= +  (26) 
k k c k k c

k k k k= + βJ Vf  (27) 

The motor torques are calculated by projecting k
kf  on the 

joint space using the Jacobian matrix of the module. By 
taking into account the coulomb friction parameters (Fsk) 
and viscous friction parameters (Fvk) as well as the rotor 
inertia (Iak) of the motors of module k, the joint torques is 
given by: 
 ( )k T k T k

k k k k sk k vk k ak ksign= + + +Γ J F q F q I qa f  (28) 
 
where : Fsk , Fvk , Iak are 3 3×( )  diagonal matrices. 

V. FLUID-STRUCTURE INTERACTION MODEL 
To simulate the hydrodynamic behavior of the robot, 

we have use in previous work [14] a simple model to 
express the contact forces between the fluid and the 
modules of the eel. In our study the three dimensional 
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fluid forces are modelled by a density of wrenches applied 
onto each cross section of the modules, which only 
depends of the transverse modules’ motion. 

 
 
 
 
 

 
 
 
 
 
 
 

Figure 4: Decomposition into planar flow for fluid wrench calculation 
 
To simplify the writing, we assume that the mass per unit 
of volume of the robot is equal to that of water such that 
the robot is neutrally buoyant. Moreover k

i (s)V  denotes 
the velocity of a cross section of the module k positioned 
at the distance s along the x axis of the platform from the 
point kO  (see Figure 4). This velocity can be decomposed 
in the local frame ( )i1 i2 i3, ,e e e as: 
k

i ti i1 ni2 i2 ni3 i3(s) V (s) V (s) V (s)= + +V e e e  (29) 
And: 

ni ni2 i2 ni3 i3V V= +V e e  

We also define 2 2
ni ni2 ni3V V= +V . Similar relations to 

(29) can be written for k
i (s)V , k

i (s)ω  and k
i (s)ω .  

With the previous assumptions, the model of the contact 
forces between the fluid and the modules of the eel is that 
of Morison [9], and can be defined as a hydraulic 
wrenches densities per unit along the module axial length 
(w.r.t. the S cross section center): 

k kk
dragk amhk

hk k kk
drag amhk

(s) (s)(s)
(s)

(s) (s)(s)
⎡ ⎤ ⎡ ⎤⎡ ⎤

= = +⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

f
f ff

m mm
 (30) 

where, forces and moments are given respectively: 
3

k
drag ld1 ti ti i1 ldj ni nij ij

j 2
(s) C V (s) V (s) + C (s) V (s)e V e

=

= ∑f  (31) 

k
drag ad1 ti ti i1(s) C ω ω= em     (32) 

3
k

am lmj nij ij
j 2

(s) C V (s)e
=

= ∑f    (33) 

k
am am1 ti i1(s) C ω= em     (34) 

Where fdrag and mdrag are due to the friction viscosity and 
pressure difference whereas fam and mam are in relation 
with the quantity of fluid displaced during the movement 
(call "added mass"). Finally the coefficients Cldj, Clmj, Cad1 
and Cam1 are depending on the density of the fluid, the 
shape and size of the profile (here elliptic) and the 
Reynolds number of the moving profile in the fluid 
(approximately 105). Their expressions are given in 

section VI. Then by superimposing all the “slice-by-slice” 
contributions from s = 0  to k 1s = d +  (the axial length of 
the thk  module), we find the global wrench exerted by 
module k on the fluid, expressed at kO : 

k 1
k kk

ddragkk kamkhk
hk hik kk 0

dragk amkhk

(s)ds
f ff

m mm
+⎡ ⎤ ⎡ ⎤⎡ ⎤

= = + =⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

∫f f  (35) 

The first term (drag and viscous wrench) of (35) is 
integrated numerically at each sample time of the 
algorithm, while the second contribution (added mass) can 
be explicitly computed in the local frame ( )k k1 k2 k3, , ,O e e e  
as:  

k
k k ak k kamk

amk k k amkk
amk

f
m

⎡ ⎤
= = +⎢ ⎥

⎣ ⎦
J Vf β  (36) 

Where k ak
kJ  is the (6 6)×  added inertia matrix and k

amkβ  
the (6 1)×  matrix of Coriolis-centrifugal forces, both 
produced by the added fluid masses.  
Equation (36) shows that some of the elements 
corresponds to k

ekf  due to the fluid contact forces and 
other to a constant term to be added to the (6 6)× inertia 
matrix. Thus using previous results [14], we can write: 
k k k

ek dragk amk= + βf f   (37) 
k k ak

k k k= +J J J    (38) 
with: 

k k k
aGk aGk kk ak

k k k k k k k
k aGk aGk k aGk k

ˆ-
ˆ ˆ ˆ-

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦

m m S

S m I S m S
J    (39) 

and: 

( )
( )

k k k k
aGk k k kk

amk k k k k k
k aGk k k k

ˆ ˆ

ˆ ˆ ˆ4 / 3

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

m ω ω S

S m ω ω S
β  (40) 

With: 
k

kS  the position of the center of mass of platform k with 
respect to the origin of Σk. 
 
Furthermore, with the expressions of the local (slice-by-
slice) added mass coefficients (33) and (34), other terms 
can be detailed as: 
• k

aGk lm2 k 1 lm3 k 1diag(0,C d ,C d )m + +=  the ( )3 3×  matrix of 
added linear inertia, 

• k
aGk 3 3ˆms 0 ×=  the ( )3 3×  matrix of added linear-angular 

coupled inertia, 
• k 3 3

aGk am1 k 1 lm3 k 1 lm2 k 1diag(C d ,C d /12,C d /12),I + + += the (3 3)×  
matrix of added angular inertia, 

 
VI. SIMULATION EXAMPLE 

      In this section, we present some simulation results 
obtained for an eel-like robot using Matlab and Simulink. 
The robot is composed of 12 identical modules (Figure 2). 

s 
n (s) V 

t (s) V 

planar flow 

ei1 

ei2 

ei3 ei3 

Ok 
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The head (the base of module 1), is composed of a half of 
a spheroid and an elliptic cylinder. The other modules k, 
for  k =1,…,12 are elliptic cylinders. The total length of 
the robot is equal to 2.08 meter. The cross section is of 
elliptic shape whose great axis length (2b) is equal to 
18cm and its small axis length (2a) is equal to 13cm. 
Finally, the coefficients of our fluid model are given by: 

ld1 1 ld2 2C (1/2)ρC π(a b)/2,C (1/2)ρC 2b,= + =  
2 2 2

ld3 3 ad1 4C (1/2)ρC 2a ,C (1/2)ρC (b - a ) ,= =  
2 2 2 2 2

lm2 5 lm3 6 am1 7C ρπb C ,C ρπa C ,C ρπC (b - a ) /8= = =  
where ρ is the robot volume density taken equal to one. 
with from [11]: 

C1 = 0.01, C2 = C3 = C4 = 1 and C5 = C6 = C7 = 1. 
 

In this example, we study the planar forward propulsion. 
Such a motion in the plane, is produced by a motion law 
of the following form along the x axis of the robot 
[12],[13]:   

sα. s tQ(s,t)= f (t).A.e .sin 2π -
λ T

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (41) 

Where A is the amplitude of the motion, α is introduced to 
increase the amplitude when going from the head to the 
tail, 1/T  is the frequency of the wave, λ  represents the 
length of the wave, and s the curvilinear coordinate along 
eel's backbone. The function f (t)  is a polynomial 
function of the fifth order where the coefficients satisfy 
the following conditions: 
f(0) 0= , ff(t ) 1= , f (0) f (0) 0= = , f ff (t ) f (t ) 0= =  
tf  is the ending time of f(t) . 
To apply this continuous motion law to our model, we 
have to discretize equation (41) to have the corresponding 
value on each joint. As the motion is along the z axis, θk 
and φk are set equal to zero, whereas Ψk is defined by: 

k k 1 kψ (t) Q(X ,t) - Q(X ,t)+=   (42) 

and 
k

k j
j 1

X = d
=

∑ the distance of each module from the head 

Figures 5 and 6 show the simulation result with the 
following numerical values for the joint evolutions:  

A 0.2= , α 0.8= , tf = 4s, λ 1.5m= , T 3s=  
 

 
Figure 5: Head's trajectory in the xw-xw plane of the fixed frame. 

 
Figure 6: Velocity of the head with respect to time in world frame. 

VII. CONCLUSION 

     This paper presents the inverse dynamic modeling of 
a swimming eel like robot composed of a hybrid 
mechanical structure composed of parallel modules 
connected in serie and whose base is free to move in all 
directions. The proposed algorithm, allows to obtain a 
three dimensional dynamic model and is a generalization 
of the recursive Newton-Euler computed torque approach 
of articulated manipulators to the case of hybrid structure 
with a free base. This dynamic model is developed using 
the recursive Newton-Euler formalism, as it is well known 
in the robotics community. Moreover, based on the 
literature of fluid mechanics, we have adopted a 
simplified model of fluid-structure contact.  
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APPENDIX 

In this appendix, we calculate the joint positions and 
velocities as a function of the cartesian position and 
velocities. 

A Inverse geometric model 

To calculate the inverse geometric model of leg 1 and 2 
(for leg 3 we can see immediately that qk,3 = θk), we 
calculate the Cartesian positions of points Ci and Bi in 
frame Σk-1 and then use the geometric constraint in 
distance between these two points. Thus we can write: 

Tk-1 k-1 k
Ci Cix Ciy Ciz k CiP P P⎡ ⎤= =⎣ ⎦P R P  (43) 

Tk-1
1 k,1 k k k,1 k k1/ 2 -Sq L 2 2L Cq L 2 L 2B ⎡ ⎤= − −⎣ ⎦  

Tk-1
2 k,2 k k k,2 k k1/ 2 Sq L 2 2L Cq L 2 L 2B ⎡ ⎤= −⎣ ⎦  

 
Where k,i k,iCq cos(q )= , k,i k,iSq sin(q )= and Lk the length 

of vector i iB C . 
By considering the geometric condition i i kLB C =  and 

assuming that i
k,i 2

i

2Q
Sq

1 Q
=

+
 and 

2
i

k,i 2
i

1 Q
Cq

1 Q
−

=
+

, where 

i k,iQ tan(q /2)= , we can write the inverse geometric 
model as the solution of a second degree equation: 

2
i1 i i2 i i3α Q α Q α 0+ + =   (44) 

with: 

( )i1 k Ciy i Ciz Cix kα 2 L 2 P e P 2P / L= − + +  

( )i2 i Cix kα 2 2e 1 P / L= +  

( )i3 k Ciy i Ciz Cix kα 2 L 2 P e P 2P / L= + + +  

1e 1= and 2e 1= −  

We can then deduce qk,i (for i = 1,2) from (44): 

( ) ( )2
i i2 i i2 i1 i3 i1Q -α e α 4α α / 2α= + −  (45) 

then: 
( )k,i iq 2atan Q=  

B Inverse Kinematic model 

To calculate the Inverse kinematic model, we make use of 
the method proposed in  [16]. The idea is to transform the 
module as three serial manipulators connected to the same 
platform. This transformation is done by virtually 
isolating the platform, so that leg 1 and 2 can be reduced 
to a 3 dof serial manipulator (joint Ai and universal joint 
on Bi) and leg 3 is reduced to a 1dof manipulator. The 
rows of the inverse Jacobian matrix are obtained by 
calculating the motorized joint velocities from the leg 
Jacobian matrices, For the first two rows, we first 
calculate the velocity of the points Ci in terms of  wk: 

k,Ci vi k=V J w   (46) 
with: 

vi Ci
ˆ ,  i 1,2= − =J P  

Then we can write the kinematic model of one leg: 
ik ik ikV J q=   (47) 

Where k
ikJ is the ( )3 3× jacobian matrix of leg i. 

We can finally use kinematic constraints by writing that 
equations (46)  and (47) are equal: 

vi k ik ikJ w J q=   (48) 
We can deduce the ith row of the inverse kinematic model 
of the module from the relation: 

( )-1
k,i ik vi kq (1,:)= J J w   (49) 

where A(i,:) gives the ith row of matrix A 
The calculation of -1

ikJ  give the following result for i=1,2: 
k-1 -1 k-1

k i i i i k,i i i Ci
ˆ(i,:) e N / D e q / D 1/DJ C P⎡ ⎤= −⎣ ⎦  

With: 

i i k,iN 2 e Sq= +  

( )i k,i k Cix i k,i CiyD Cq L P e Sq P= + +  
 
For leg 3, the kinematic model can be written as the 
equality of the projection of the angular velocity of both 
the platform and the link of leg 3 along the axis defined 
by the common perpendicular of the two axis of the 
universal joint: 

[ ]Tk-1 T k-1 T k-1
k k,3 k k1 0 0 qh h w=  (50) 

where hk is the unit vector along the vector product of the 
two axis of the universal joint (in our case, it corresponds 
to the last two columns of matrix ΩRPY). Thus, using (50) 
we have: 

[ ]Tk-1
k k k k k kCφ Sθ Sφ Cθ Sφh =  (51) 

Thus the third row of the inverse Jacobian matrix of 
module k is: 

[ ]k-1 -1
k k k k k(3,:) 1 Sθ tan(φ ) Cθ tan(φ )=J  (52) 
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