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A new nonmonotone filter trust region method is introduced for solving optimization problems with equality constraints. This
method directly uses the dominated area of the filter as an acceptability criterion for trial points and allows the dominated area
decreasing nonmonotonically. Compared with the filter-type method, our method has more flexible criteria and can avoidMaratos
effect in a certain degree. Under reasonable assumptions, we prove that the given algorithm is globally convergent to a first order
stationary point for all possible choices of the starting point. Numerical tests are presented to show the effectiveness of the proposed
algorithm.

1. Introduction

We analyze an algorithm for solving optimization problems
where a smooth objective function is to beminimized subject
to smooth nonlinear equality constraints. More formally, we
consider the problem,

min 𝑓 (𝑥) ,

s.t. 𝑐
𝑖 (𝑥) = 0, 𝑖 ∈ 𝐼 = {1, 2, . . . , 𝑚} ,

(𝑃)

where𝑥 ∈ 𝑅𝑛, the functions𝑓 : 𝑅𝑛 → 𝑅 and 𝑐
𝑖
(𝑖 ∈ 𝐼) : 𝑅𝑛 →

𝑅 are all twice continuously differentiable. For convenience,
let 𝑔(𝑥) = ∇𝑓(𝑥), 𝑐(𝑥) = (𝑐

1
(𝑥), 𝑐
2
(𝑥), . . . , 𝑐

𝑚
(𝑥))𝑇 and

𝐴(𝑥) = (∇𝑐
1
(𝑥), ∇𝑐

2
(𝑥), . . . , ∇𝑐

𝑚
(𝑥)), and 𝑓

𝑘
refers to 𝑓(𝑥

𝑘
),

𝑐
𝑘
to 𝑐(𝑥

𝑘
), 𝑔
𝑘
to 𝑔(𝑥

𝑘
) and 𝐴

𝑘
to 𝐴(𝑥

𝑘
), and so forth.

There are many trust region methods for equality con-
strained nonlinear programming (𝑃), for example, Byrd et
al. [1], Dennis Jr. et al. [2] and Powell and Yuan [3], but
in these works, a penalty or augmented Lagrange func-
tion is always used to test the acceptability of the iterates.
However, there are several difficulties associated with the
use of penalty function, and in particular the choice of the
penalty parameter. Hence, in 2002, Fletcher and Leyffer [4]
proposed a class of filter method, which does not require
any penalty parameter and has promising numerical results.
Consequently, filter technique has been employed to many

approaches, for instance, SLP methods [5], SQPmethods [6–
8], interior point approaches [9], bundle techniques [10], and
so on.

Filter technique, in fact, exhibits a certain degree of non-
monotonicity.The nonmonotone technique was proposed by
Grippo et al. in 1986 [11] and combined with many other
methods. M. Ulbrich and S. Ulbrich [12] proposed a class
of penalty-function-free nonmonotone trust region methods
for nonlinear equality constrained optimizationwithout filter
technique. Su and Pu [13] introduced a nonmonotone trust
region method which used the nonmonotone technique in
the traditional filter criteria. Su and Yu [14] presented a
nonmonotone method without penalty function or filter.
Gould and Toint [15] directly used the dominated area of the
filter as an acceptability criteria for trial points and obtained
the global convergence properties.We refer the reader [16–18]
for some works about this issue.

Motivated by the ideas and methods above, we propose
a modified nonmonotone filter trust region method for
solving problem (𝑃). Similar to the Byrd-Omojokun class of
algorithms, each step is decomposed into the sum of two
distinct components, a quasi-normal step and a tangential
step. The main contribution of our paper is to employ the
nonmonotone idea to the dominated area of the filter so
that the new and more flexible criteria is given, which is
different from that ofGould andToint [15] and Su andPu [13].
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Under usual assumptions, we prove that the given algorithm
is globally convergent to first order stationary points.

This paper is organized as follows. In Section 2, we
introduce the fraction of Cauchy decrease and the composite
SQP step. The new nonmonotone filter technique is given in
Section 3. In Section 4, we propose the new nonmonotone
filter method and present the global convergence properties
in Section 5. Some numerical results are reported in the last
section.

2. The Fraction of Cauchy Decrease and
the Composite SQP Step

Consider the following unconstraint minimization optimiza-
tion problem:

min
𝑥∈𝑅
𝑛

𝑓 (𝑥) , (1)

where 𝑓 : 𝑅𝑛 → 𝑅 is a continuously differentiable function.
A trust region algorithm for solving the above problem is an
iterate procedure that computes a trial step as an approximate
solution to the following subproblems:

min 𝑞 (𝑑) = 𝑔
𝑇𝑑 +

1

2
𝑑𝑇𝐻𝑑,

s.t. ‖𝑑‖ ≤ Δ,

(2)

where 𝐻 is the Hessian matrix ∇2𝑓(𝑥) or an approximate to
it and Δ > 0 is a given trust region radius.

To assure the global convergence, the step is required only
to satisfy a fraction of Cauchy decrease condition.Thismeans
that 𝑑 must predict via the quadratic model function 𝑞(𝑑)
at least as much as a fraction of the decreased given by the
Cauchy step on 𝑞(𝑑); that is, there exists a constant 𝜎 > 0
fixed across all iterations, such that

𝑞 (0) − 𝑞 (𝑑) ≥ 𝜎 (𝑞 (0) − 𝑞 (𝑑
𝑐𝑝)) , (3)

where 𝑑𝑐𝑝 is the steepest descent step for 𝑞(𝑑) inside the trust
region.

Lemma 1. If the trial step 𝑑 satisfies a fraction of Cauchy
decrease condition, then

𝑞 (0) − 𝑞 (𝑑) ≥
𝜎

2

∇𝑓 (𝑥)
min{Δ,

∇𝑓 (𝑥)


‖𝐻‖
} . (4)

Proof (see Powell [19] for the proof). Now, we turn to explain
the composite SQP step. Given an approximate estimate of
the solution 𝑥

𝑘
at 𝑘th iteration, following Dennis Jr. et al. [2]

and M. Ulbrich and S. Ulbrich [12], we obtain the trial step
𝑑
𝑘
= 𝑑𝑛
𝑘
+ 𝑑𝑡
𝑘
by computing a quasi-normal step 𝑑𝑛

𝑘
and a

tangential step 𝑑𝑡
𝑘
. The purpose of the quasi-normal step 𝑑𝑛

𝑘

is to improve feasibility. To improve optimality, we seek 𝑑𝑡
𝑘

in the tangential space of the linearized constraints in such a
way that it provides sufficient decrease for a quadratic model
of the objective function𝑓(𝑥). Let 𝑞

𝑘
(𝑑) = 𝑔𝑇

𝑘
𝑑+(1/2)𝑑𝑇𝐻

𝑘
𝑑,

where𝐻
𝑘
is a symmetric approximation of ∇2𝑓(𝑥).

𝑑𝑛
𝑘
is the solution to the subproblem

min 1

2

𝑐𝑘 + 𝐴
𝑇

𝑘
𝑑𝑛

2

+
𝜉

2

𝑑
𝑛
2
,

s.t. 𝑑
𝑛 ≤ Δ 𝑘,

(5)

where Δ
𝑘
is a trust region radius and 𝐴

𝑘
= ∇𝑐(𝑥

𝑘
) ∈

𝑅𝑛×𝑚, 𝜉 > 0. In order to improve the value of the objective
function, we solve the following subproblem to get 𝑑𝑡

𝑘
:

min 𝑞
𝑘
(𝑑𝑛
𝑘
+ 𝑑𝑡) ,

s.t. 𝐴𝑇
𝑘
𝑑𝑡 = 0

𝑑
𝑡 ≤ Δ 𝑘.

(6)

Then we get the current trial step 𝑑
𝑘
= 𝑑𝑛
𝑘
+ 𝑑𝑡
𝑘
. Let 𝑑𝑡

𝑘
=

𝑊
𝑘
𝑑
𝑡

𝑘
, where 𝑑

𝑡

𝑘
∈ 𝑅𝑛−𝑚 and𝑊

𝑘
∈ 𝑅𝑛×(𝑛−𝑚) denote a matrix

whose columns form a basis of the null space of 𝐴𝑇
𝑘
. We refer

to [2] for a more detailed discussion of this issue.
In usual way that impose a trust region in step-

decomposition methods, the quasi-normal step 𝑑𝑛
𝑘
and the

tangential step 𝑑𝑡
𝑘
are required to satisfy

𝑑
𝑛 ≤ 𝜅Δ 𝑘,

𝑑
𝑛

𝑘
+ 𝑑𝑡
 ≤ Δ 𝑘, (7)

where 0 < 𝜅 < 1. Here, to simplify the proof, we only impose
a trust region on ‖ 𝑑𝑛 ‖≤ Δ

𝑘
and ‖ 𝑑𝑡 ‖≤ Δ

𝑘
, which is natural.

Note that 𝑊𝑇
𝑘
∇𝑞
𝑘
(𝑑𝑡) is the reduced gradient of 𝑞

𝑘
in

terms of the representation 𝑑𝑡 = 𝑊
𝑘
𝑠 of the tangential step:

∇
𝑠
(𝑞
𝑘
(𝑊
𝑘
𝑠)) = 𝑊𝑇

𝑘
∇𝑞
𝑘
(𝑊
𝑘
𝑠) = 𝑊𝑇

𝑘
∇𝑞
𝑘
(𝑑𝑡) . (8)

Define

𝑔 (𝑥) = 𝑊(𝑥)
𝑇𝑔 (𝑥) . (9)

Then the first order necessary optimality conditions (Karush-
Kuhn-Tucker or KKT conditions) at a local solution 𝑥 ∈ 𝑅𝑛
of problem (𝑃) can be written as

𝑐 (𝑥) = 0, 𝑔 (𝑥) = 0. (10)

3. A New Nonmonotone Filter Technique

In filter method, originally proposed by Fletcher and Leyffer
[4], the acceptability of iterates is determined by comparing
the value of constraint violation and the objective function
with previous iterates collected in a filter. Define the violation
function ℎ(𝑥) by ℎ(𝑥) =‖ 𝑐(𝑥)‖2

2
, it is easy to see that ℎ(𝑥) = 0

if and only if𝑥 is a feasible point, so a trial point should reduce
either the value of constraint violation or that of the objective
function 𝑓.

In the process of the algorithm,weneed to decidewhether
the trial point 𝑥+

𝑘
is any better than 𝑥

𝑘
as an approximate

solution to the problem (𝑃). If we decide that this is the case,
we say that the iteration 𝑘 is successful and choose 𝑥+

𝑘
as
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𝑓(𝑥)

ℎ (𝑥)

𝑁𝑊(ℱ𝑘)

𝑓ℱ𝑘max

𝑓ℱ𝑘min

ℎ
ℱ𝑘
min ℎ

ℱ𝑘
max

𝒟(ℱ𝑘)

𝑆𝐸(ℱ𝑘)

𝑆𝑊(ℱ𝑘)

Figure 1

the next iterate. Let us denote by S the set of all successful
iterations, that is,

S = {𝑘
𝑥𝑘+1 = 𝑥

+

𝑘
} . (11)

In traditional filter method, a point 𝑥 is called acceptable
to the filter if and only if

ℎ (𝑥) ≤ 𝛽ℎ𝑗 or 𝑓 (𝑥) ≤ 𝑓𝑗 − 𝛾ℎ𝑗, ∀ (ℎ𝑗, 𝑓𝑗) ∈ F, (12)

where 0 < 𝛾 < 𝛽 < 1,F denotes the filter set. Define

D (F) = {(ℎ, 𝑓)
ℎ > ℎ𝑗 and𝑓 > 𝑓𝑗, ∃𝑗 ∈ F} . (13)

A trial point 𝑥+
𝑘
is accepted if and only if (ℎ+

𝑘
, 𝑓+
𝑘
) ∉ D(F

𝑘
).

Now, similar to the idea of Gould and Toint [15], we give a
new modified nonmonotone filter technique. For any (ℎ, 𝑓)-
pair, define an area that represents its contribution to the area
of D(F), we hope this contribution is positive; that is, the
area of D(F) is increasing. For convenience, we partition
the right half-plane [0, +∞] × [−∞, +∞] into four different
regions (see Figure 1). DefineD(F

𝑘
)𝑐 to be the complement

ofD(F
𝑘
). Let

ℎ
F
𝑘

min
def
= min
𝑗∈F
𝑘

ℎ
𝑗
, ℎF𝑘max

def
= max
𝑗∈F
𝑘

ℎ
𝑗
,

𝑓
F
𝑘

min
def
= min
𝑗∈F
𝑘

𝑓
𝑗
, 𝑓F𝑘max

def
= max
𝑗∈F
𝑘

𝑓
𝑗
.

(14)

These four parts are

(1) the dominated part of the filter:𝑁𝐸(F
𝑘
)
def
= D(F

𝑘
);

(2) the undominated part of lower left corner of the half
plane:

𝑆𝑊 (F
𝑘
)
def
= D(F

𝑘
)
𝑐
∩ [0, ℎF𝑘max] × [−∞,𝑓

F
𝑘

max] , (15)

(3) the undominated upper left corner: 𝑁𝑊(F
𝑘
)

def
=

[0, ℎ
F
𝑘

min) × (𝑓
F
𝑘

max, +∞];

(4) the undominated lower right corner: 𝑆𝐸(F
𝑘
)

def
=

(ℎF𝑘max, +∞] × [−∞,𝑓
F
𝑘

min).

𝑓(𝑥)

ℎ (𝑥)

𝑓ℱ𝑘max

𝑓ℱ𝑘min

ℎ
ℱ𝑘
min ℎ

ℱ𝑘
max

𝑓𝒫𝑘max

𝑓
𝒫𝑘
min

(ℎ+𝑘 , 𝑓+𝑘 )

(ℎ+𝑘 , 𝑓+𝑘 )

(ℎ+𝑘 , 𝑓+𝑘 )

(ℎ+𝑘 , 𝑓+𝑘 )

𝑓ℱ𝑘max + 𝑘ℱ

ℎℱ𝑘max + 𝑘ℱ

𝑘ℱ

𝑘ℱ

Figure 2

Consider the trial point 𝑥+
𝑘
, if the filter is empty, then define

its contribution to the area of the filter by

𝛼 (𝑥+
𝑘
,F
𝑘
)
def
= 𝜅
𝐹

2, (16)

where 𝜅
𝐹
> 0 is a constant. If the filter is not empty, then

define the contribution of 𝑥+
𝑘
to the area of the filter by four

different formulae.
If (ℎ+
𝑘
, 𝑓+
𝑘
) ∈ 𝑆𝑊(F

𝑘
), assume

𝛼 (𝑥+
𝑘
,F
𝑘
)
def
= area (D(F

𝑘
)
𝑐
∩ [ℎ+
𝑘
, ℎF𝑘max + 𝜅𝐹]

× [𝑓+
𝑘
, 𝑓F𝑘max + 𝜅𝐹]) .

(17)

If (ℎ+
𝑘
, 𝑓+
𝑘
) ∈ 𝑁𝑊(F

𝑘
), assume

𝛼 (𝑥+
𝑘
,F
𝑘
)
def
= 𝜅
𝐹
(ℎ

F
𝑘

min − ℎ
+

𝑘
) . (18)

If (ℎ+
𝑘
, 𝑓+
𝑘
) ∈ 𝑆𝐸(F

𝑘
), assume

𝛼 (𝑥+
𝑘
,F
𝑘
)
def
= 𝜅
𝐹
(𝑓

F
𝑘

min − 𝑓
+

𝑘
) . (19)

If (ℎ+
𝑘
, 𝑓+
𝑘
) ∈ 𝑁𝐸(F

𝑘
) = D(F

𝑘
), assume

𝛼 (𝑥+
𝑘
,F
𝑘
)
def
= −area (D (F

𝑘
) ∩ [ℎ+

𝑘
− ℎ

P
𝑘

min]

× [𝑓+
𝑘
− 𝑓

P
𝑘

min]) ,

(20)

where P
𝑘
= {(ℎ, 𝑓) ∈ F

𝑘
|ℎ
𝑗
< ℎ+
𝑘
, 𝑓
𝑗
< 𝑓+
𝑘
}, and ℎP𝑘min

def
=

min
𝑗∈P
𝑘

ℎ
𝑗
, 𝑓

P
𝑘

min
def
= min
𝑗∈P
𝑘

𝑓
𝑗
.

Figure 2 illustrate the corresponding areas in the filter.
Horizontally dashed surfaces indicate a positive contribution
and vertically dashed ones a negative contribution. Note that
𝛼(𝑥,F) is a continuous function of (ℎ(𝑥), 𝑓(𝑥)).
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Next, we should consider the updating of the filter. If
(ℎ
𝑘
, 𝑓
𝑘
) ∉ D(F

𝑘
), then

F
𝑘+1
← F

𝑘
∪ (ℎ
𝑘
, 𝑓
𝑘
) . (21)

If (ℎ
𝑘
, 𝑓
𝑘
) ∈ D(F

𝑘
), then

F
𝑘+1
← (F

𝑘
\P
𝑘
) ∪ (ℎ

P
𝑘

min, 𝑓𝑘) ∪ (ℎ𝑘, 𝑓
P
𝑘

min) . (22)

We now return to the question of deciding whether a trial
point 𝑥+

𝑘
is acceptable for the filter or not. We will insist that

this is a necessary condition for the iteration 𝑘 to be successful
in the sense that 𝑥

𝑘+1
= 𝑥+
𝑘
. If we consider an iterate 𝑥

𝑘
, there

must exist a predecessor iteration such that 𝑥+
𝑝(𝑘)
= 𝑥
𝑝(𝑘)+1

=

𝑥
𝑘
. Under the monotonic situation, a trial point 𝑥+

𝑘
would be

accepted whenever it results in an sufficient increase in the
dominated area of the filter, that means 𝑥+

𝑘
would be accepted

whenever

𝛼
𝑘
≥ 𝛾F(ℎ

+

𝑘
)
2

, (23)

where 𝛼
𝑘

def
= 𝛼(𝑥+

𝑘
,F
𝑘
), 𝛾F ∈ (0, 1) is a constant. Under the

nonmonotonic situation, we relax condition (23) to be

max
{{{
{{{
{

𝛼
𝑘
,
𝑘

∑
𝑗=𝑟(𝑘)+1

𝑗∈U

𝜆
𝑝(𝑗)
𝛼
𝑝(𝑗)

}}}
}}}
}

≥ 𝛾F(ℎ
+

𝑘
)
2

, (24)

where𝛼
𝑝(𝑗)

def
= 𝛼(𝑥

𝑗
,F
𝑝(𝑗)
), U = {𝑘| filter is updated for

(ℎ
𝑘
, 𝑓
𝑘
)}, 𝑟(𝑘) ≤ 𝑘 is some reference iteration forU, 𝑟(𝑘) ∈ U,

U ⊆ S, 𝜆
𝑝(𝑗)
∈ [0, 1], ∑

𝑘

𝑗=𝑟(𝑘)+1, 𝑗∈U 𝜆𝑝(𝑗) = 1.
Compared to condition (2.21) [15], our condition (24) is

more flexible if 𝛼
𝑘
is negative.

According to condition (24), it is possible to accept 𝑥+
𝑘

even though it may be dominated. Then 𝑥+
𝑘
will be accepted

if either (23) or (24) holds.

4. The New Nonmonotone Filter Trust
Region Algorithm

Our algorithm is based on the usual trust region technique;
define the predict reduction for the function 𝑞

𝑘
(𝑥) to be

pred (𝑑
𝑘
) = 𝑞
𝑘 (0) − 𝑞𝑘 (𝑑𝑘) (25)

and the actual reduction

ared (𝑑
𝑘
) = 𝑓 (𝑥

𝑘
) − 𝑓 (𝑥+

𝑘
) . (26)

Moreover, let 𝑟
𝑘
= ared(𝑑

𝑘
)/pred(𝑑

𝑘
), if there exists a nonzero

constant 𝜂
1
such that 𝑟

𝑘
≥ 𝜂
1
and condition (23) and (24)

hold, the trial point𝑥+
𝑘
will be called acceptable.Then the next

trial point 𝑥
𝑘+1

is obtained, and for its feasibility, we consider
the condition

ℎ
𝑘+1
≤ 𝜂
3
min {𝜇, 𝛼

1
Δ
2+𝛼
2

𝑘
} (27)

is true or not, where 𝜂
3
and 𝜇 are all positive constants, if it

is not true, then turn to the feasibility restoration phase and
define

𝑟
𝑗

𝑘
=

𝑐(𝑥
𝑗

𝑘
)

2

−
𝑐(𝑥
𝑗

𝑘
+ 𝑑
𝑗

𝑘
)

2

𝑐(𝑥
𝑗

𝑘
)

2

−
𝑐(𝑥
𝑗

𝑘
) + 𝐴(𝑥

𝑗

𝑘
)𝑇𝑑
𝑗

𝑘


2
. (28)

A formal description of the algorithm is given as follows.
Algorithm A 𝑆𝑡𝑒𝑝 0. Choose an initial point 𝑥

0
∈ 𝑅𝑛, a

symmetric matrix 𝐻
0
∈ 𝑅𝑛×𝑛, let Δ

0
> 0, 𝜖

𝑡
> 0, 𝜂

2
, 𝜂
3
∈

(0, 1), 𝛼
1
, 𝛼
2
∈ [0, 1], 𝜂

1
> 0, 0 < 𝛾

0
< 𝛾
1
< 1 ≤ 𝛾

2
< 𝛾
3
≤

2, 0 < 𝜉 < 1, 𝛾F ∈ (0, 1), 𝜇 > 0, compute 𝑓(𝑥
0
), ℎ(𝑥

0
), let

𝑘 = 0,F
0
= 0.

Step 1. Compute 𝑐
𝑘
, 𝐴
𝑘
,𝑊
𝑘
, 𝑓
𝑘
, ℎ
𝑘
, 𝑔
𝑘
, 𝑔
𝑘
= 𝑊𝑇
𝑘
𝑔
𝑘
.

Step 2. If ‖ 𝑔
𝑘
‖ +ℎ
𝑘
≤ 𝜖
𝑡
, stop.

Step 3. Solve the subproblems (5) and (6) to get the quasi-
normal step 𝑑𝑛

𝑘
and the tangential step 𝑑𝑡

𝑘
. Let 𝑑

𝑘
= 𝑑𝑛
𝑘
+

𝑑𝑡
𝑘
, 𝑥+
𝑘
= 𝑥
𝑘
+ 𝑑
𝑘
.

Step 4. If 𝑟
𝑘
< 𝜂
1
, let 𝑥
𝑘+1
= 𝑥
𝑘
, then go to Step 8.

Step 5. If 𝑥
𝑘
+ 𝑑
𝑘
is not acceptable to the filter, go to Step 8.

Otherwise 𝑥
𝑘+1
= 𝑥+
𝑘
and update the filter according to

(21) and (22), the trust region radius and 𝐻
𝑘
, then get the

corresponding ℎ
𝑘+1
, 𝑓
𝑘+1

.

Step 6. If ℎ
𝑘+1
≤ 𝜂
3
min{𝜇, 𝛼

1
Δ
2+𝛼
2

𝑘
}, 𝑘 = 𝑘 + 1 and go to

Step 1, otherwise go to Step 7.

Step 7. By restoration Algorithm B to get 𝑑𝑟
𝑘
, then the trial

point 𝑥𝑟
𝑘
= 𝑥
𝑘
+ 𝑑𝑟
𝑘
.

Step 8. Update the trust region radius by AlgorithmC, let 𝑘 =
𝑘 + 1 and go to Step 3.

We aim to reduce the value of ℎ(𝑥) in the restoration
Algorithm B, that is to get 𝑐(𝑥𝑟

𝑘
) = 0 by Newton-typemethod.

Algorithm B 𝑆𝑡𝑒𝑝 0. Let 𝑥0
𝑘
= 𝑥
𝑘
, Δ0
𝑘
= Δ
𝑘
, 𝑗 = 0, 𝜂

2
, 𝜂
3
∈

(0, 1), 𝛼
1
, 𝛼
2
∈ [0, 1], 𝜇 > 0.

Step 1. If ℎ(𝑥𝑗
𝑘
) ≤ 𝜂
3
min{ℎF𝑘

𝑘
, 𝛼
1
Δ
2+𝛼
2

𝑘
} and 𝑥𝑗

𝑘
is acceptable

by the filter, then 𝑥𝑟
𝑘
= 𝑥
𝑗

𝑘
, stop.

Step 2. Compute

min 𝑐(𝑥
𝑗

𝑘
) + 𝐴(𝑥

𝑗

𝑘
)𝑇𝑑
𝑗

𝑘


2

,

s.t. 𝑑
𝑗

𝑘

 ≤ Δ
𝑗

𝑘

(29)

to get 𝑑𝑗
𝑘
, then compute 𝑟𝑗

𝑘
.

Step 3. If 𝑟𝑗
𝑘
≤ 𝜂
2
, 𝑥𝑗+1
𝑘
= 𝑥
𝑗

𝑘
, Δ
𝑗+1

𝑘
= Δ
𝑗

𝑘
/2, 𝑗 = 𝑗 + 1 and go

to Step 2.
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Step 4. If 𝑟𝑗
𝑘
> 𝜂
2
, 𝑥𝑗+1
𝑘
= 𝑥
𝑗

𝑘
+ 𝑑
𝑗

𝑘
, Δ
𝑗+1

𝑘
= 2Δ
𝑗

𝑘
, 𝑗 = 𝑗 + 1,

compute 𝐴𝑗+1
𝑘

and go to Step 1, where ℎF𝑘
𝑘
= min{min

𝑗∈F
𝑘

{ℎ
𝑗
|ℎ
𝑗
> 0}, 𝜇}.

Algorithm C (updating the trust region radius). Given 𝜂
1
>

0, 0 < 𝛾
0
< 𝛾
1
< 1 ≤ 𝛾

2
< 𝛾
3
≤ 2, we have the following.

(1) If 𝑟
𝑘
< 𝜂
1
or 𝑥+
𝑘
is not acceptable to the filter, Δ

𝑘+1
∈

[𝛾
0
Δ
𝑘
, 𝛾
1
Δ
𝑘
].

(2) If 𝑥+
𝑘
is acceptable to the filter but does not satisfiy

condition (27), Δ
𝑘+1
∈ (Δ
𝑘
, 𝛾
2
Δ
𝑘
).

(3) If 𝑥+
𝑘

is acceptable to the filter and satisfies
(27), Δ

𝑘+1
∈ [𝛾
2
Δ
𝑘
, 𝛾
3
Δ
𝑘
].

From the description above and the idea of the algorithm,
we can see that our algorithm is more flexible. Every suc-
cessful iterate must be any better than the predecessor one in
some degree according to the traditional filter method. But
our algorithm relaxes this demand by using the nonmono-
tone technique and also avoids Maratos effect in a certain
degree.Moreover, AlgorithmCallows a relativelywide choice
of the trust region.

5. The Convergence Properties

In this section, to present a proof of global convergence of
algorithm, we always assume that the following conditions
hold.

Assumption

(A1) The objective function𝑓 and the constraint functions
𝑐
𝑖
(𝑖 ∈ 𝐼 = {1, 2, . . . , 𝑚}) are twice continuously

differentiable.
(A2) For all 𝑘, 𝑥

𝑘
, and 𝑥

𝑘
+ 𝑑
𝑘
all remain in a closed,

bounded convex subset Ω ⊂ 𝑅𝑛.
(A3) Thematrix𝐴(𝑥) = ∇𝑐(𝑥) is nonsingular matrix for all

𝑥 ∈ Ω.
(A4) The matrices (𝐴(𝑥)𝑇𝐴(𝑥))−1, 𝑊(𝑥), (𝑊𝑇𝑊)−1 are

uniformly bounded in Ω, where 𝑊(𝑥) denotes a
matrix whose columns form a basis of the null space
of 𝐴(𝑥)𝑇.

(A5) The matrix𝐻
𝑘
is uniformly bounded.

By the assumptions, we can suppose there exist constants
V
0
, V
1
, V
2
, V
3
such that ‖ 𝑓(𝑥) ‖≤ V

0
, ‖ 𝑔(𝑥) ‖≤ V

0
, ‖ 𝑐(𝑥) ‖≤

V
0
, ‖ 𝐴(𝑥) ‖≤ V

0
, ‖ 𝐴(𝑥)𝑇𝐴(𝑥)−1 ‖≤ V

1
, ‖ 𝑊(𝑥) ‖≤ V

2
, ‖

𝐻
𝑘
‖≤ V
3
, ‖ 𝑊𝑇
𝑘
𝐻
𝑘
‖≤ V
3
, ‖ 𝑊𝑇
𝑘
𝐻
𝑘
𝑊
𝑘
‖≤ V
3
.

By (A1) and (A2), it holds

𝑓min ≤ 𝑓𝑘, 0 ≤ ℎ𝑘 ≤ ℎmax ∀𝑘, (30)

where 𝑓min, ℎmax > 0, hence in the (ℎ, 𝑓)-plane, the (ℎ, 𝑓)-
pair lies in the area [0, ℎmax] × [𝑓min, +∞].

From (A1), (A2), and (A3), it exists a constant ] such that
𝑓 (𝑥𝑘 + 𝑑𝑘) − 𝑞𝑘 (𝑑𝑘)

 ≤ ]Δ
2

𝑘
. (31)

Lemma 2. At the current iterate 𝑥
𝑘
, let the trial point com-

ponent 𝑑𝑛
𝑘
actually be normal to the tangential space. Under

the problem assumptions, there exists a constant 𝑘
1
> 0

independent of the iterates such that
𝑑
𝑛

𝑘

 ≤ 𝛼1
𝑐𝑘
 . (32)

Proof. It is similar to the proof of Lemma 2 in [13].

Lemma 3. Under Assumptions, there exist positive constants
𝑘
2
, 𝑘
3
, 𝑘
4
independent of the iterates such that

𝑐𝑘

2
−
𝑐𝑘 + 𝐴

𝑇

𝑘
𝑑𝑛
𝑘


2

≥ 𝑘
2

𝑐𝑘
min {𝑘

3

𝑐𝑘
 , Δ 𝑘} ,

𝑞
𝑘
(𝑑𝑛
𝑘
) − 𝑞
𝑘
(𝑑
𝑘
)

≥
𝜎

2

𝑊
𝑇

𝑘
∇𝑞
𝑘
(𝑑𝑛
𝑘
)
min {𝑘

4

𝑊
𝑇

𝑘
∇𝑞
𝑘
(𝑑𝑛
𝑘
)
 , Δ 𝑘} .

(33)

Proof. The proof is an application of Lemma 1 to the two
subproblems (5) and (6).

Lemma 4. Suppose that Assumptions hold, then restoration
Algorithm B is well defined.

Proof. The conclusion is obvious, if ℎ𝑗
𝑘
→ 0. Otherwise it

exists 𝜖 > 0 such that for all 𝑗, it holds ℎ𝑗
𝑘
> 𝜖. Consider the

set

𝐾 =
{
{
{

𝑗



𝑟
𝑗

𝑘
=

𝑐
𝑗

𝑘


2

−
𝑐 (𝑥
𝑗

𝑘
+ 𝑑
𝑗

𝑘
)

2

𝑐
𝑗

𝑘


2

−
𝑐
𝑗

𝑘
+ (𝐴
𝑗

𝑘
)𝑇𝑑
𝑗

𝑘


2
> 𝜂
2
> 0
}
}
}

, (34)

where 𝑐𝑗
𝑘
= 𝑐(𝑥

𝑗

𝑘
), 𝐴
𝑗

𝑘
= 𝐴(𝑥

𝑗

𝑘
). By Lemma 3 and the

definition of ℎ
𝑘
, we have

+∞ >
∞

∑
𝑗=1

(ℎ
𝑗−1

𝑘
− ℎ
𝑗

𝑘
) ≥ ∑
𝑗∈𝐾

(
𝑐
𝑗

𝑘


2

−

𝑐
𝑗

𝑘
+ (𝐴
𝑗

𝑘
)
𝑇

𝑑
𝑗

𝑘



2

)

≥ 𝜂
2
𝑘
2
∑
𝑗∈𝐾

𝑐𝑘
min {𝑘

3

𝑐𝑘
 , Δ
𝑗

𝑘
} .

(35)

By ℎ𝑗
𝑘
> 𝜖, it holds Δ𝑗

𝑘
→ 0 for 𝑗 ∈ 𝐾. From Algorithm B, we

can obtain that Δ𝑗
𝑘
→ 0 for all 𝑗.

On the other side,

𝑐
𝑗

𝑘


2

−
𝑐 (𝑥
𝑗

𝑘
+ 𝑑
𝑗

𝑘
)

2

=
𝑐
𝑗

𝑘


2

−

𝑐
𝑗

𝑘
+ (𝐴
𝑗

𝑘
)
𝑇

𝑑
𝑗

𝑘



2

+ 𝑜 (Δ
𝑗

𝑘
)

(36)

for Δ𝑗
𝑘
→ 0. By the algorithm, the radius Δ𝑗

𝑘
should be

satisfied Δ𝑗+1
𝑘
> Δ
𝑗

𝑘
, that is contradicted to Δ𝑗

𝑘
→ 0. The

proof is complete.

Now, we analyze the impact of the criteria (23) and (24).
Once a trial point is accepted as a new iterate, it must be
provided some improvement, and we formalize this by saying
that iterate 𝑥

𝑘
= 𝑥
𝑝(𝑘)+1

improves on iterate 𝑥
𝑖(𝑘)

. That is
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the trial point 𝑥
𝑘
is accepted at iterate 𝑝(𝑘); it happens under

two situations, one is by the criteria (23), that is,

𝑖 (𝑘) = 𝑝 (𝑘) if 𝑝 (𝑘) ∉ A (37)

the other is by the criteria (24), that is,

𝑖 (𝑘) = 𝑝 (𝑘) if 𝑝 (𝑘) ∉ A. (38)

Now consider any iterate 𝑥
𝑘
, it improved on 𝑥

𝑖(𝑘)
, which

was itself accepted because it improved on 𝑥
𝑖(𝑖(𝑘))

, and so on,
until back to𝑥

0
. Hencewemay construct a chain of successful

iterations indexed byC
𝑘
= {𝑙
1
, 𝑙
2
, . . . , 𝑙
𝑞
} for each 𝑘, such that

𝑥
𝑙
1

= 𝑥
0
, 𝑥

𝑙
𝑞

= 𝑥
𝑘
, 𝑥

𝑙
𝑗

= 𝑥
𝑖(𝑙
𝑗+1
)
, 𝑗 = 1, 2, . . . , 𝑞 − 1,

(39)

where 𝑙
1
is the smallest index in the chain of successful

iterations.

Lemma 5. Suppose that Assumptions hold and Algorithm A
does not terminate finitely, apply Algorithm A to the problem
(𝑃), then for all 𝑘 andC

𝑘
= {𝑙
1
, 𝑙
2
, . . . , 𝑙
𝑞
}, it holds

area (D (F
𝑘
)) ≥ 𝛾F

𝑞

∑
𝑗=1

ℎ2
𝑙
𝑗

. (40)

Proof. For ∀𝑙
𝑗
∈ C
𝑘
, if 𝑝(𝑙

𝑗
) ∈ A, by (24), 𝑖(𝑙

𝑗
) = 𝑟(𝑝(𝑙

𝑗
)) =

𝑙
𝑗−1

, then

max
{{{
{{{
{

𝛼
𝑝(𝑙
𝑗
)
,

𝑙
𝑗

∑
𝑖=𝑙
𝑗−1
+1

𝑖∈U

𝜆
𝑝(𝑖)
𝛼
𝑝(𝑖)

}}}
}}}
}

≥ 𝛾Fℎ
2

𝑙
𝑗

. (41)

If max{𝛼
𝑝(𝑙
𝑗
)
, ∑
𝑙
𝑗

𝑖=𝑙
𝑗−1
+1, 𝑖∈U

𝜆
𝑝(𝑖)
𝛼
𝑝(𝑖)
} = 𝛼
𝑝(𝑙
𝑗
)
,

𝛼
𝑝(𝑙
𝑗
)
≥ 𝛾Fℎ

2

𝑙
𝑗

. (42)

If max{𝛼
𝑝(𝑙
𝑗
)
, ∑
𝑙
𝑗

𝑖=𝑙
𝑗−1
+1, 𝑖∈U

𝜆
𝑝(𝑖)
𝛼
𝑝(𝑖)
} = ∑

𝑙
𝑗

𝑖=𝑙
𝑗−1
+1, 𝑖∈U

𝜆
𝑝(𝑖)

𝛼
𝑝(𝑖)

,

𝑙
𝑗

∑
𝑖=𝑙
𝑗−1
+1

𝑖∈U

𝛼
𝑝(𝑖)
≥ 𝛾Fℎ

2

𝑙
𝑗

. (43)

If 𝑝(𝑙
𝑗
) ∉ A, 𝑙

𝑗−1
= 𝑝(𝑙
𝑗
). ByU ⊆ S, it holds

{𝑙
𝑗−1
+ 1, . . . , 𝑙

𝑗
} ∩U ⊆ {𝑙

𝑗−1
+ 1, . . . , 𝑙

𝑗
} ∩S = {𝑙

𝑗
} . (44)

Then from (23), 𝛼
𝑝(𝑖)
≥ 𝛾Fℎ

2

𝑙
𝑗

. It implies (43). Moreover

area (D (F
𝑘
)) ≥

𝑘

∑
𝑖=0

𝑖∈U

𝛼
𝑝(𝑖)
=

𝑞

∑
𝑗=0

(

𝑙
𝑗

∑
𝑖=𝑙
𝑗−1
+1

𝑖∈U

𝛼
𝑝(𝑖)
). (45)

Together with (42) and (43), the result follows.

Lemma 6. Suppose that Assumptions hold. If Algorithm A
does not terminate finitely and the filter contains infinite
iterates, then lim

𝑘→∞
ℎ
𝑘
= 0.

Proof. Suppose by contradiction that there exists a constant
𝜖 > 0 and infinite sequence {𝑘

𝑖
} ⊆ S such that ℎ

𝑘
𝑖

≥ 𝜖 for
all 𝑖. Because there are infinite iterations in the filter, we have
|S| = ∞, then ℎ

𝑙
𝑞

≥ 𝜖 for ∀𝑞.

area (D (F
𝑘
)) ≥ 𝛾F ⋅ 𝑞 ⋅ 𝜖

2. (46)

Then by (31), area(D(F
𝑘
)) is upper bounded for each 𝑘. That

means it exists 𝜅max
F ≥ 0 such that area(D(F

𝑘
)) ≤ 𝜅max

F , so
𝑖 ≤ (𝜅max

F /𝛾F𝜖
2). Hence 𝑖 must be finite, it contradicts to the

infinity of {𝑘
𝑖
}. The proof is complete.

Lemma 7. Suppose that Assumptions hold and Algorithm A
terminate finitely, then ℎ

𝑘
= 0.

Proof. From the Algorithm A and the definition of filter, the
conclusion follows.

Lemma 8. For any trial point 𝑥
𝑘+1
̸= 𝑥
𝑘
, there must be one

accepted by the filter.

Lemma 9. Suppose that Assumptions hold, there exists 𝑘
5
> 0

independent of the iterates such that

𝑞
𝑘 (0) − 𝑞𝑘 (𝑑

𝑛

𝑘
) ≥ −𝑘

5

𝑐𝑘
 . (47)

Proof. By (32), the assumptions and 𝑑
𝑛

𝑘

 ≤ Δmax, it is obvious
that

𝑞
𝑘 (0) − 𝑞𝑘 (𝑑

𝑛

𝑘
) = −𝑔𝑇

𝑘
𝑑𝑛
𝑘
−
1

2
(𝑑𝑛
𝑘
)
𝑇
𝐻
𝑘
𝑑𝑛
𝑘

≥ −
𝑑
𝑛

𝑘

 (
𝑔𝑘
 +
1

2

𝐻𝑘

𝑑
𝑛

𝑘

)

≥ −𝑘
1

𝑐𝑘
 (]0 + ]3Δmax)

def
= −𝑘
5

𝑐𝑘
 .

(48)

The proof is complete.

Lemma 10. Suppose that Assumptions hold and 𝑔𝑘
 ≥ 𝜖𝑡, if

Δ
𝑘
≤ min{(

𝜖
𝑡

2𝑘
1
]
3√𝜂3𝛼1

)

2/(2+𝛼
2
)

,
𝑘
4
𝜖
𝑡

2
,

(
]
0

𝑘
1
]
3√𝜂3𝛼1

)

2/(2+𝛼
2
)

,

(
𝜎𝜖
𝑡

16𝑘
1
]
0√𝜂3𝛼1

)

2/𝛼
2

}
def
= 𝛿
1

(49)

one can deduce

𝑞
𝑘 (0) − 𝑞𝑘 (𝑑𝑘) ≥

𝜎𝜖
𝑡

8
Δ
𝑘

def
= 𝜎Δ

𝑘
. (50)
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Proof. By the assumptions and the definition of 𝑑𝑛
𝑘
, it holds

𝑊
𝑇

𝑘
∇𝑞
𝑘
(𝑑𝑛
𝑘
)
 =
𝑊
𝑇

𝑘
(𝑔
𝑘
+ 𝐻
𝑘
𝑑𝑛
𝑘
)
 ≥
𝑔𝑘
 −
𝑊
𝑇

𝑘
𝐻
𝑘
𝑑𝑛
𝑘



≥ 𝜖
𝑡
− ]
3
𝑘
1

𝑐𝑘


≥ 𝜖
𝑡
− ]
3
𝑘
1√𝜂3𝛼1Δ

1+(𝛼
2
/2)

𝑘
≥
𝜖
𝑡

2
.

(51)

From Lemma 3, 𝑞
𝑘
(𝑑𝑛
𝑘
) − 𝑞
𝑘
(𝑑
𝑘
) ≥ (𝜎/4)𝜖

𝑡
min{Δ

𝑘
, 𝑘
4
𝜖
𝑡
/2} ≥

(𝜎𝜖
𝑡
/4)Δ
𝑘
. Together with

𝑞
𝑘 (0) − 𝑞𝑘 (𝑑

𝑛

𝑘
) = − 𝑔𝑇

𝑘
𝑑𝑛
𝑘
−
1

2
(𝑑𝑛
𝑘
)
𝑇
𝐻
𝑘
𝑑𝑛
𝑘

≥ −
𝑔𝑘

𝑑
𝑛

𝑘

 −
1

2

𝐻𝑘

𝑑
𝑛

𝑘


2

≥ − 𝑘
1
]
0√𝜂3𝛼1Δ

1+(𝛼
2
/2)

𝑘
− 𝑘2
1
]
3
𝜂
3
𝛼
1
Δ
2+𝛼
2

𝑘

≥ − 2𝑘
1
]
0√𝜂3𝛼1Δ

1+(𝛼
2
/2)

𝑘

≥ −
𝜎𝜖
𝑡

8
Δ
𝑘

(52)

then 𝑞
𝑘
(0) − 𝑞

𝑘
(𝑑
𝑘
) ≥ −(𝜎𝜖

𝑡
/8)Δ
𝑘
+ (𝜎𝜖
𝑡
/4)Δ
𝑘
= (𝜎𝜖
𝑡
/8)Δ
𝑘
=

𝜎Δ
𝑘
. It is the conclusion.

Lemma 11. Suppose the conditions of Lemma 10 hold, if

Δ
𝑘
≤ min{𝛿

1
,
(1 − 𝜂

1
) 𝜎

]
}

def
= 𝛿
2

(53)

then 𝑟
𝑘
≥ 𝜂
1
.

Proof. From the definition of 𝑟
𝑘
and Lemma 10, together with

(31), we have

𝑟𝑘 − 1
 =

𝑓 (𝑥𝑘 + 𝑑𝑘) − 𝑞𝑘 (𝑑𝑘)


𝑞𝑘 (0) − 𝑞𝑘 (𝑑𝑘)

≤

]Δ2
𝑘

𝜎Δ
𝑘

≤ 1 − 𝜂
1
. (54)

It is obvious that 𝑟
𝑘
≥ 𝜂
1
.

Lemma 12. Suppose the conditions of Lemmas 10 and 11 hold,
if

ℎ
𝑘
≤ (𝜂
3
𝛼
1
)
−1/(1+𝛼

2
)
(
𝜂
1
𝜎

√𝛾F
)

(2+𝛼
2
)/(1+𝛼

2
)

(55)

then

𝑓 (𝑥+
𝑘
) ≤ 𝑓 (𝑥

𝑘
) − √𝛾Fℎ𝑘. (56)

Proof. By Lemmas 3, 10, and 11, together with ‖ 𝑔
𝑘
‖≥ 𝜖
𝑡
, it

holds

𝑓 (𝑥
𝑘
) − 𝑓 (𝑥+

𝑘
) ≥ 𝜂
1
(𝑞
𝑘 (0) − 𝑞𝑘 (𝑑𝑘)) ≥ 𝜂1𝜎Δ 𝑘. (57)

From the Algorithm, ℎ
𝑘
≤ 𝜂
3
𝛼
1
Δ
2+𝛼
2

𝑘
, then

𝑓 (𝑥
𝑘
) − 𝑓 (𝑥+

𝑘
) ≥ 𝜂
1
𝜎(
ℎ
𝑘

𝜂
3
𝛼
1

)
1/(2+𝛼

2
)

. (58)

Hence 𝑓(𝑥
𝑘
) − 𝑓(𝑥+

𝑘
) ≥ √𝛾Fℎ𝑘.

Theorem 13. Suppose the assumptions hold, there must exist
Δmin > 0 such that for each 𝑘, it holds

Δ
𝑘
≥ Δmin. (59)

Proof. Let 𝑘
1
be large enough such that ℎ

𝑘
1

≤ 𝜖
𝑡
, it is true by

Lemmas 6 and 7. Suppose by contradiction that the index 𝑗 is
the first one after 𝑘

1
, which satisfies

Δ
𝑗
≤ 𝛾
0
min
{
{
{

𝛿
2
, (
(1 − √𝛾F) ℎ

𝐹

𝜂
3
𝛼
1

)

1/(2+𝛼
2
)

, Δ
𝑘
1

}
}
}

def
= 𝛾
0
𝛿
3
,

(60)

where ℎ𝐹 def
= min

𝑖∈Uℎ𝑖 is the smallest value of violation
function in filter. Then Δ

𝑗
≤ 𝛾
0
Δ
𝑘
1

. By the above analysis,
we know 𝑗 ≥ 𝑘

1
+ 1, that is 𝑗 − 1 ≥ 𝑘

1
. From the Algorithm

and (60), it concludes

Δ
𝑗−1
≤
1

𝛾
0

Δ
𝑗
≤ 𝛿
3
. (61)

By (60) and (61), (53) can be obtained. In Lemma 11, let 𝑗 − 1
instead of 𝑘, it deduces

𝑟
𝑗−1
≥ 𝜂
1
. (62)

Based on Lemma 12, together with (60), (61), and the algo-
rithm, we can see

ℎ+
𝑗−1
≤ 𝜂
3
𝛼
1
Δ
2+𝛼
2

𝑗−1
≤ (1 − √𝛾F) ℎ

𝐹. (63)

It can be seen that (53) is true for 𝑗 − 1 ≥ 𝑘, with (55), we can
deduce

𝑓+
𝑗−1
≤ 𝑓
𝑗−1
− √𝛾Fℎ𝑗−1. (64)

Thatmeans 𝑥+
𝑗−1

can be accepted by the filter. From above and
(55), we know Δ

𝑗
≥ Δ
𝑗−1

. Hence the index 𝑗 is not the first
one after 𝑘

1
which satisfied (60), that is a contradiction. So,

for any 𝑘 > 𝑘
1
, it holds Δ

𝑘
≥ 𝛾
0
𝛿
3
. Define

Δmin = min {Δ
0
, . . . , Δ

𝑘
1

, 𝛾
0
𝛿
3
} (65)

we can see that

Δ
𝑘
≥ Δmin (66)

holds for each 𝑘. The proof is complete.

Lemma 14. Suppose that Assumptions hold and Algorithm A
does not terminate finitely, then lim inf

𝑘→∞

𝑔𝑘
 = 0.

Proof. Suppose by contradiction that for 𝜖
𝑡
, there exists a

constant 𝑘 > 0 such that ‖ 𝑔
𝑘
‖≥ 𝜖
𝑡
.

By Assumption (A3) and (A4), 𝑊
𝑇

𝑘
∇𝑞
𝑘
(𝑑𝑛
𝑘
)
 ≥

𝑔𝑘
 −

]
3
𝑘
1
‖ 𝑐
𝑘
‖. From Lemma 6, we know ℎ

𝑘
→ 0. Hence there

exists �̃� > 0 such that

𝑐𝑘
 ≤

2𝜖
𝑡

3]
3
𝑘
1

(67)
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for 𝑘 > �̃�. Then ‖ 𝑊𝑇
𝑘
∇𝑞
𝑘
(𝑑𝑛
𝑘
) ‖≥ (1/3) ‖ 𝑔

𝑘
‖≥ (1/3)𝜖

𝑡
for

𝑘 > �̂�
def
= max{𝑘, �̃�}.

It is obvious that

𝑞
𝑘 (0) − 𝑞𝑘 (𝑑𝑘) = 𝑞𝑘 (0) − 𝑞𝑘 (𝑑

𝑛

𝑘
) + 𝑞
𝑘
(𝑑𝑛
𝑘
) − 𝑞
𝑘
(𝑑
𝑘
) .
(68)

By the proof of Lemma 9, it holds |𝑞
𝑘
(0) − 𝑞

𝑘
(𝑑𝑛
𝑘
)| ≤

]
0
‖ 𝑑𝑛
𝑘
‖ +(1/2)]

3
‖ 𝑑𝑛
𝑘
‖2. Together with Lemma 6 and the

definition of 𝑑
𝑘
, we have

lim
𝑘→∞

(𝑞
𝑘 (0) − 𝑞𝑘 (𝑑

𝑛

𝑘
)) = 0. (69)

By the Algorithm, we can get

+∞ >
∞

∑
𝑘=0

(𝑓
𝑘
− 𝑓
𝑘+1
) ≥ 𝜂
1

∞

∑
𝑘=0

(𝑞
𝑘 (0) − 𝑞𝑘 (𝑑𝑘)) . (70)

Then

lim
𝑘→∞

(𝑞
𝑘 (0) − 𝑞𝑘 (𝑑𝑘)) = 0. (71)

By (68), (69), and (71), it deduces

lim
𝑘→∞

(𝑞
𝑘
(𝑑𝑛
𝑘
) − 𝑞
𝑘
(𝑑
𝑘
)) = 0. (72)

Based on the assumptions, Lemma 3 andTheorem 13, for 𝑘 >
�̂�, it holds

𝑞
𝑘
(𝑑𝑛
𝑘
) − 𝑞
𝑘
(𝑑
𝑘
)

≥
𝜎

2

𝑊
𝑇

𝑘
∇𝑞
𝑘
(𝑑𝑛
𝑘
)
min {Δ

𝑘
, 𝑘
4

𝑊
𝑇

𝑘
∇𝑞
𝑘
(𝑑𝑛
𝑘
)
}

≥
𝜎𝜖
𝑡

6
min{Δmin,

𝑘
4
𝜖
𝑡

6
} > 0,

(73)

which contradicts (72). The conclusion follows.

Theorem 15. Suppose the assumptions hold, and apply the
algorithm to problem (𝑃), then

lim inf
𝑘→∞

(ℎ
𝑘
+
𝑔𝑘
) = 0, (74)

where 𝑔
𝑘
= 𝑊𝑇
𝑘
𝑔
𝑘
, 𝑔
𝑘
= ∇𝑓(𝑥

𝑘
), 𝑊(𝑥) denotes a matrix

whose columns form a basis of the null space of 𝐴(𝑥)𝑇.

Proof. If the algorithm terminates finitely, it is obvious that it
holds. Otherwise, by Lemmas 6 and 14, the conclusion also
can be obtained.

Theorem 16. Suppose the assumptions hold, and {𝑥
𝑘
} is the

infinite sequence obtained by the algorithm, then there must
exist a subsequence such that

lim
𝑗→∞

𝑥
𝑘
𝑗

= 𝑥∗ (75)

and 𝑥∗ satisfies the one order KKT condition of (𝑃).

Table 1

Problem 𝑛 𝑚 NF NG L’s NF L’s NG
HS6 2 1 11 11 20 12
HS7 2 1 9 3 15 11
HS8 2 2 7 4 — —
HS9 2 1 6 6 6 6
HS26 3 1 24 24 42 24
HS39 4 2 15 9 26 19
HS40 4 3 7 5 7 5
HS42 4 2 8 8 11 11
HS78 5 3 6 6 8 7

Proof. By Assumption (A1), there exist a subsequence {𝑘
𝑗
}

and 𝑥∗, such that lim
𝑗→∞

𝑥
𝑘
𝑗

= 𝑥∗. Together with Assump-
tion (A3) and (A4), it hods lim

𝑗→∞
𝑊𝑇
𝑘
𝑗

𝑔
𝑘
𝑗

= 0, which means
for large enough 𝑗, 𝑔

𝑘
𝑗

lies in the space spaned by the columns
of 𝐴𝑇
𝑘
𝑗

. That is there exists 𝜆
𝑘
𝑗

such that

lim
𝑗→∞

𝑔
𝑘
𝑗

+ 𝐴𝑇
𝑘
𝑗

𝜆
𝑘
𝑗

= 0. (76)

The conclusion follows.

6. Some Numerical Experiments

(1) Updating of𝐻
𝑘
is done by𝐻

𝑘+1
= 𝐻
𝑘
+(𝑦𝑇
𝑘
𝑦
𝑘
/𝑦𝑇
𝑘
𝑠
𝑘
)−

(𝐻
𝑘
𝑠
𝑘
𝑠𝑇
𝑘
𝐻
𝑘
/𝑠𝑇
𝑘
𝐻
𝑘
𝑠
𝑘
), where 𝑦

𝑘
= 𝜃
𝑘
𝑦
𝑘
+ (1 − 𝜃

𝑘
)𝐻
𝑘
𝑠
𝑘

𝜃
𝑘
=
{{
{{
{

1 𝑠𝑇
𝑘
𝑦
𝑘
≥ 0.2𝑠𝑇

𝑘
𝐻
𝑘
𝑠
𝑘

0.8𝑠𝑇
𝑘
𝐻
𝑘
𝑠
𝑘

𝑠𝑇
𝑘
𝐻
𝑘
𝑠
𝑘
− 𝑠𝑇
𝑘
𝑦
𝑘

(77)

and 𝑦
𝑘
= 𝑔
𝑘+1
− 𝑔
𝑘
+ (𝐴
𝑘+1
− 𝐴
𝑘
)𝜌
𝑘
, 𝑠
𝑘
= 𝑥
𝑘+1
−

𝑥
𝑘
𝜌
𝑘
is the multipluser of corresponding quadratic

subproblems.
(2) We assume the error toleration is 10−5.
(3) The algorithm parameters were set as follows: 𝐻

0
=

𝐼 ∈ 𝑅𝑛×𝑛, 𝜂
1
= 0.25, 𝜂

2
= 0.25, 𝜂

3
= 0.1, 𝛼

1
= 𝛼
2
= 0.5,

𝛾 = 0.02, 𝜌 = 0.5, 𝜉 = 10−6, 𝛾
0
= 0.1, 𝛾

1
= 0.5, 𝛾

2
= 2,

𝛾
𝐹
= 10−4, Δ

0
= 1. The program is written in Matlab.

The numerical results for the test problems are listed in
Table 1.

In Table 1, the problems are numbered in the same way
as in Schittkowski [20] and Hock and Schittkowski [21]. For
example, “S216” is the problem (216) in Schittkowski [20]
and “HS6” is the problem (6) in Hock and Schittkowski
[21]. NF, NG represent the numbers of function and gradient
calculations and “L’s” is the solution in [22]. The numerical
results show that the our algorithm is more effective than the
L’s for most test examples. Moreover, the higher the level of
nonmonotonic, the better the numerical results. The results
show that the new algorithm is robust and effective, andmore
flexible for the acceptance of the the trial iterate.
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