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ABSTRACT

In this paper, a novel method for speaker adaptation using bilinear
model is proposed. Bilinear model can express both characteristics
of speakers (style) and phonemes across speakers (content) inde-
pendently in a training database. The mapping from each speaker
and phoneme space to observation space is carried out using bilin-
ear mapping matrix which is independent of speaker and phoneme
space. We apply the bilinear model to speaker adaption. Using
adaptation data from a new speaker, speaker-adapted model is built
by estimating the style(speaker)-specific matrix. Experimental re-
sults showed that the proposed method outperformed eigenvoice and
MLLR. In vocabulary-independent isolated word recognition for
speaker adaptation, bilinear model reduced word error rate by about
38% and about 10% compared to eigenvoice and MLLR respectively
using 50 words for adaptation.

Index Terms— Speaker adaptation, Bilinear model, Eigen-
voice, maximum likelihood linear regression (MLLR)

1. INTRODUCTION

Speech is composed of phonetic units and these units are uttered dif-
ferently depending on speakers. Therefore, we can naturally assume
that speech has two independent factors if ‘style’ is defined as the
way of speaking (i.e. how a person speaks) and ‘content’ is defined
as phonetic unit (i.e. what is spoken). Same words spoken by differ-
ent persons in various conditions can be perceived consistently by
another person because human being can recognize learned words
(i.e. contents) in various conditions (i.e. styles) such as speed and
accent using obtained knowledge. This is an example of recognizing
the contents in different styles. Likewise, recognizing a person’s
unique way of speaking regardless of what is spoken is an example
of recognizing the style in different contents. Assuming that the
style is consistent within a person, we obtain two factor problem of
recognizing style and/or content.

Factoring out the two independent variations in a training
database and expressing them into a model can be useful in various
applications. For example, the performance of a speech recognizer
can be improved when regularizing styles across different speakers.
Another possible application is speaker identification/verification
where the style of a speaker can be estimated using the model which
captures the various styles of the speakers in a training database.

Even speech recognizer using speaker-independent (SI) model
tries to minimize the difference across the speakers in a training
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database for better performance. For a specific speaker, speaker-
dependent (SD) system performs better than SI system but SD
model is usually impractical or requires users’ training session
which is tedious. Therefore, to improve the performance of an SI
system, speaker adaptation method is used with relatively small
amount of adaptation data from the new speaker. Speaker adaptation
methods can generally be categorized into maximum a posteriori
(MAP) [1], maximum likelihood linear regression (MLLR) [2], and
speaker clustering [3]. These methods either use SI models to build
adapted models for new speakers or build adapted models as a linear
combination of clustered speakers in the training database. The two
factors inherent in the training database - style and content - are not
used in these methods.

In this paper, a novel approach to speaker adaptation is pro-
posed using bilinear model which can capture these two inherent
variations - within a speaker and across speakers. Bilinear model
with two independent control parameters is built from a training
database with two types of variation. Then, this generic model is
adapted to a new speaker by estimating the style of the new speaker
using small amount of adaptation data while maintaining the content
factor. Using bilinear model, style and content of a speaker can be
efficiently expressed in terms of style/content space and mapping
matrix that transfers the style and content space into observation
space.

This paper is organized as follows. In the next section, bilinear
model is briefly described. The proposed method for speaker adap-
tation using bilinear model is introduced in Section 3. In Section 4,
experiments for the performance evaluation and comparison to other
methods are discussed and in Section 5, we concludes the results
and future work is mentioned.

2. BILINEAR MODEL

Bilinear models can separate two variations in a set of observations
and express these two independent factors. In a speech, the two fac-
tors can be the way of speaking and the spoken phonetic unit. The
style and content are interchangeable but they have natural associa-
tion in this case; the style is the way of speaking, i.e. characteristics
of a speaker and the content is what is spoken. There are two types
in bilinear models - symmetric and asymmetric. These two models
are briefly explained in the following. Refer [4] for more details.

2.1. Symmetric bilinear model

A D-dimensional observation vector osc can be expressed by using
bilinear model with style parameter as and content parameter bc as
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follows :
osc =

∑
i,j

wija
s
i b

c
j (1)

where as is an I-dimensional vector whose elements are as
i , bc is

a J-dimensional vector whose elements are bc
j , and wij is a D-

dimensional vector composed of wijd. The d-th observation vector
can be expressed as follows using wijd

osc
d =

I∑
i=1

J∑
j=1

wijdas
i b

c
j , 1 ≤ d ≤ D. (2)

(2) can be expressed in vector-matrix form as

osc
d = asT

Wdb
c. (3)

Here, there is Wd ∈ R
I×J for each dimension and there are D

matrices. These matrices map the style space spanned by as and the
content space spanned by bc into D-dimensional observation space.
Wd is independent of both as and bc and expresses the interaction
between the two factors.

2.2. Asymmetric bilinear model

Often, there are cases where a new style cannot be expressed accu-
rately as a linear combination of trained basis styles. In these cases,
asymmetric bilinear model can change the interaction term wijd ac-
cording to a style and this is more flexible than symmetric bilinear
model. (2) can be modified as follows to introduce style-dependent
mapping matrices:

osc
d =

I∑
i=1

J∑
j=1

ws
ijdas

i b
c
j . (4)

Defining a style-specific term as
jd =

∑I
i=1 ws

ijdas
i , (4) becomes

osc
d =

∑J
j=1 as

jdbc
j and can be expressed as

osc =
∑

j

as
jb

c
j (5)

where as
j is a D-dimensional vector whose elements are as

jd. In
vector-matrix form,

osc = Asbc. (6)

Here, As is a D × J matrix whose elements are as
j and expresses

the style-specific linear mapping from content space into observation
space.

2.3. Bilinear model building

How a bilinear model is built from a training database is described
in this section. The methods are different depending on the type of
bilinear model used (symmetric or asymmetric).

2.3.1. Asymmetric bilinear model building

The model building of asymmetric bilinear model is simpler than
symmetric bilinear model. Let o(t) ∈ R

D be the t-th observation
vector in a training set. There are T training vectors so the training
set is {o(1),o(2), · · · ,o(t), · · · ,o(T )}. In model building, one
tries to find the parameters of the model that minimize the following
error:

E =
T∑

t=1

S∑
s=1

C∑
c=1

γsc(t)‖o(t)−Asbc‖2, (7)

γsc(t) =

{
1, when o(t) ∈ (s, c)
0, otherwise.

When training database has the same numbers of observations for
each style and content classes, there exists a closed-form solution to
the problem (7) using the singular value decomposition (SVD) [4].
In other cases, a direct minimization method can be used such as
quasi-Newton method. Here, we explain the case where SVD-based
method can be used. Mean observation vector for each style and
content classes is defined as

msc =

∑
t γsc(t)o(t)∑

t γsc(t)
(8)

To use a standard matrix algorithm, observation matrix is arranged
as a (SD)× C matrix:

M =

⎡
⎢⎣

m11 · · · m1C

...
. . .

...

mS1 · · · mSC

⎤
⎥⎦ . (9)

Matrix M can be decomposed and expressed for asymmetric bilinear
model as

M = AB. (10)

Here, the stacked style parameter A ∈ R
(SD)×J is defined as

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

A1

...
As

...

AS

⎤
⎥⎥⎥⎥⎥⎥⎦

(11)

where As ∈ R
D×J denotes the s-th style-specific matrix. Also,

stacked content parameter B ∈ R
J×C is defined as

B =
[
b1 · · ·bC

]
. (12)

To find the optimal style and content parameters, A and B, SVD
is applied on M to produce M = USVT where S is a diagonal
matrix whose elements are singular values arranged in descending
order. Then, the style parameter A is defined as the first J columns
of US and the content parameter B is defined as the first J rows of
VT .

2.3.2. Symmetric bilinear model building

The objective function to be minimized in building a symmetric bi-
linear model is defined as

E =
T∑

t=1

S∑
s=1

C∑
c=1

D∑
d=1

γsc(t)‖od(t)− asT

Wdb
c‖2 (13)

Like in the asymmetric bilinear model, optimal A, B, and W are
estimated from (SD)× C observation matrix M obtained from the
training database. But, there is no closed-form solution for (13) in
symmetric bilinear model. So, the optimal model parameters are ob-
tained in an iterative way. The basic idea is to express the symmetric
bilinear model as a asymmetric bilinear model and switch the roles
of style and content parameters in each iteration until A and B con-
verge. Iterative procedure for estimating the optimal values of A, B,
and W proceeds as follows:
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1. Find B using SVD as in the asymmetric bilinear model.

2. Apply SVD to obtain
[
MBT

]V T
= WV T A = USVT .

Take A matrix as VT .

3. Apply SVD to obtain
[
M

V T
AT

]V T

= WB = USVT .

Take B as VT .

4. Iterate 2 and 3 until A and B converge.

5. Upon convergence, W is found as W =
[
[MBT ]V T AT

]V T
.

In the procedure, [·]V T denotes vector transpose of a matrix. The
convergence of above procedure is guaranteed [5]. For more detailed
description of the bilinear model building, refer [4].

3. SPEAKER ADAPTATION USING BILINEAR MODEL

Now, how the bilinear model is applied to speaker adaptation is
described. We adapt a generic bilinear model to a new speaker by
estimating and updating the style factor of the new speaker based
on content basis vector which is common across all speakers in
the training database. A small amount of utterances from the new
speaker is used for speaker adaptation. This is an ‘extrapolation’
problem in bilinear models [4]. In this paper, asymmetric bilinear
model is used to estimate the style-specific matrix (i.e. speaker-
adapted model) for a new speaker.

To build a bilinear model, the observation matrix has to be
built form the training database composed of S speakers. Each
SD model is built as C Gaussian mixtures whose dimension is
D. Here, we take the mean vectors of the Gaussians from the SD
models and these mean vectors constitute the observation matrix.
For example, s-th element of the observation matrix is expressed as
Ms = [μs

1 · · ·μs
c · · ·μs

C ] , 1 ≤ c ≤ C. The observation matrix (9)
is then expressed as

MA =

⎡
⎢⎢⎢⎢⎢⎢⎣

M1

...
Ms

...

MS

⎤
⎥⎥⎥⎥⎥⎥⎦

, 1 ≤ s ≤ S. (14)

The dimension of the matrix MA is (SD) × C. Next, MA is de-
composed as USVT by SVD. And then, A and B are assigned in
the same way as aforementioned in section 2.3.1, respectively.

In adaptation session, using the adaptation data from a new
speaker, the speaker-adapted model of the new speaker can be ex-
pressed as

μ̂s̃
c = Âs̃bc

(15)

where Âs̃ ∈ R
D×J is the estimated style-specific matrix for the new

speaker s̃ and bc is a content basis vector in B =
[
b1 · · ·bC

]
. Note

that bc is fixed during the adaptation. Âs̃ can be estimated using
the adaptation data {o′(1), · · · ,o′(t), · · · ,o′(T ′)} (o′(t) is a D-

dimensional observation vector). Âs̃ is estimated by minimizing the
following error:

E∗ =
T ′∑

t=1

C∑
c=1

γs̃c(t)‖o′(t)−As̃bc‖2. (16)

As̃ that minimizes the total squared error for the given adaptation
data can be found by setting

∂E∗/∂As̃ = 0. (17)

After some manipulation, we get

Âs̃ =

⎡
⎣

T ′∑
t=1

∑
c

γs̃c(t)o′(t)bcT

⎤
⎦

⎡
⎣

T ′∑
t=1

∑
c

γs̃c(t)bcbcT

⎤
⎦

−1

.

(18)
EM (expectation maximization) algorithm can also be used to es-
timate As̃. In that case, As̃ can be estimated as the same way to
obtain transform matrix in MLLR [2]. The model adapted to the
new speaker is built when applying (15) for all content basis vectors
using the estimated As̃.

Bilinear model has the similar approach as eigenvoice in that it
builds eigenvectors from a training database and estimates weights
of the eigenvectors when adapting to a new speaker. But, while each
speaker is expressed as a point in the speaker space in eigenvoice,
two spaces - style and content vector spaces - are used and these two
spaces are connected through bilinear mapping function in bilinear
model. This difference can be seen from the composition of the ob-
servation matrix MA in (14) that comes from the training database.
Also, eigenvectors obtained from this observation matrix are differ-
ent from those of eigenvoice. In eigenvoice, the observation matrix
is arranged as (CD) × S and eigenvectors (which are called eigen-
voices) are obtained. Therefore, when using the same number of
eigenvectors in bilinear model, the size of content basis vectors is re-
duced by the factor of D compared to eigenvoice so it has an advan-
tage over eigenvoice in memory requirement. Notably, asymmetric
bilinear model can be viewed as a generalization of MLLR meth-
ods. That is, an asymmetric bilinear model becomes MLLR when
D-dimensional (which is the dimension of an observation vector) SI
model is replaced with J-dimensional content basis vector. There-
fore, depending on the number of eigenvectors, bilinear models show
the properties of either eigenvoice or MLLR.

4. EXPERIMENTS

4.1. Experimental setup

We applied the proposed method to vocabulary-independent iso-
lated word recognition for speaker adaptation and compared the
results with eigenvoice and MLLR. For the building of the models,
training database from 40 male speakers in Korean phonetically
optimized words (POW) database was used [6]. For feature vector,
36-dimensional vector composed of 12-dimensional Mel-frequency
cepstral coefficients (MFCCs), their delta coefficients, and their
delta-delta coefficients was obtained using 20ms Hamming window
sliding every 10ms. For acoustic unit, 46 phoneme like units (PLUs)
were used. Triphones were used as the basic phonetic unit using
tree-based clustering (TBC) on state level, with 3 states per model,
and 1 mixture per state. There were 4050 tied-states using TBC [7].

After building SI HMM model using the training database of
40 male speakers, MLLR + MAP was applied for each speaker,
resulting in 40 SD models. Using the 40 SD models as elements of
the observation matrix in (14), asymmetric bilinear model composed
of (11) and (12) was built by using the SVD. Here, S = 40, D = 36
and C = 4050 in (14).

For speaker adaptation and evaluation, a part of Korean pho-
netically balanced words (PBW) set was used which contains 452
words [8]. The database is composed of different speakers and
recorded under different environment from the training database.
Data from 10 male speakers was used for adaptation and testing. For
each speaker, 1 to 50 words were used for adaptation. Then, the rest
400 words were used for evaluation. The adaptation was carried out
in supervised mode for the experiments [7].
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4.2. Experimental results

The results for speaker adaptation using eigenvoice, MLLR, and bi-
linear model are shown in Figure 1. We used (18) to estimate a
style-specific matrix of a new speaker in the proposed method while
estimation formula of MLLR and eigenvoice were based on EM.
We used the global transformation in MLLR. The word accuracy of
SI model was 95.78% as the baseline. It can be seen from the fig-
ure that eigenvoice performs well when the amount of adaptation
data is small since it has the smallest number of model parameters.
As amount of adaptation data increases, the performances of MLLR
and the proposed method improves. Especially, using fewer number
of parameters, the proposed method shows better performance than
MLLR.
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Eigenvoice(30)
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Fig. 1. Performance of the several adaptation methods. The number
in the parenthesis indicates the number of eigenvectors used.

In Table 1, the performance of the bilinear model in speaker
adaptation for various numbers of eigenvectors is shown. We can
see from the table that if the number of eigenvectors is determined
appropriately depending on the amount of adaptation data available,
bilinear model can be efficiently used for rapid speaker adaptation.
Therefore, bilinear model is more versatile than eigenvoice and
MLLR.

Table 1. Word accuracy (%) of the bilinear model in speaker adap-
tation using different number of eigenvectors.

Number of eigenvectors
Number of

adaptation words 1 5 10 20 30 40

1 97.43 96.80 95.53 89.78 82.05 77.75
5 97.45 98.20 98.25 98.23 97.50 96.90
10 97.58 98.10 98.33 98.63 98.48 98.38
20 97.60 98.25 98.58 98.78 98.83 98.95
30 97.68 98.23 98.55 98.75 98.88 98.95
40 97.70 98.15 98.65 98.83 98.90 98.90
50 97.65 98.15 98.65 98.88 98.88 98.95

The proposed method has the memory advantage over eigen-
voice when same number of eigenvectors are used, by the factor of
D due to the difference in the forms of supervectors in eigenvoice
and bilinear model. Also, when only one eigenvector is used in the

bilinear model, the number of parameters to be estimated becomes
the dimension of an observation vector so style-specific matrix can
be reliably estimated using small amount of adaptation data. The
eigenvectors in a bilinear model can be taken as many as content ba-
sis vectors so more detailed model is possible by taking more eigen-
vectors when more adaptation data is available. In this view, the
proposed method can be regarded as a combination of eigenvoice
and MLLR.

5. CONCLUSION

In this paper, a new speaker adaptation method using bilinear model
was proposed. By adjusting the number of basis vectors, it performs
well for small amount of adaptation data and the performance im-
proves as more adaptation data is available in the speaker adapta-
tion experiments. It was shown to outperform both eigenvoice and
MLLR from the experiments. The proposed model can be viewed
as a generalization of MLLR and it has the advantage of eigenvoice
that the parameters to be estimated can be adjusted depending on the
size of adaptation data, which has a potential for rapid speaker adap-
tation. Future work includes the noise compensation using bilinear
model with which the performance of a speech recognizer can be
improved in a new noise environment.

6. REFERENCES

[1] C.-H. Lee, C.-H. Lin, and B.-H. Juang, “A study on speaker
adaptation of the parameters of continuous density hidden
Markov models,” IEEE Transactions on Signal Processing, vol.
39, no. 4, pp. 806–814, April 1991.

[2] C. J. Leggetter and P. C. Woodland, “Maximum likelihood linear
regression for speaker adaptation of continuous density hidden
Markov models,” Computer Speech and Language, vol. 9, no.
2, pp. 171–185, April 1995.

[3] R. Kuhn, P. Nguyen, J.-C. Junqua, L. Goldwasser, N. Niedziel-
ski, S. Fincke, K. Field, and M. Contolini, “Eigenvoices for
speaker adaptation,” in Proceedings of the 5th International
Conference on Spoken Language Processing, 1998, vol. 5, pp.
1771–1774.

[4] J. B. Tenenbaum and W. T. Freeman, “Separating style and con-
tent with bilinear models,” Neural Computation, vol. 12, no. 6,
pp. 1247–1283, 2000.

[5] J. R. Magnus and H. Neudecker, Matrix differential calculus
with applications in statistics and econometrics, John Wiley &
Sons, 2nd edition, March 1999.

[6] Y. Lim and Y. Lee, “Implementation of the POW (phonetically
optimized words) algorithm for speech database,” in Interna-
tional Conference on Acoustics, Speech, and Signal Processing,
May 1995, vol. 1, pp. 89–92.

[7] H. J. Song and H. S. Kim, “Simultaneous estimation of weights
of eigenvoices and bias compensation vector for rapid speaker
adaptation,” in Proceedings of the 8th International Conference
on Spoken Language Processing, 2004, pp. 2945–2948.

[8] Y.-J Lee, B.-W. Kim, J.-J Kim, O.-Y. Yang, and S.-Y. Lim,
“Some considerations for construction of PBW set,” in Pro-
ceeding of the 12th Workshop on Speech Communications and
Signal Processing. Acoustical Society of Korea, June 1995, pp.
310–314.

4368


