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Abstract We prove some versions of modular convergence theorems for nonlinear Urysohn-type inte-

gral operators with respect to filter convergence. We consider pointwise filter convergence of functions

giving also some applications to linear and nonlinear Mellin operators. We show that our results are

strict extensions of the classical ones.
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1 Introduction

We consider the problem of approximating a given real-valued function f , defined on a topo-
logical measure space, by means of a sequence of integral operators (Tnf)n. Operators like
Mellin convolution, moment and sampling operators play an important role in several branches
of Mathematics, for instance in reconstruction of signals and images, in Fourier analysis and op-
erator theory (see, e.g., [1–7] and the references contained therein). In particular, the Urysohn-
type operators are generalizations of suitable convolution operators, like for example the Mellin
operators.

In this paper, we deal with nonlinear Urysohn operators, generated by kernels which satisfy
some singularity properties with respect to filter convergence introduced in [8], and we extend
some modular convergence theorems proved in [9–11].

More precisely, we introduce the notion of exhaustiveness of a function sequence at a point
with respect to a filter and we establish new filter convergence theorems under suitable condi-
tions on the filters.

As applications, we obtain modular convergence theorems for nonlinear Mellin-type oper-
ators with respect to the statistical convergence introduced by Steinhaus (see [12]) and we
consider also the moment kernels and the Mellin–Gauss–Weierstrass kernels (see [11]).
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Finally, we give some non-trivial examples which show that our results are proper exten-
sions of the corresponding classical ones, by constructing suitable kernels, satisfying singularity
conditions with respect to the filter involved, but not the classical ones.

2 Preliminaries

We recall some properties of the filters of N.

Definition 2.1 (a) A nonempty family F of subsets of N is called a filter of N if and only if
∅ �∈ F , A ∩B ∈ F whenever A,B ∈ F , and for each A ∈ F and B ⊃ A, we get B ∈ F .

(b) Let F be a filter of N. A collection of subsets H ⊂ F is called a base of F if and only
if for every A ∈ F , there is an element B ∈ H with B ⊂ A.

(c) A sequence (xn)n in R is said to be F-bounded if and only if there exists a positive real
constant M such that the set {n ∈ N : |xn| ≤M} belongs to F .

(d) Let G be any nonempty set and fn : G→ R, n ∈ N, be a sequence of functions. We say
that (fn)n is F-dominated if and only if there exists a non-negative function h : G → R such
that

{n ∈ N : |fn(t)| ≤ h(t), ∀ t ∈ G} ∈ F .
In this case, we also say that h F-dominates (fn)n.

(e) Let (X, d) be a metric space. A sequence (xn)n in X is said to be F-convergent to x ∈ X

(and we write x = (F) limn xn) if and only if for every ε > 0, we get

{n ∈ N : d(xn, x) ≤ ε} ∈ F .
We now introduce the following (see also [13]).

Definition 2.2 Let (X, d) be a metric space and for every x ∈ X and δ > 0, set B(x, δ) :=
{z ∈ X : d(z, x) < δ}. A sequence of functions fn : X → R, n ∈ N, is called F-exhaustive at
x0 if and only if for every ε > 0, there exist δ > 0 and A ∈ F such that |fn(z) − fn(x0)| ≤ ε,
whenever n ∈ A and z ∈ B(x0, δ).

We recall some examples of filters (see also [14]).

Example 2.3 (a) The filter Fcofin of all subsets of N whose complement is finite is called the
Fréchet filter.

Note that a sequence fn : X → R, n ∈ N, is exhaustive at x0 ∈ X if and only if it is
Fcofin-exhaustive at x0.

(b) A filter F of N is said to be free if and only if it contains the Fréchet filter.
(c) We say that a free filter F is a P -filter if and only if for any sequence (Aj)j in F , there

are sets Bj ⊂ N, j ∈ N, such that the symmetric difference AjΔBj is finite for all j ∈ N and
⋂∞

j=1 Bj ∈ F .
An example of P -filter is the filter Fd associated with statistical convergence, that is the set

of all subsets of N whose asymptotic density is 1. Here the asymptotic density of a set A ⊂ N

is defined as
d(A) = lim

n

card(A ∩ {1, . . . , n})
n

(if this limit exists) and “card” denotes the cardinality of the set in brackets.
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We now recall the Egorov and Lebesgue filters, that is the filters with respect to which the
Egorov theorem and the Lebesgue dominated convergence theorem are always true respectively
(see also [14]).

(d) A filter F of N is said to be an Egorov filter if and only if for every measure space
(G,B, μ), with μ finite and positive, for each sequence fn : G → R, n ∈ N, pointwise F-
convergent to 0 and for every ε > 0, there exists a subset B ∈ B with μ(B) < ε, such that

(F) lim
n

[
sup

t∈G\B

|fn(t)|
]

= 0.

(e) A filter F of N is said to be a Lebesgue filter if and only if for every measure space
(G,B, μ), with μ finite and positive, we have

(F) lim
n

∫

G

fndμ = 0 (2.1)

whenever fn : G→ R, n ∈ N, is a sequence, pointwise F-convergent to 0 and with the property
that there exists a non-negative function h ∈ L1(G,B, μ), with |fn(t)| ≤ h(t) for all t ∈ G.

Note that every Egorov filter is a Lebesgue filter (see [14, Corollary 2.3]), but not vice
versa: indeed, the above defined Fd is a Lebesgue filter, but not an Egorov filter (see [14,
Proposition 3.1]).

Remark 2.4 It is easy to see that the definition of Lebesgue filter can be equivalently formu-
lated if we require that (2.1) holds whenever (fn)n is a sequence pointwise F-convergent to 0
and F-dominated by a function h ∈ L1(G,B, μ).

3 Main Results

We now introduce some notations and structural hypotheses, following [9–11].

Notations and Assumptions 3.1 (a) Let G be a locally compact Hausdorff topological
space, B be the σ-algebra of all Borel subsets of G, and μ : B → R be a positive σ-finite
measure. We denote by L0(G,B, μ) the space of all real-valued μ-measurable functions with
identification up to sets of measure μ zero, by C(G) the space of all real-valued continuous
bounded functions on G and by Cc(G) the subspace of C(G) of all continuous functions with
compact support on G.

(b) Denote by L the set of all non-negative measurable functions L : G×G→ R such that
the sections L(·, t) and L(s, ·) belong to L1(G,B, μ) for all t, s ∈ G respectively.

(c) Let R
+
0 be the set of all non-negative real numbers and Ψ be the class of all functions

ψ : R
+
0 → R

+
0 such that ψ is continuous, nondecreasing, ψ(0) = 0 and ψ(u) > 0 whenever

u > 0, and let Ξ = (ψn)n ⊂ Ψ be a sequence of functions which are F-exhaustive at 0 and for
every u > 0, the sequence (ψn(u))n is F-bounded. Denote by KΞ the class of all sequences of
functions Kn : G × G × R → R, n ∈ N, such that: Kn(·, ·, u) is measurable on G × G for all
u ∈ R and n ∈ N; Kn(s, t, 0) = 0 for every n ∈ N and s, t ∈ G; there are sequences (Ln)n ⊂ L
and (ψn)n ⊂ Ψ, such that

|Kn(s, t, u) −Kn(s, t, v)| ≤ Ln(s, t)ψn(|u− v|) (3.1)

for all n ∈ N, s, t ∈ G and u, v ∈ R.
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(d) Let K = (Kn)n ∈ KΞ and consider a sequence T = (Tn)n of Urysohn-type operators
defined as

(Tnf)(s) =
∫

G

Kn(s, t, f(t))dμ(t) for all s ∈ G, (3.2)

where f ∈ Dom T =
⋂∞

n=1DomTn, where for each n ∈ N,DomTn is the subset of L0(G,B, μ)
on which Tnf is well defined as a μ-measurable function of s ∈ G.

The following extension of the notion of singularity given in [9] will be fundamental in
proving our modular convergence theorems with respect to filter convergence.

Definition 3.2 Let K ∈ KΞ be as in 3.1. We say that K is F-singular if and only if
3.2.1) there exists a positive real number D1 with

Λ =
{

n ∈ N :
∫

G

Ln(s, t)dμ(t) ≤ D1 for all s ∈ G

}

∈ F ;

3.2.2) for every s ∈ G and for each neighborhood Us ⊂ G of s, we get

(F) lim
n

∫

G\Us

Ln(s, t)dμ(t) = 0;

3.2.3) for every s ∈ G and u ∈ R, we have

(F) lim
n

∫

G

Kn(s, t, u)dμ(t) = u.

Let Φ be the set of all continuous non-decreasing functions ϕ : R
+
0 → R

+
0 with ϕ(0) = 0,

ϕ(u) > 0 for all u > 0 and limu→+∞ ϕ(u) = +∞ in the usual sense, and let Φ̃ the set of all
elements of Φ which are convex functions. For all ϕ ∈ Φ, let us consider the functional ρϕ

defined as
ρϕ(f) =

∫

G

ϕ(|f(s)|)dμ(s) for all f ∈ L0(G,B, μ).

The subspace

Lϕ(G) = {f ∈ L0(G,B, μ) : ρϕ(λf) < +∞ for some λ > 0}
is the Orlicz space generated by ϕ (see also [3, 6]).

We now define the modular convergence in the context of filters and some related notions.

Definition 3.3 (a) A sequence (fn)n of functions in Lϕ(G) is F-modularly convergent to
f ∈ Lϕ(G) if and only if there is a positive real number λ > 0 with

(F) lim
n
ρϕ[λ(fn − f)] = 0.

Note that the Fcofin-modular convergence coincides with the usual modular convergence.
(b) The sequence (fn)n in Lϕ(G) is F-strongly convergent to f ∈ Lϕ(G) if and only if

(F) lim
n
ρϕ[λ(fn − f)] = 0

for every λ > 0. Observe that the Fcofin-strong convergence is equivalent to the usual strong
convergence.

(c) Given a subset A ⊂ Lϕ(G) and f ∈ Lϕ(G), we say that f ∈ A (that is, f is in the
modular closure of A) if and only if there is a sequence (fn)n in A such that (fn)n is modularly
convergent to f in the usual sense.
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Finally, we introduce a technical concept, which relates the modular ρϕ with the sequence
(ψn)n introduced in 3.1 (c), and which will have importance in proving our main results. Given
η ∈ Φ, set

ρη(f) =
∫

G

η(|f(s)|)dμ(s) for every f ∈ L0(G,B, μ).

Definition 3.4 Given two functions ϕ, η ∈ Φ and a family Ξ = (ψn)n ⊂ Ψ as in (3.1),
we say that the triple (ρϕ, ψn, ρ

η) is F-properly directed if and only if there is a sequence
(cn)n in R with (F) limn cn = 0, such that for all λ ∈ (0, 1), there exists Cλ ∈ (0, 1) with
ρϕ(Cλ(ψn ◦ g)) ≤ ρη(λg) + cn whenever n ∈ N and g ∈ L0(G,B, μ), g ≥ 0.

We now extend [9, Theorem 1] to the context of filters. From now on, we suppose that our
involved filter is a fixed free filter and we use the structural hypotheses and notations introduced
above.

Theorem 3.5 Let f ∈ L∞(G,B, μ) and K = (Kn)n ∈ KΞ be F-singular. Then for every
continuity point s ∈ G of f , we get (F) limn Tnf(s) = f(s).

Proof Let s ∈ G be a fixed continuity point of f . For every n ∈ N, we have

|(Tnf)(s) − f(s)| ≤
∫

G

|Kn(s, t, f(t))−Kn(s, t, f(s))|dμ(t)

+
∣
∣
∣
∣

∫

G

Kn(s, t, f(s))dμ(t)− f(s)
∣
∣
∣
∣

= I1 + I2.

By virtue of the condition 3.2.3) of F-singularity, we get (F) limn I2 = 0. So, in order to prove
the theorem, it is enough to estimate the quantity I1.

Fix arbitrarily ε > 0. By the F-exhaustiveness at 0 of (ψn)n, there is a σ > 0 and a set
Π ∈ F with ψn(u) ≤ ε whenever |u| ≤ σ and n ∈ Π.

By continuity of f at the point s, there exists a neighborhood Vs of s such that |f(t)−f(s)| <
σ whenever t ∈ Vs. From (3.1), 3.2.1) and the F-exhaustiveness at 0 of (ψn)n, there exists a
set Λ ∈ F such that for all n ∈ Λ ∩ Π, we get

I1 ≤
∫

G

Ln(s, t)ψn(|f(t) − f(s)|)dμ(t)

=
∫

Vs

Ln(s, t)ψn(|f(t) − f(s)|)dμ(t) +
∫

G\Vs

Ln(s, t)ψn(|f(t) − f(s)|)dμ(t)

≤ ψn(σ) ·D1 + ψn(2‖f‖∞) ·
∫

G\Vs

Ln(s, t)dμ(t)

≤ εD1 + ψn(2‖f‖∞) ·
∫

G\Vs

Ln(s, t)dμ(t).

By 3.2.2), there is a Πs ∈ F (depending on s) such that for every n ∈ Πs, we get
∫

G\Vs

Ln(s, t)dμ(t) ≤ ε.

Thus Πs ∩ Π ∈ F . Let Λs = Πs ∩ Π ∩ Λ. We have obtained

I1 ≤ εD1 + εψn(2‖f‖∞)
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for all n ∈ Λs. Since, by hypothesis, the sequence (ψn(2‖f‖∞))n is F-bounded, there exist a
positive real number D′ and a set Q ∈ F , depending only on f , such that ψn(2‖f‖∞) ≤ D′

whenever n ∈ Q. Hence (F) limn I1 = 0. So (F) limn Tnf(s) = f(s), and thus we obtain the
assertion. �

Theorem 3.6 Let F be a Lebesgue filter of N, ϕ ∈ Φ̃, Ξ = (ψn)n ⊂ Ψ and K = (Kn)n ∈ KΞ

be F-singular. Then
(F) lim

n
ρϕ[λ(Tnf − f)χS ] = 0

for every f ∈ C(G), λ > 0 and S ∈ B with μ(S) < +∞.

Proof Choose arbitrarily f ∈ C(G). By hypothesis, Theorem 3.5 and the continuity of ϕ, we
have

(F) lim
n
ϕ(λ|(Tnf)(s) − f(s)|) = 0 for all s ∈ G and λ > 0.

Indeed, it is enough to observe that a function ϕ : R
+
0 → R

+
0 is continuous if and only if

for any free filter F and for all sequences (xn)n in R
+
0 , F-converging to x ∈ R

+
0 , we have

(F) limn ϕ(xn) = ϕ(x), taking into account that ϕ(0) = 0.
Let now D1 > 0 and Λ ∈ F be according to F-singularity, and fix arbitrarily λ > 0. For all

n ∈ Λ and s ∈ G, we have

2λ|(Tnf)(s)| ≤ 2λ
∫

G

Ln(s, t)ψn(|f(t)|)dμ(t) ≤ 2λD1ψn(‖f‖∞). (3.3)

Let S ∈ B, μ(S) < +∞. From (3.3), taking into account that ϕ(0) = 0 and since ϕ maps
bounded sets into bounded sets, there exist M∗ > 0 and Λ∗ ∈ F , without loss of generality, we
assume Λ∗ ⊂ Λ, such that for all n ∈ Λ∗ and s ∈ G, we get

ϕ(2λ|(Tnf)(s)|χS(s)) ≤ ϕ(2λD1 ψn(‖f‖∞)χS(s)) ≤M∗χS(s). (3.4)

By the convexity of ϕ, for all s ∈ G and n ∈ N, we have

ϕ(λ|(Tnf)(s) − f(s)|χS(s)) ≤ ϕ(2λ|(Tnf)(s)|χS(s)) + ϕ(2λ|f(s)|χS(s))

≤M∗χS(s) + ϕ(2λ‖f‖∞)χS(s). (3.5)

From (3.4) and (3.5), we obtain that the functions s �→ ϕ(λ|(Tnf)(s)− f(s)|χS(s)), n ∈ N, are
F-dominated by a suitable function h, which belongs to L1(G,B, μ). From this, since

(F) lim
n
ϕ(λ|(Tnf)(s) − f(s)|χS(s)) = 0

and F is a Lebesgue filter, we get

(F) lim
n
ρϕ[λ(Tnf − f)χS] = 0,

that is the assertion. �
We now state the following technical lemma, analogous to [10, Theorem 5].

Lemma 3.7 Let ϕ ∈ Φ̃, η ∈ Φ and Ξ = (ψn)n ⊂ Ψ be such that (ρϕ, ψn, ρ
η) is F-properly

directed, and assume that K = (Kn)n is F-singular.
Then there is a sequence (cn)n in R with (F) limn cn = 0 and such that for every λ > 0,

there exists a constant a = aλ > 0 (depending only on λ) with

ρϕ[a(Tnf − Tng)] ≤ ρη[λ(f − g)] + cn,
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for all n ∈ N and f , g ∈ L0(G,B, μ) ∩ Dom T .

Proof Let λ > 0 be fixed, and let (cn)n, Cλ be according to the property of F-properly
directed triple. Let a > 0 be such that aD1 ≤ Cλ, where D1 is as in 3.2.1). Proceeding
analogously as in [10, Theorem 5] and using the Jensen inequality and the Fubini theorem, for
each n ∈ N and f , g ∈ L0(G,B, μ) ∩ Dom T , we have

ρϕ[a(Tnf − Tng)] ≤
∫

G

η(λ|f(t) − g(t)|)dμ(t) + cn = ρη[λ(f − g)] + cn,

and (F) limn cn = 0. Thus we get the assertion. �
We now prove the following

Theorem 3.8 Let F be a Lebesgue filter of N, ϕ ∈ Φ̃, η ∈ Φ and Ξ = (ψn)n ⊂ Ψ be such that
(ρϕ, ψn, ρ

η) is F-properly directed. Let K = (Kn)n be F-singular.
Then for every f ∈ Lϕ+η(G) ∩ Dom T , there exists a positive real number a such that

(F) lim
n
ρϕ[a(Tnf − f)χS ] = 0

whenever S ∈ B with μ(S) < +∞.

Proof Let f ∈ Lϕ+η(G) ∩ Dom T . By [15, Proposition 1], Lϕ+η(G) is the modular closure
of Cc(G) with respect to the modular topology in Lϕ+η associated with the usual modular
convergence. So there exist a constant λ′ ∈ (0, 1) and a sequence (fk)k of elements of Cc(G)
such that for every S ∈ B with μ(S) < +∞, and for any ε > 0, there is k = k(ε) ∈ N with

ρϕ+η[λ′(fk − f)χS ] ≤ ε

3
(3.6)

for every k ≥ k.
In correspondence with λ′, let aλ′ > 0 be a constant according to Lemma 3.7. Applying

Theorem 3.6 to λ′ and fk, k ∈ N, for all ε > 0, S ∈ B with μ(S) < +∞ and k ≥ k, we have

Ak :=
{

n ∈ N : ρϕ[λ′(Tnfk − fk)χS ] ≤ ε

3

}

∈ F .

Let a > 0 be such that 3a ≤ min(λ′, aλ′). By the convexity of ϕ, for all n ∈ N, we get
∫

G

ϕ(a|Tnf(s) − f(s)|χS(s))dμ(s)

≤
∫

G

ϕ(3a|Tnf(s) − Tnfk(s)|χS(s))dμ(s) +
∫

G

ϕ(3a|Tnfk(s) − fk(s)|χS(s))dμ(s)

+
∫

G

ϕ(3a|fk(s) − f(s)|χS(s))dμ(s)

= ρϕ[3a(Tnf − Tnfk)χS ] + ρϕ[3a(Tnfk − fk)χS ] + ρϕ[3a(fk − f)χS ]

= I1 + I2 + I3.

Observe that, by Lemma 3.7, for all n ∈ N, we get I1 ≤ ρη[λ′(f − fk)χS ] + cn, where
(F) limn cn = 0; moreover, by Theorem 3.6, we have I2 ≤ ε

3 for every n ∈ Ak. We obtain

I1 + I3 ≤ ρη[λ′(f − fk)χS] + cn + ρϕ[λ′(f − fk)χS ]

= ρϕ+η[λ′(f − fk)χS] + cn ≤ ε

3
+ cn
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for all n ∈ N. Thus, for all n ∈ Ak, we get
∫

G

ϕ(a|Tnf(s) − f(s)|χS(s))dμ(s) ≤ I1 + I2 + I3 ≤ 2
3
ε+ cn. (3.7)

Since (F) limn cn = 0, for every ε > 0, the set

Fε =
{

n ∈ N : |cn| ≤ ε

3

}

∈ F . (3.8)

Let k be as above, and set E = Fε ∩ Ak. Note that E ∈ F . From (3.7) and (3.8), for every
n ∈ E, we have

0 ≤ ρϕ[a(Tnf − f)χS] ≤ ε.

This means
(F) lim

n
ρϕ[a(Tnf − f)χS ] = 0,

that is the assertion. �

4 Applications

As an application, we consider nonlinear Mellin operators and in particular moment operators
and Mellin–Gauss–Weierstrass-type operators (see also [11]). We recall the following structural
assumptions according to [11].

Assumptions 4.1 (a) Let G = R
+, and for any measurable set S ⊂ R

+, put μ(S) =
∫

S
dt
t .

Let L̃ be the set of all sequences of measurable functions L̃n : R
+ → R

+
0 , n ∈ N, such that

L̃n ∈ L1(μ).
(b) Let Ξ = (ψn)n ⊂ Ψ be as in 3.1 (c), and denote by K̃Ξ the set of all sequences of

functions K̃n : R
+ × R → R, n ∈ N, such that

i) K̃n(·, u) is measurable for all u ∈ R and n ∈ N, and K̃n(t, 0) = 0 for every n ∈ N and
t ∈ R

+;
ii) there are sequences (L̃n)n ⊂ L̃ and (ψn)n ⊂ Ψ, such that

|K̃n(t, u) − K̃n(t, v)| ≤ L̃n(t)ψn(|u− v|) (4.1)

for all n ∈ N, t ∈ R
+ and u, v ∈ R.

(c) Let K̃ = (K̃n)n ∈ K̃Ξ and let us consider a sequence T̃ = (T̃n)n of nonlinear Mellin
operators defined as

(T̃nf)(s) =
∫ +∞

0

K̃n

(
t

s
, f(t)

)
dt

t
for all s ∈ R

+, (4.2)

where f ∈ Dom T̃ =
⋂∞

n=1Dom T̃n is the subset of L0(R+,B, μ) on which T̃nf is well defined.

Observe that, if we put

Ln(s, t) = L̃n

(
t

s

)

, Kn(s, t, u) = K̃n

(
t

s
, u

)

for all s, t ∈ R
+ and u ∈ R, then it is not difficult to check that, if K̃n, L̃n, n ∈ N, satisfy

Assumptions 4.1, then Kn, Ln, n ∈ N, fulfil Assumptions 3.1.
We now introduce (filter) singularity in the context of Mellin operators.
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Definition 4.2 We say that K̃ = (K̃n)n is F-singular if and only if
4.2.1) there exists a D1 > 0 with

Π =
{

n ∈ N :
∫ +∞

0

L̃n(t)
dt

t
≤ D1

}

∈ F ;

4.2.2) for all δ > 1, setting Uδ =
[
1
δ , δ

]
, we get

(F) lim
n

∫

R+\Uδ

L̃n(t)
dt

t
= 0;

4.2.3) for every u ∈ R, we have

(F) lim
n

∫ +∞

0

K̃n(t, u)
dt

t
= u.

Remark 4.3 Observe that
∫ +∞

0

L̃n

(
t

s

)
dt

t
=

∫ +∞

0

L̃n(z)
s dz

sz
=

∫ +∞

0

L̃n(z)
dz

z
,

∫ +∞

0

K̃n

(
t

s
, u

)
dt

t
=

∫ +∞

0

K̃n(z, u)
s dz

sz
=

∫ +∞

0

K̃n(z, u)
dz

z

for all n ∈ N, s ∈ R
+ and u ∈ R.

It is possible to adapt to the context of Mellin operators the convergence theorems proved
in the previous section, and we can obtain, as particular cases, convergence theorems for these
kinds of operators with respect to statistical convergence, since the filter Fd is a Lebesgue filter.
We get the following consequence of Theorem 3.8.

Corollary 4.4 Let F be a Lebesgue filter of N, ϕ ∈ Φ̃, η ∈ Φ and Ξ = (ψn)n ⊂ Ψ be such
that (ρϕ, ψn, ρ

η) is F-properly directed. Let K̃ = (K̃n)n be F-singular.
Then for every f ∈ Lϕ+η(G) ∩ Dom T , there exists a positive real number a such that

(F) lim
n
ρϕ[a(T̃nf − f)χS ] = 0

for any S ∈ B with μ(S) < +∞.

In the linear frame, a particular case of Mellin-type kernels is the moment kernel, defined
as

Mn(t) = n tnχ(0,1)(t), t ∈ R
+. (4.3)

For every n ∈ N, t ∈ R
+ and u ∈ R, set

L̃n(t) = Mn(t), K̃n(t, u) = L̃n(t) · u. (4.4)

Observe that, for any δ > 1 and n ∈ N, we get
∫ +∞

0

L̃n(t)
dt

t
= n

∫ 1

0

tn−1 dt = 1,

∫

R+\Uδ

L̃n(t)
dt

t
= n

∫ 1/δ

0

tn−1 dt =
(

1
δ

)n

. (4.5)

From (4.3)–(4.5), it follows that all F-singularity conditions in Definition 4.2 are satisfied for
every free filter F .
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Another example of Mellin-type kernels is the Mellin–Gauss–Weierstrass kernel, defined by
putting

L̃n(t) =
n

2
√
π

e−
n2
4 log2 t, K̃n(t, u) = L̃n(t) · u, n ∈ N, t ∈ R

+, u ∈ R. (4.6)

We have
∫ +∞

0

L̃n(t)
dt

t
=

n

2
√
π

∫ +∞

−∞
e−

n2
4 w2

dw =
1√
π

∫ +∞

−∞
e−v2

dv = 1. (4.7)

Moreover, for any fixed δ > 1 and for n large enough (depending on δ), we get
∫

R+\Uδ

L̃n(t)
dt

t
=

n

2
√
π

∫ 1/δ

0

e−
n2
4 log2 t dt

t
+

n

2
√
π

∫ +∞

δ

e−
n2
4 log2 t dt

t

=
n

2
√
π

∫ − log δ

−∞
e−

n2
4 w2

dw +
n

2
√
π

∫ +∞

log δ

e−
n2
4 w2

dw

=
n√
π

∫ +∞

log δ

e−
n2
4 w2

dw =
2√
π

∫ +∞

n log δ
2

e−v2
dv

≤ 2√
π

∫ +∞

n log δ
2

e−v dv =
2√
π

e−
n log δ

2 . (4.8)

Hence, for all δ > 1, we have

(F) lim
n

∫

R+\Uδ

L̃n(t)
dt

t
= 0 (4.9)

for every free filter F of N. From (4.7) and (4.9), it follows that all conditions of F-singularity
are fulfilled, even in the classical case, that is when F = Fcofin.

In a similar way, we consider nonlinear moment kernels or nonlinear Mellin–Gauss–Weiers-
trass kernels, by setting

K̃n(t, u) = L̃n(t)Gn(u), n ∈ N, t ∈ R
+, u ∈ R,

where (Gn)n is a sequence of functions satisfying a Lipschitz condition of the type

|Gn(u) −Gn(v)| ≤ ψn(|u− v|) for all n ∈ N and u, v ∈ R,

where (ψn)n ⊂ Ψ and Ψ is as in Assumptions 4.1 (b), and (F) limnGn(u) = u (see also [11]).
We now give some examples in which our results hold for filter convergence with respect

to any fixed Lebesgue filter F �= Fcofin, in particular for the statistical convergence (that is
in the case F = Fd), but not for ordinary convergence, showing that our results are proper
extensions of the corresponding classical ones (see also [16], where a similar argument is used
for Korovkin-type theorems).

Example 4.5 Let F �= Fcofin be any Lebesgue filter, and H be an infinite set, such that
N\H ∈ F : since F �= Fcofin, then H does exist. We consider both moment-type and Mellin–
Gauss–Weierstrass-type kernels. For every t > 0 and n ∈ N, set

L∗
n(t) =

⎧
⎨

⎩

L̃n(t), if n ∈ N\H,
e3n2

L̃n(t), if n ∈ H,
(4.10)

where L̃n(t) is as in (4.4) or as in (4.6).
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By (4.5), (4.7) and (4.8), it follows that the F-singularity conditions are satisfied. Set
ϕ(u) = η(u) = up, where u ∈ R

+
0 and p ≥ 1 is arbitrarily chosen. For each n ∈ N, define

ψn : R
+
0 → R

+
0 by putting ψn(u) = u, u ∈ R

+
0 . It is easy to see that the triple (ρϕ, ψn, ρ

η) is F-
properly directed with cn = 0 for all n ∈ N. Thus, in this case, the hypotheses of Corollary 4.4
are fulfilled. Therefore, the kernels L∗

n, n ∈ N, satisfy our main results with respect to F-
convergence.

We now prove that the kernels L∗
n, n ∈ N, do not fulfil the classical versions of theorems

analogous to Theorems 3.6 and 3.8.

First of all, observe that in the case of the moment kernel, for every compact interval
[a, b] ⊂ R

+, for all n ∈ H and s ∈ R
+, we get

∫ b

a

L∗
n

(
t

s

)
dt

t
= n e3n2

∫ b

a

(
t

s

)n

χ(0,1)

(
t

s

)
dt

t
= n e3n2

∫ b

a

(
t

s

)n

χ(0,s)(t)
dt

t

=
ne3n2

sn

∫ b

a

tn−1χ(0,s)(t) dt =

⎧
⎪⎪⎨

⎪⎪⎩

e3n2 bn−an

sn , if s ≥ b,

e3n2 sn−an

sn , if a ≤ s < b,

0, if 0 < s < a.

(4.11)

In the case of the Mellin–Gauss–Weierstrass kernel, for every [a, b] ⊂ R
+, n ∈ H and s > 0, we

have
∫ b

a

L∗
n

(
t

s

)
dt

t
=
n e3n2

2
√
π

∫ b/s

a/s

e−
(

n
2 log t

)2 dt

t
=

e3n2

√
π

∫ n
2 log

(
b
s

)

n
2 log

(
a
s

) e−w2
dw. (4.12)

Let now S = [e−1/4, e1/4], f ∈ Cc(R+), f ≥ 0 be such that f(t) = 1 for all t ∈ [e−3, e−2] and
the support of f is contained in [e−4, e−1]. For every n ∈ N and s > 0, set

(T ∗
nf)(s) =

∫ +∞

0

L∗
n

(
t

s

)

f(t)
dt

t
.

For all λ > 0 and n ∈ H, we get

ρϕ[λ(T ∗
nf − f)χS ] = λp

∫ e1/4

e−1/4
|(T ∗

nf)(s) − f(s)|p ds
s

= λp

∫ e1/4

e−1/4
|(T ∗

nf)(s)|p ds
s
.

We now claim that

lim
n∈H

(T ∗
nf)(s) = +∞ for all s ∈ S. (4.13)

As a consequence, we will obtain that limn∈H ρϕ[λ(T ∗
nf−f)χS ] = +∞, and hence the sequence

(ρϕ[λ(T ∗
nf − f)χS ])n does not converge in the usual sense, though it is F-convergent to 0. In

the case of the moment-type kernel, from (4.11), it follows that

(T ∗
nf)(s) =

∫ +∞

0

L∗
n

(
t

s

)

f(t)
dt

t
≥

∫ e−2

e−3
L∗

n

(
t

s

)
dt

t
= e3n2

[
e−2n − e−3n

sn

]

for each n ∈ H and s ∈ S. Since S = [e−1/4, e1/4], then 1
sn ≥ e−n/4, and therefore,

(T ∗
nf)(s) ≥ e3n2

(e−2n − e−3n)e−n/4 > e3n(e−2n − e−3n)e−n/4 = e3n/4 − e−n/4

for all n ∈ H and s ∈ S. Thus, we get (4.13).
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For the Mellin–Gauss–Weierstrass-type kernel, from (4.12), for all n ∈ H and s ∈ S, we
have

(T ∗
nf)(s) =

∫ +∞

0

L∗
n

(
t

s

)

f(t)
dt

t
≥

∫ e−2

e−3
L∗

n

(
t

s

)
dt

t

=
e3n2

√
π

∫ n
2 log

(
e−2

s

)

n
2 log

(
e−3

s

) e−w2
dw ≥ e3n2

√
π

∫ − 9
8 n

− 11
8 n

e−w2
dw

≥ n

4
e3n2

√
π

e−
121
64 n2

=
n

4
√
π

e
71
64n2

.

So we obtain (4.13) even in this case. Thus we proved that our results are proper extensions of
the corresponding classical ones.
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