
Communications in Mathematical Analysis
ISSN 0973-3841 Vol.1 No.1 (2006), pp. 52-63
c© Research India Publications
http://www.ripublication.com/cma.htm

Two Periodic Solutions of Nonlinear Systems with
Feedback Control
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Abstract

In this paper, by the well-known Deimling fixed point theorem in a cone, we con-
sider the following nonlinear functional differential system with feedback control





dx

dt
= −r(t)x(t) + λF (t, x(t− τ(t)), u(t− δ(t))),

du

dt
= −h(t)u(t) + g(t)x(t− σ(t)),

whereλ is a positive parameter. We obtain the results on the existence and multi-
plicity of positive periodic solutions.
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1. Introduction

The existence problem of periodic solutions has been an interesting problem for a long
time. We can find many pretty results on the existence problem by using the fixed point
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theorems (see [1, 2, 6]). Wang [8] considered the following periodic equation

x′(t) = a(t)g(x(t))x(t)− λb(t)f(x(t− τ(t))), λ > 0. (1.1)

They showed that the number of positive periodic solutions of (1.1) could be determined

by the asymptotic behaviors of the quotient
f(u)

u
at zero and infinity based on the well

known fixed point theorem (Deimling [3], Guo and Laksmikantham [4] and Krasnosel-
skii [5]).

Motivated by the above excellent works, we study the following nonlinear nonau-
tonomous functional differential system with feedback control:





dx

dt
= −r(t)x(t) + λF (t, x(t− τ(t)), u(t− δ(t))),

du

dt
= −h(t)u(t) + g(t)x(t− σ(t)),

(1.2)

whereτ(t), δ(t), σ(t) ∈ C(R, R+), r(t), h(t), g(t) ∈ C(R, R+), all of the above
functions areω-periodic functions andω > 0 is a constant.

Whenλ = 1, system (1.2) was studied by Liu and Li [7]. In [8], the author can
directly impose conditions onf(u) and obtain the results because the functionf is only
aboutu in (1.1). The techniques in [8] are difficulty to be used here. In this paper, we
assume that

b1(t)f1(x)u ≤ F (t, x, u) ≤ b2(t)f2(x)u,

whereb1(t), b2(t), f1(x) andf2(x) are positive continuous functions and satisfy

bi(t) = bi(t + ω), i = 1, 2.

Then by considering the quotient
fi(x)

x
(i = 1, 2), results on the existence and mul-

tiplicity of positive periodic solutions of (1.2) are established by the well-known fixed
point theorem applied in [8] and [9]. Our conditions onF and sufficient conditions on
the existence of periodic solutions are explicit and easy to be verified.

The rest of the paper consists of three sections. In Section 2, we give some notations
and our main results. Section 3 contains preparations for the proofs of theorems. In the
fourth section, the proofs of the main results are given.

2. Assumptions and main results

In this paper, we always assume that

(A1) there exist positive functionsb1(t), b2(t), f1(x) andf2(x) such that

b1(t)f1(x)u ≤ F (t, x, u) ≤ b2(t)f2(x)u,

wherebi(t) = bi(t + ω) andfi(u) (i = 1, 2) are continuous;
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(A2) for all s ∈ R, F (s + ω, x(s + ω− τ(s + ω)), u(s + ω− δ(s + ω))) = F (s, x(s−
τ(s)), u(s− δ(s)));

(A3) r(t), h(t) and g(t) are nonnegativeω-periodic functions and
∫ ω

0

r(s)ds > 0,
∫ ω

0

h(s)ds > 0,
∫ ω

0

g(s)ds > 0;

(A4) τ(t), δ(t) andσ(t) are positiveω-periodic functions.

We set

f20 = lim
u→0+

f2(u)

u
, f1∞ = lim

u→∞
f1(u)

u
.

We also define

M(r) = max
u∈[0,r]

{f2(u)}, m(r) = min{f1(u) :
p

q
r ≤ u ≤ r};

n =
1

e
R ω
0 h(θ)dθ − 1

, m =
e
R ω
0 h(θ)dθ

e
R ω
0 h(θ)dθ − 1

;

p =
1

e
R ω
0 r(θ)dθ − 1

, q =
e
R ω
0 r(θ)dθ

e
R ω
0 r(θ)dθ − 1

;

λ0 =
q

m(1)p2n
∫ ω

0
b1(s)ds

∫ ω

0
g(θ)dθ

;

λ1 =
1

M(1)qm
∫ ω

0
b2(s)ds

∫ ω

0
g(θ)dθ

.

Our main results are as follows.

Theorem 2.1: Assume (A1)–(A4) hold, then

1. if one of f20 = 0 and lim
x→∞

f2(x) = 0 holds, then (1.2) has at least one positive

ω-periodic solution for0 < λ0 < λ;
if both f20 = 0 and lim

x→∞
f2(x) = 0 hold, then (1.2) has at least two positive

ω-periodic solutions for0 < λ0 < λ.

2. if one off1∞ = ∞ and lim
x→0+

f1(x) = ∞ holds, then (1.2) has at least one positive

ω-periodic solution forλ1 > λ > 0; if both f1∞ = ∞ and lim
x→0+

f1(x) = ∞ hold,

then (1.2) has at least two positiveω-periodic solutions forλ1 > λ > 0.

Theorem 2.2: Assume (A1)−(A4) hold, f1∞ > 0 and f20 < ∞. If f20 < f1∞

and
q2

p3n
∫ ω

0
b1(s)ds

<
1

qm
∫ ω

0
b2(s)ds

, then (1.2) has at least one positiveω-periodic

solution for
q2

p3n
∫ ω

0
b1(s)ds

∫ ω

0
g(θ)dθf1∞

< λ <
1

qm
∫ ω

0
b2(s)ds

∫ ω

0
g(θ)dθf20

.
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3. Preparations

We first state the well-known fixed point theorem to be employed in the proofs of the
main results.

Lemma 3.1 (Deimling [3], Guo and Lakshmikantham [4] and Krasnoselskii [5]): Let
E be a Banach space andK a cone inE. Forr > 0, defineKr = {u ∈ K : ‖u‖ < r}.
Assume thatT : Kr → K is completely continuous such thatTx 6= x for x ∈ ∂Kr =
{u ∈ K : ‖u‖ = r}.

1. If ‖Tx‖ ≥ ‖x‖ for x ∈ ∂Kr, theni(T, Kr, K) = 0.

2. If ‖Tx‖ ≤ ‖x‖ for x ∈ ∂Kr, theni(T, Kr, K) = 1.

In order to employ Lemma 3.1 to verify our results, we first transform (1.2) into one
equation. Integrating the second equation in (1.2) fromt to t + ω, we get

u(t) =

∫ t+ω

t

k(t, s)g(s)x(s− σ(s))ds =: (Φx)(t), (3.1)

where

k(t, s) =
e
R s

t h(θ)dθ

e
R ω
0 h(θ)dθ − 1

.

Note thatu(t + ω) = u(t) andk(t + ω, s + ω) = k(t, s) and

n ≤ k(t, s) ≤ m, s ∈ [t, t + ω].

Combining (3.1) with (1.2), we get the following equation

x′(t) = −r(t)x(t) + λF (t, x(t− τ(t)), (Φx)(t− δ(t))). (3.2)

Obviously, the existence problem ofω-periodic solution of (1.2) is equivalent to that
of (3.2). Therefore, it is sufficient to consider the existence and multiplicity of positive
ω-periodic solutions of the equation (3.2).

We set
E = {u(t) ∈ C(R, R) : u(t + ω) = u(t)}.

Define‖u‖ = max
t∈[0,ω]

|u(t)| in E. Let K andKr in E be given by

K = {u ∈ E : u(t) ≥ p

q
‖u‖}, Kr = {u ∈ K : ‖u‖ < r}, r > 0.

It is easy to prove that(E, ‖ · ‖) is a Banach space andK is a cone inE. Note that
∂Kr = {u ∈ K : ‖u‖ = r}.

Let the mapTλ : K → E be defined by

Tλu(t) = λ

∫ t+ω

t

G(t, s)F (s, u(s− τ(s)), (Φu)(s− δ(s)))ds,
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where

G(t, s) =
e
R s

t r(θ)dθ

e
R ω
0 r(θ)dθ − 1

.

It is easy to see thatG(t + ω, s + ω) = G(t, s) for all (t, s) ∈ R2 and

p ≤ G(t, s) =
e
R s

t r(θ)dθ

e
R ω
0 r(θ)dθ − 1

≤ q, s ∈ [t, t + ω].

Next, we show thatTλ defined above satisfies the conditions in Lemma 3.1 and give our
priori estimations.

Lemma 3.2: Assume (A1)–(A4) hold. ThenTλ(K) ⊂ K and Tλ : K → K is
completely continuous.

Proof: Foru ∈ K, we have

Tλu(t + ω)

= λ

∫ t+2ω

t+ω

G(t + ω, s)F (s, u(s− τ(s)), (Φu)(s− δ(s)))ds

=

∫ t+ω

t

λG(t + ω, θ + ω)F (θ + ω, u(θ + ω − τ(θ + ω)),

(Φu)(θ + ω − δ(θ + ω)))dθ

= λ

∫ t+ω

t

G(t, θ)F (θ, u(θ − τ(θ)), (Φu)(θ − δ(θ)))dθ = Tλu(t).

Foru ∈ K andt ∈ [0, ω], we can show that

Tλu(t) ≥ λp

∫ ω

0

F (s, u(s− τ(s)), (Φu)(s− δ(s)))ds

≥ λp

q
q

∫ ω

0

F (s, u(s− τ(s)), (Φu)(s− δ(s)))ds

≥ λp

q
max
t∈[0,ω]

{
∫ t+ω

t

G(t, s)F (s, u(s− τ(s)), (Φu)(s− δ(s)))ds}

=
p

q
‖Tλu‖.

SoTλ(K) ⊂ K. By the assumptions (A1)−(A4), it is easy to show thatTλ is completely
continuous by Arzela-Ascoli theorem. ¥

Lemma 3.3: Assume (A1)–(A4) hold. The existence of positiveω-periodic solutions
of (3.2) is equivalent to the existence of the positive fixed point ofTλ in K.

This lemma is obvious and its proof is omitted.
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Lemma 3.4: Assume (A1)−(A4) hold and letη > 0. If f1(u(t)) ≥ η for anyu ∈ K
and for anyt ∈ [0, ω], then

‖Tλu‖ ≥ λp2nη

q

∫ ω

0

b1(s)ds

∫ ω

0

g(θ)dθ‖u‖.

Proof: From the proof of Lemma 3.2, we have

Tλu(t) ≥ λp

∫ ω

0

F (s, u(s− τ(s)), (Φu)(s− δ(s)))ds.

Then foru ∈ K andt ∈ [0, ω], we have

Tλu(t) ≥ λp

∫ ω

0

{b1(s)f1(u(s− τ(s)))

∫ s−δ(s)+ω

s−δ(s)

k(s, θ)g(θ)u(θ − σ(θ))dθ}ds

≥ λpn

∫ ω

0

{b1(s)f1(u(s− τ(s)))

∫ ω

0

g(θ)u(θ − σ(θ))dθ}ds

≥ λpnη

∫ ω

0

b1(s)ds

∫ ω

0

g(θ)u(θ − δ(θ))dθ

≥ λp2nη

q

∫ ω

0

b1(s)ds

∫ ω

0

g(θ)dθ‖u‖,

sincef1(u(t)) ≥ η for u ∈ K. ¥

Lemma 3.5: Assume (A1)–(A4) hold and letη > 0. If f1(u(t)) ≥ ηu(t) for any
u ∈ K and for anyt ∈ [0, ω], then

‖Tλu‖ ≥ λp3nη

q2

∫ ω

0

b1(s)ds

∫ ω

0

g(θ)dθ‖u‖2.

Proof: From the proof of Lemma 3.4, foru ∈ K andt ∈ [0, ω], we have

Tλu(t) ≥ λpn

∫ ω

0

{b1(s)f1(u(s− τ(s)))

∫ ω

0

g(θ)u(θ − σ(θ))dθ}ds

≥ λpnη

∫ ω

0

b1(s)u(s− τ(s))ds

∫ ω

0

g(θ)u(θ − δ(θ))dθ

≥ λp3nη

q2

∫ ω

0

b1(s)ds

∫ ω

0

g(θ)dθ‖u‖2,

sincef1(u(t)) ≥ ηu(t) for u ∈ K. ¥

Lemma 3.6: Assume (A1)–(A4) hold andε > 0. Let r > 0. If f2(u(t)) ≤ ε for
u ∈ ∂Kr and for anyt ∈ [0, ω], then

‖Tλu‖ ≤ λqmε

∫ ω

0

b2(s)ds

∫ ω

0

g(θ)dθ‖u‖.
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Proof: From the definition ofTλ and the assumptions (A1)–(A4), foru ∈ ∂Kr, we
have

‖Tλu‖ ≤ λq

∫ t+ω

t

F (s, u(s− τ(s)), (Φu)(s− δ(s)))ds

= λq

∫ ω

0

F (s, u(s− τ(s)), (Φu)(s− δ(s)))ds

≤ λq

∫ ω

0

{b2(s)f2(u(s− τ(s)))

∫ s−δ(s)+ω

s−δ(s)

k(s, θ)g(θ)u(θ − σ(θ))dθ}ds

≤ λqmε

∫ ω

0

{b2(s)

∫ ω

0

g(θ)u(θ − σ(θ))dθ}ds

≤ λqmε

∫ ω

0

b2(s)ds

∫ ω

0

g(θ)dθ‖u‖.

Then‖Tλu‖ ≤ λqmε

∫ ω

0

b2(s)ds

∫ ω

0

g(θ)dθ‖u‖ for u ∈ ∂Kr andt ∈ [0, ω]. ¥

Lemma 3.7: Assume (A1)–(A4) hold andε > 0. Let r > 0. If f2(u(t)) ≤ εu(t) for
u ∈ ∂Kr and for anyt ∈ [0, ω], then

‖Tλu‖ ≤ λqmε

∫ ω

0

b2(s)ds

∫ ω

0

g(θ)dθ‖u‖2.

Proof: From Lemma 3.6, foru ∈ ∂Kr, we have

‖Tλu‖ ≤ λqm

∫ ω

0

{b2(s)f2(u(s− τ(s)))

∫ ω

0

g(θ)u(θ − σ(θ))dθ}ds

≤ λqmε

∫ ω

0

{b2(s)u(s− τ(s))

∫ ω

0

g(θ)u(θ − σ(θ))dθ}ds

≤ λqmε

∫ ω

0

b2(s)ds

∫ ω

0

g(θ)dθ‖u‖2.

Then‖Tλu‖ ≤ λqmε

∫ ω

0

b2(s)ds

∫ ω

0

g(θ)dθ‖u‖2 for u ∈ ∂Kr andt ∈ [0, ω]. ¥

Lemma 3.8: Assume (A1)–(A4) hold and letr > 0, then foru ∈ ∂Kr

‖Tλu‖ ≥ λ
p2

q
nm(r)

∫ ω

0

b1(s)ds

∫ ω

0

g(θ)dθ‖u‖.

Proof: Foru ∈ ∂Kr, we havef1(u(t)) ≥ m(r) for t ∈ [0, ω]. Therefore

Tλu(t) ≥ λpn

∫ ω

0

b1(s)f1(u(s− τ(s)))ds

∫ ω

0

g(θ)u(θ − σ(θ))dθ
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≥ λ
p2

q
nm(r)

∫ ω

0

b1(s)ds

∫ ω

0

g(θ)dθ‖u‖.

¥

Lemma 3.9: Assume (A1)–(A4) hold and letr > 0, then foru ∈ ∂Kr

‖Tλu‖ ≤ λqmM(r)

∫ ω

0

b2(s)ds

∫ ω

0

g(θ)dθ‖u‖.

Proof: Foru ∈ ∂Kr, we havef2(u(t)) ≤ M(r) for t ∈ [0, ω]. Then, from the proof of
Lemma 3.6, we get

Tλu(t) ≤ λqm

∫ ω

0

b2(s)f2(u(s− τ(s)))ds

∫ ω

0

g(θ)u(θ − σ(θ))dθ

≤ λqmM(r)

∫ ω

0

b2(s)ds

∫ ω

0

g(θ)dθ‖u‖.
¥

4. Proofs of main results

4.1. Proof of Theorem 2.1

(i) Taker1 = 1. By Lemma 3.8, forλ > λ0, we have

‖Tλu‖ ≥ λ
p2

q
nm(r1)

∫ ω

0

b1(s)ds

∫ ω

0

g(θ)dθ‖u‖ > ‖u‖, u ∈ ∂Kr1 .

If f20 = 0, then for anyε > 0, we can find a positive constantr2 with 0 < r2 < r1 such
thatf2(u) ≤ εu for 0 ≤ u ≤ r2. Takeε such that

λqmε

∫ ω

0

b2(s)ds

∫ ω

0

g(θ)dθ < 1.

Thus by Lemma 3.7, foru ∈ ∂Kr2 andt ∈ [0, ω], we have

‖Tλu‖ ≤ λqmε

∫ ω

0

b2(s)ds

∫ ω

0

g(θ)dθ‖u‖2

= λqmεr2

∫ ω

0

b2(s)ds

∫ ω

0

g(θ)dθ‖u‖

< λqmε

∫ ω

0

b2(s)ds

∫ ω

0

g(θ)dθ‖u‖ < ‖u‖.

It follows from Lemma 3.1 that

i(Tλ, Kr1 , K) = 0, i(Tλ, Kr2 , K) = 1, i(Tλ, Kr1\Kr2 , K) = −1.
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ThenTλ has at least a positive fixed point inKr1\Kr2, which is a positiveω-periodic
solution of (3.2).

If lim
x→∞

f2(x) = 0, then for anyε > 0, there must beH > 0 such thatf2(u) ≤ ε for

u ≥ H andt ∈ [0, ω]. We takeε such that

λqmε

∫ ω

0

b2(s)ds

∫ ω

0

g(θ)dθ < 1.

Taker3 = max

{
3r1,

Hq

p

}
. Then it follows thatu(t) ≥ p

q
‖u‖ ≥ H for u ∈ ∂Kr3 and

t ∈ [0, ω]. Thus in view of Lemma 3.6, we have

‖Tλu‖ ≤ λqmε

∫ ω

0

b2(s)ds

∫ ω

0

g(θ)dθ‖u‖ < ‖u‖, u ∈ ∂Kr3 , t ∈ [0, ω].

Lemma 3.1 implies

i(Tλ, Kr1 , K) = 0, i(Tλ, Kr3 , K) = 1, i(Tλ, Kr3\Kr1 , K) = 1.

Then Tλ has at least a positive fixed point inKr3\Kr1, which is also a positiveω-
periodic solution of (3.2).

If f20 = 0 and lim
x→∞

f2(x) = 0, from the above argument, it is easy to conclude that

Tλ has at least two positive fixed points inKr1\Kr2 andKr3\Kr1, that is, (3.2) has at
least two positiveω-periodic solutionsx1 andx2 in Kr1\Kr2 andKr3\Kr1 for λ > λ0,
which satisfy

r2 < ‖x1‖ < r1 < ‖x2‖ < r3.

(ii) We taker1 = 1. Then by Lemma 3.9, for0 < λ < λ1, we have

‖Tλu‖ ≤ λqm

∫ ω

0

b2(s)ds

∫ ω

0

g(θ)dθM(r1)‖u‖ < ‖u‖, u ∈ ∂Kr1 .

If lim
x→0+

f1(x) = ∞, then for anyη > 0 there must be a positive numberr2 < r1

such thatf1(u) ≥ η for u ∈ [0, r2] andt ∈ [0, ω]. We chooseη such that

λp2nη

q

∫ ω

0

b1(s)ds

∫ ω

0

g(θ)dθ > 1.

Therefore by Lemma 3.4, we get

‖Tλu‖ ≥ λp2nη

q

∫ ω

0

b1(s)ds

∫ ω

0

g(θ)dθ‖u‖ > ‖u‖, u ∈ ∂Kr2 .

Then it follows from Lemma 3.1 that

i(Tλ, Kr1 , K) = 1, i(Tλ, Kr2 , K) = 0
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andi(Tλ, Kr1\Kr2 , K) = 1. SoTλ has at least one positive fixed point inKr1\Kr2 for
0 < λ < λ1.

If f1∞ = ∞, then there isH > 0 such thatf1(u) ≥ ηu for u ∈ [H,∞), whereη > 0
satisfies

λp3nη

q2

∫ ω

0

b1(s)ds

∫ ω

0

g(θ)dθ > 1.

Taker3 = max{3r1,
Hq

p
}. Then foru ∈ ∂Kr3 andt ∈ [0, ω], there must beu(t) ≥

p

q
‖u‖ ≥ H. Again, it follows from Lemma 3.5 that

‖Tλu‖ ≥ λp3nη

q2

∫ ω

0

b1(s)ds

∫ ω

0

g(θ)dθ‖u‖2

=
λp3nη

q2

∫ ω

0

b1(s)ds

∫ ω

0

g(θ)dθ‖u‖r3 > ‖u‖, u ∈ ∂Kr3 .

Lemma 3.1 tells that

i(Tλ, Kr1 , K) = 1, i(Tλ, Kr3 , K) = 0.

Thusi(Tλ, Kr3\Kr1 , K) = −1. SoTλ has at least one positive fixed point inKr3\Kr1

for 0 < λ < λ1.
If lim

x→0+
f1(x) = f1∞ = ∞, from the above discussion, we can see thatTλ has at

least two fixed points inKr1\Kr2 andKr3\Kr1, that is, (3.2) has at least two positive
ω-periodic solutionsx1 andx2 in Kr1\Kr2 andKr3\Kr1 for 0 < λ < λ1, which satisfy

r2 < ‖x1‖ < r1 < ‖x2‖ < r3.

4.2. Proof of Theorem 2.2

If f1∞ > f20 and
q2

p3n
∫ ω

0
b1(s)ds

<
1

qm
∫ ω

0
b2(s)ds

, then for

q2

p3n
∫ ω

0
b1(s)ds

∫ ω

0
g(θ)dθf1∞

< λ <
1

qm
∫ ω

0
b2(s)ds

∫ ω

0
g(θ)dθf20

,

there must exist a positive numberε ∈ (0, f20) such that

q2

p3n
∫ ω

0
b1(s)ds

∫ ω

0
g(θ)dθ(f1∞ − ε)

< λ <
1

qm
∫ ω

0
b2(s)ds

∫ ω

0
g(θ)dθ(f20 + ε)

.

If f20 < ∞, then there is a number1 > r1 > 0 such thatf2(u) ≤ (f20 + ε)u for
u ∈ [0, r1]. Thusf2(u) ≤ (f20 + ε)u for u ∈ ∂Kr1. By Lemma 3.7, we have

‖Tλu‖ ≤ λqm(f20 + ε)

∫ ω

0

b2(s)ds

∫ ω

0

g(θ)dθ‖u‖2



62 Jun Wu, Zhicheng Wang, and Zhengqiu Zhang

= λqm(f20 + ε)

∫ ω

0

b1(s)ds

∫ ω

0

g(θ)dθ‖u‖r1 < ‖u‖, u ∈ ∂Kr1 .

If f1∞ > 0, we can find a numberH > 1 > r1 such thatf1(u) ≥ (f1∞ − ε)u for

u ∈ [H,∞). Let r2 = max{3r1,
Hq

p
}. It follows thatu(t) ≥ p

q
‖u‖ ≥ H for u ∈ ∂Kr2.

Thusf1(u) ≥ (f1∞ − ε)u for u ∈ ∂Kr2 andt ∈ [0, ω]. By Lemma 3.5, we get

‖Tλu‖ ≥ λp3n(f1∞ − ε)

q2

∫ ω

0

b1(s)ds

∫ ω

0

g(θ)dθ‖u‖2

=
λp3n(f1∞ − ε)

q2

∫ ω

0

b1(s)ds

∫ ω

0

g(θ)dθ‖u‖r2 > ‖u‖, u ∈ ∂Kr2 .

From Lemma 3.1, we can obtain

i(Tλ, Kr1 , K) = 1, i(Tλ, Kr2 , K) = 0.

Soi(Tλ, Kr2\Kr1 , K) = −1 andTλ has at least one fixed point inKr2\Kr1 for

q2

p3n
∫ ω

0
b1(s)ds

∫ ω

0
g(θ)dθf1∞

< λ <
1

qm
∫ ω

0
b2(s)ds

∫ ω

0
g(θ)dθf20

.

That is, (3.2) has at least one positiveω-periodic solution inKr2\Kr1 for

q2

p3n
∫ ω

0
b1(s)ds

∫ ω

0
g(θ)dθf1∞

< λ <
1

qm
∫ ω

0
b2(s)ds

∫ ω

0
g(θ)dθf20

.
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