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Abstract 
 Electrons impinging on a thin metallic foil produce 

small bursts of transition radiation (TR) as they cross the 

boundary from one medium to the next.  A popular 

diagnostic application is found for compact electron 

bunches.  In this case they will emit radiation more or less 

coherently with an enhancement of the intensity on 

wavelengths comparable to or larger than the bunch size, 

generating coherent transition radiation (CTR).  Several 

detailed analytical descriptions have been proposed for 

describing the resulting spectral distribution, often making 

different simplifying assumptions.  Given that bunches 

tenths of millimeters long can generate measurable 

spectra into the millimeter range, concern may arise as to 

weak diffraction effects produced by optical interference 

devices containing elements with dimensions in the 

centimeter range.  

INTRODUCTION 

When a relativistic electron impinges on a foil it will 

emit transition radiation (TR).  There are many ways to 

model this effect, the classic model being that of the 

Ginzburg-Frank formula [1] by solving Maxwell’s 

equations at a metallic boundary of infinite extent. 

From here, if one calculates the resulting intensity for a 

bunch they find there is a coherent N-squared 

enhancement related to the Fourier transform of the 

longitudinal bunch distribution dominating the incoherent 

by a factor of N, where N is the number of particles per 

bunch.  By collecting this coherent transition radiation 

(CTR) and interfering it with a path-delayed image of 

itself, one can generate the auto-correlation of the 

intensity and infer the longitudinal bunch distribution.  

This is typically performed with a Michelson 

interferometer such as that at the Fermilab/NICADD 

photoinjector laboratory.  The elements of this standard 

interferometer include an acceptance collimating 

parabolic mirror with 152.4mm focal length with 76.2mm 

OD, as well as subsequent beam splitters and mirrors of 

76.2mm OD. 

The aim of our calculation is to take the effects of finite 

laboratory equipment into account while at the same time 

having a viable way to model the transition radiation.  The 

assumption is that if there are any noticeable diffraction 

effects as the CTR propagates through the interferometer, 

some radiation may leak past the various optical elements 

and escape detection.  If significant in the millimeter to 

sub-millimeter range, this would effectively alter the 

frequency response of the interferometer being used. 

To meet these demands, we examine the use of the 

virtual quanta method that represents the relativistic 

electrons by their Fourier components as in [2].  We can 

then employ a vector diffraction technique satisfying 

Maxwell’s equations [4] to analyze the effects of the finite 

elements of the system assuming them to be ideal optical 

elements over arbitrary regions of 3D space with no 

paraxial approximations. 

VECTOR DIFFRACTION THEORY 

Equation (1) is the formula used for computing the 

electric and magnetic fields at an arbitrary point in space, 

as adapted from reference [4] to include terms second 

order in R.  Assuming an otherwise field-free region with 

a source field defined at a given frequency in a finite area 

somewhere in space, the fields in the subsequent region 

are given by: 
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Where r
r
 is the point of observation, R

v
 is the relative 

vector from the source point to the point of observation, 

and n
v
 is the unit Poynting vector at the source.  The 

magnetic field expression is identical with B
v
 exchanged 

everywhere for E
v
.  These parameters are all tracked 

easily when evaluated computationally using a mesh 

method. Tracking geometrical meshes with an associated 

EM field evaluated everywhere over that surface mesh 

allows one to map from one surface to the next, calculate 

n̂ , and then integrate to the next surface.  The use of a 

vector formulation such as this is critical as methods only 

accounting for the electric field component will not allow 

for a second diffraction pattern to be calculated, such as 

for the reflection from a finite mirror.  In the case of a 

reflection, the image at a source is “projected” to the 

mirror surface using the above integral, the reflection 

conditions at a metallic mirror are performed on the 

orthogonal set of the EM field at the point, then projected 

to a viewing area of interest. 

SINGLE SURFACE BENCHMARKING 

Calculations for simple, well-known diffraction patterns 

were performed to verify the validity of the full 3D 

implementation of (1).  In all cases for both near-field and 

far-field effects of circular and rectangular apertures, the 
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resulting patterns along cuts matched with theoretically 

predicted patterns.  Figure 1 shows the example of a 

circular aperture shown in both the near- and far-fields.  

The top and bottom images are taken along the plane 

transverse to the aperture with parallel plane cuts shown 

center. 

Figure 1:  Intensities (arb. units) along the transverse 

plane in the near field (top) and far field (bottom), with 

example cuts at 15mm and 1.6mm (center) for circular 

aperture O.D. = 25.4mm at λ = 1mm 

 

It is worthwhile noting that for large viewing areas 

parallel to the aperture that the total integrated intensity 

over the aperture was very well conserved at the viewing 

surface.  This was, however, affected slightly by the size 

of the viewing region and the resolution of the mesh being 

used.  The latter reflects the loss of EM surface detail at 

low resolutions, but integrated values were found to 

converge quickly enough to not make very high-

resolution calculations necessary.  An adjustable mesh 

method may be employed in the future to automatically 

enhance detail in regions that vary greatly.  With the intent 

of the final simulation being to track accepted total 

intensities from one surface to the next, this conservation 

and convergence analysis is critical at every stage. 

PARABOLIC MIRROR 

The method prescribed above was used to image a point 

“photon” up into the mirror from the focal point and 

reflected into the forward direction of the mirror (Figure 

2).  Comparison of the resulting pattern to a known 

standard is difficult and pending for this geometry, though 

it was at least found to be self-consistent.  We note 

qualitatively, that the line of central max for the point 

source appear as though the point source was deflected 

away along the curvature of the mirror.  Aside from the 

natural bilateral symmetry of the field, we also note the 

circular aperture-like modulation of the projection due to 

the circular section cut of the mirror. 

Figure 2: Intensity distribution (arb. units) along planar 

cuts transverse to the axis from the 90-degree deflection 

point of the mirror for λ = 1mm, E.F.L. = 152.4mm, O.D. 

= 50.8mm with a point source “photon” at focus. 

Analysis of the same mirror in focusing mode is shown 

in Figure 3.  In this case, a Gaussian laser beam field was 

projected onto the surface of the mirror then reflected into 

the focal point of the mirror.  We note that maximum peak 

intensity is located at the focal point of the mirror, though 

a bilaterally distorted transverse distribution was observed 

(not shown here) as was observed in [2]. 

Figure 3:  Intensity distribution (arb. units) along planar 

cut transverse to the axis from the 90-degree deflection 

point of the mirror for λ = 1mm, E.F.L. = 152.4mm, O.D. 

= 50.8mm with a Gaussian laser source, RMS radius = 

6.35mm reflected into focus. 

 



TRANSITION RADIATION BY VIRTUAL 

QUANTA 

An analysis of transition radiation of one electron as 

well as the coherent radiation of multiple electrons has 

just begun.  The approach outlined above is applied using 

the initial EM field source as the frequency components 

of a relativistic electron.  By working with single 

frequencies, we have the freedom to use the optical 

approach outlined above to propagate the field through 

the instrument.  For a relativistic electron traveling in the 

z-direction, the time Fourier transformed field 

components are found to be: 
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Where β and γ are the relativistic parameters of the 

electron, q is its charge, and r and z are the usual 

cylindrical coordinates as measured from the electron in 

the laboratory frame. 

Using the approach above and formulae (2) - (4) as our 

source field at a given frequency, images of transition 

radiation (or coherent transition radiation if several fields 

from a charge distribution are used as the initial field) are 

now in the preliminary stages of analysis.  An image of a 

γ = 500 single electron impinging on a 50.8mm diameter 

metallic foil is shown in Figure 4 at a wavelength of 

0.5mm for qualitative demonstration and proof of 

principle only.  A vertical cut 19mm from impact center 

shows ringing of intensity distribution due to finite foil 

and the skewed bilateral symmetry due to 45-degree foil 

inclination, in agreement with [2].  A more detailed 

analysis of results and direct comparison to analytical 

solutions are to be presented in the final thesis report. 

METHOD EVALUATION AND PLANS 

The strengths found in using this code include solving 

for arbitrary geometries, solving in near of far field 

regions, simple constraint to finite surfaces in any region 

of interest, and that it is seen to be energy conserving, 

allowing propagation between surfaces without loss of 

relative field strengths.  However, it is computationally 

expensive, the foil material properties are neglected in the 

current model, a true realization of the code requires 

computation of many second order effects, and processing 

at wavelengths less than 0.3mm is seen to require more 

data points being calculated to reach convergence. 

Figure 4:  Single electron transition radiation intensity in 

transverse plane (arb. units), at λ = 0.5mm for γ = 500, in 

range extending to 38mm. Plotted only to 10% of max 

intensity for contrast (left).  Vertical cut through center of 

image at D = 19mm (right). 

 

With further developments of the method, full 

simulations are to be carried out mimicking experiments 

at the Fermilab/NICADD photoinjector and compared to 

experiment, assuming the problem remains approachable.  

Preliminary estimates at lowered data resolution and not 

including many of the optical elements show good 

agreement with other methods.  However, basic 

benchmarking tests such as those presented here suggest 

that slight energy losses due to trimming of interference 

patterns just beyond the primary maximum may generate 

a frequency dependent response at the detector aperture of 

the interferometer.  It is assumed for computational 

simplicity that radiation not in the acceptance region of 

the optical elements is scattered or absorbed and doesn’t 

interfere in any regular way at the detecting surface.  It is 

also worth noting that these effects have been seen to be 

strongest at longer wavelengths (>0.7mm) where 

diffraction effects are more dominant.  These longer 

wavelengths constitute the fringe of interest in typical 

CTR phenomena. 
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