Two Periodic Solutions of Nonlinear Systems with Feedback Control

Jun Wu ${ }^{1,2}$, Zhicheng Wang ${ }^{1}$ and Zhengqiu Zhang ${ }^{3}$
(Communicated by Martin Bohner)

Abstract

In this paper, by the well-known Deimling fixed point theorem in a cone, we consider the following nonlinear functional differential system with feedback control $$
\left\{\begin{array}{l} \frac{d x}{d t}=-r(t) x(t)+\lambda F(t, x(t-\tau(t)), u(t-\delta(t))) \\ \frac{d u}{d t}=-h(t) u(t)+g(t) x(t-\sigma(t)) \end{array}\right.
$$ where λ is a positive parameter. We obtain the results on the existence and multiplicity of positive periodic solutions.

AMS Subject Classification: 34K13 Keywords: Positive periodic solutions; Functional differential system; Fixed point theorem; Fixed point index; Feedback control.

1. Introduction

The existence problem of periodic solutions has been an interesting problem for a long time. We can find many pretty results on the existence problem by using the fixed point

[^0]theorems (see $[1,2,6]$). Wang [8] considered the following periodic equation
\[

$$
\begin{equation*}
x^{\prime}(t)=a(t) g(x(t)) x(t)-\lambda b(t) f(x(t-\tau(t))), \quad \lambda>0 . \tag{1.1}
\end{equation*}
$$

\]

They showed that the number of positive periodic solutions of (1.1) could be determined by the asymptotic behaviors of the quotient $\frac{f(u)}{u}$ at zero and infinity based on the well known fixed point theorem (Deimling [3], Guo and Laksmikantham [4] and Krasnoselskii [5]).

Motivated by the above excellent works, we study the following nonlinear nonautonomous functional differential system with feedback control:

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=-r(t) x(t)+\lambda F(t, x(t-\tau(t)), u(t-\delta(t))) \tag{1.2}\\
\frac{d u}{d t}=-h(t) u(t)+g(t) x(t-\sigma(t))
\end{array}\right.
$$

where $\tau(t), \delta(t), \sigma(t) \in C\left(R, R_{+}\right), r(t), h(t), g(t) \in C\left(R, R_{+}\right)$, all of the above functions are ω-periodic functions and $\omega>0$ is a constant.

When $\lambda=1$, system (1.2) was studied by Liu and Li [7]. In [8], the author can directly impose conditions on $f(u)$ and obtain the results because the function f is only about u in (1.1). The techniques in [8] are difficulty to be used here. In this paper, we assume that

$$
b_{1}(t) f_{1}(x) u \leq F(t, x, u) \leq b_{2}(t) f_{2}(x) u,
$$

where $b_{1}(t), b_{2}(t), f_{1}(x)$ and $f_{2}(x)$ are positive continuous functions and satisfy

$$
b_{i}(t)=b_{i}(t+\omega), \quad i=1,2 .
$$

Then by considering the quotient $\frac{f_{i}(x)}{x}(i=1,2)$, results on the existence and multiplicity of positive periodic solutions of (1.2) are established by the well-known fixed point theorem applied in [8] and [9]. Our conditions on F and sufficient conditions on the existence of periodic solutions are explicit and easy to be verified.

The rest of the paper consists of three sections. In Section 2, we give some notations and our main results. Section 3 contains preparations for the proofs of theorems. In the fourth section, the proofs of the main results are given.

2. Assumptions and main results

In this paper, we always assume that
(A1) there exist positive functions $b_{1}(t), b_{2}(t), f_{1}(x)$ and $f_{2}(x)$ such that

$$
b_{1}(t) f_{1}(x) u \leq F(t, x, u) \leq b_{2}(t) f_{2}(x) u,
$$

where $b_{i}(t)=b_{i}(t+\omega)$ and $f_{i}(u)(i=1,2)$ are continuous;
(A2) for all $s \in R, F(s+\omega, x(s+\omega-\tau(s+\omega)), u(s+\omega-\delta(s+\omega)))=F(s, x(s-$ $\tau(s)), u(s-\delta(s))) ;$
(A3) $r(t), h(t)$ and $g(t)$ are nonnegative ω-periodic functions and $\int_{0}^{\omega} r(s) d s>0$, $\int_{0}^{\omega} h(s) d s>0, \int_{0}^{\omega} g(s) d s>0 ;$
(A4) $\tau(t), \delta(t)$ and $\sigma(t)$ are positive ω-periodic functions.
We set

$$
f_{20}=\lim _{u \rightarrow 0^{+}} \frac{f_{2}(u)}{u}, f_{1 \infty}=\lim _{u \rightarrow \infty} \frac{f_{1}(u)}{u} .
$$

We also define

$$
\begin{gathered}
M(r)=\max _{u \in[0, r]}\left\{f_{2}(u)\right\}, \quad m(r)=\min \left\{f_{1}(u): \frac{p}{q} r \leq u \leq r\right\} \\
n=\frac{1}{e^{\int_{0}^{\omega} h(\theta) d \theta}-1}, \quad m=\frac{e^{\int_{0}^{\omega} h(\theta) d \theta}}{e^{\int_{0}^{\omega} h(\theta) d \theta}-1} \\
p=\frac{1}{e^{\int_{0}^{\omega} r(\theta) d \theta}-1}, \quad q=\frac{e^{\int_{0}^{\omega} r(\theta) d \theta}}{e^{\int_{0}^{\omega} r(\theta) d \theta}-1} \\
\lambda_{0}=\frac{q}{m(1) p^{2} n \int_{0}^{\omega} b_{1}(s) d s \int_{0}^{\omega} g(\theta) d \theta} \\
\lambda_{1}=\frac{1}{M(1) q m \int_{0}^{\omega} b_{2}(s) d s \int_{0}^{\omega} g(\theta) d \theta}
\end{gathered}
$$

Our main results are as follows.
Theorem 2.1: Assume (A1)-(A4) hold, then

1. if one of $f_{20}=0$ and $\lim _{x \rightarrow \infty} f_{2}(x)=0$ holds, then (1.2) has at least one positive ω-periodic solution for $0<\lambda_{0}<\lambda$;
if both $f_{20}=0$ and $\lim _{x \rightarrow \infty} f_{2}(x)=0$ hold, then (1.2) has at least two positive ω-periodic solutions for $0<\lambda_{0}<\lambda$.
2. if one of $f_{1 \infty}=\infty$ and $\lim _{x \rightarrow 0^{+}} f_{1}(x)=\infty$ holds, then (1.2) has at least one positive ω-periodic solution for $\lambda_{1}>\lambda>0$; if both $f_{1 \infty}=\infty$ and $\lim _{x \rightarrow 0^{+}} f_{1}(x)=\infty$ hold, then (1.2) has at least two positive ω-periodic solutions for $\lambda_{1}>\lambda>0$.

Theorem 2.2: Assume (A1)-(A4) hold, $f_{1 \infty}>0$ and $f_{20}<\infty$. If $f_{20}<f_{1 \infty}$ and $\frac{q^{2}}{p^{3} n \int_{0}^{\omega} b_{1}(s) d s}<\frac{1}{q m \int_{0}^{\omega} b_{2}(s) d s}$, then (1.2) has at least one positive ω-periodic solution for

$$
\frac{q^{2}}{p^{3} n \int_{0}^{\omega} b_{1}(s) d s \int_{0}^{\omega} g(\theta) d \theta f_{1 \infty}}<\lambda<\frac{1}{q m \int_{0}^{\omega} b_{2}(s) d s \int_{0}^{\omega} g(\theta) d \theta f_{20}}
$$

3. Preparations

We first state the well-known fixed point theorem to be employed in the proofs of the main results.

Lemma 3.1 (Deimling [3], Guo and Lakshmikantham [4] and Krasnoselskii [5]): Let E be a Banach space and K a cone in E. For $r>0$, define $K_{r}=\{u \in K:\|u\|<r\}$. Assume that $T: \bar{K}_{r} \rightarrow K$ is completely continuous such that $T x \neq x$ for $x \in \partial K_{r}=$ $\{u \in K:\|u\|=r\}$.

1. If $\|T x\| \geq\|x\|$ for $x \in \partial K_{r}$, then $i\left(T, K_{r}, K\right)=0$.
2. If $\|T x\| \leq\|x\|$ for $x \in \partial K_{r}$, then $i\left(T, K_{r}, K\right)=1$.

In order to employ Lemma 3.1 to verify our results, we first transform (1.2) into one equation. Integrating the second equation in (1.2) from t to $t+\omega$, we get

$$
\begin{equation*}
u(t)=\int_{t}^{t+\omega} k(t, s) g(s) x(s-\sigma(s)) d s=:(\Phi x)(t) \tag{3.1}
\end{equation*}
$$

where

$$
k(t, s)=\frac{e^{\int_{t}^{s} h(\theta) d \theta}}{e^{\int_{0}^{\omega} h(\theta) d \theta}-1}
$$

Note that $u(t+\omega)=u(t)$ and $k(t+\omega, s+\omega)=k(t, s)$ and

$$
n \leq k(t, s) \leq m, \quad s \in[t, t+\omega] .
$$

Combining (3.1) with (1.2), we get the following equation

$$
\begin{equation*}
x^{\prime}(t)=-r(t) x(t)+\lambda F(t, x(t-\tau(t)),(\Phi x)(t-\delta(t))) \tag{3.2}
\end{equation*}
$$

Obviously, the existence problem of ω-periodic solution of (1.2) is equivalent to that of (3.2). Therefore, it is sufficient to consider the existence and multiplicity of positive ω-periodic solutions of the equation (3.2).

We set

$$
E=\{u(t) \in C(R, R): u(t+\omega)=u(t)\} .
$$

Define $\|u\|=\max _{t \in[0, \omega]}|u(t)|$ in E. Let K and K_{r} in E be given by

$$
K=\left\{u \in E: u(t) \geq \frac{p}{q}\|u\|\right\}, \quad K_{r}=\{u \in K:\|u\|<r\}, \quad r>0 .
$$

It is easy to prove that $(E,\|\cdot\|)$ is a Banach space and K is a cone in E. Note that $\partial K_{r}=\{u \in K:\|u\|=r\}$.

Let the map $T_{\lambda}: K \rightarrow E$ be defined by

$$
T_{\lambda} u(t)=\lambda \int_{t}^{t+\omega} G(t, s) F(s, u(s-\tau(s)),(\Phi u)(s-\delta(s))) d s
$$

where

$$
G(t, s)=\frac{e^{\int_{t}^{s} r(\theta) d \theta}}{e^{\int_{0}^{\omega} r(\theta) d \theta}-1}
$$

It is easy to see that $G(t+\omega, s+\omega)=G(t, s)$ for all $(t, s) \in R^{2}$ and

$$
p \leq G(t, s)=\frac{e^{\int_{t}^{s} r(\theta) d \theta}}{e^{\int_{0}^{\omega} r(\theta) d \theta}-1} \leq q, \quad s \in[t, t+\omega] .
$$

Next, we show that T_{λ} defined above satisfies the conditions in Lemma 3.1 and give our priori estimations.

Lemma 3.2: Assume (A1)-(A4) hold. Then $T_{\lambda}(K) \subset K$ and $T_{\lambda}: K \rightarrow K$ is completely continuous.

Proof: For $u \in K$, we have

$$
\begin{aligned}
& T_{\lambda} u(t+\omega) \\
& =\lambda \int_{t+\omega}^{t+2 \omega} G(t+\omega, s) F(s, u(s-\tau(s)),(\Phi u)(s-\delta(s))) d s \\
& =\int_{t}^{t+\omega} \lambda G(t+\omega, \theta+\omega) F(\theta+\omega, u(\theta+\omega-\tau(\theta+\omega)), \\
& \quad(\Phi u)(\theta+\omega-\delta(\theta+\omega))) d \theta \\
& = \\
& \quad \lambda \int_{t}^{t+\omega} G(t, \theta) F(\theta, u(\theta-\tau(\theta)),(\Phi u)(\theta-\delta(\theta))) d \theta=T_{\lambda} u(t) .
\end{aligned}
$$

For $u \in K$ and $t \in[0, \omega]$, we can show that

$$
\begin{aligned}
T_{\lambda} u(t) & \geq \lambda p \int_{0}^{\omega} F(s, u(s-\tau(s)),(\Phi u)(s-\delta(s))) d s \\
& \geq \frac{\lambda p}{q} q \int_{0}^{\omega} F(s, u(s-\tau(s)),(\Phi u)(s-\delta(s))) d s \\
& \geq \frac{\lambda p}{q} \max _{t \in[0, \omega]}\left\{\int_{t}^{t+\omega} G(t, s) F(s, u(s-\tau(s)),(\Phi u)(s-\delta(s))) d s\right\} \\
& =\frac{p}{q}\left\|T_{\lambda} u\right\|
\end{aligned}
$$

So $T_{\lambda}(K) \subset K$. By the assumptions (A1)-(A4), it is easy to show that T_{λ} is completely continuous by Arzela-Ascoli theorem.

Lemma 3.3: Assume (A1)-(A4) hold. The existence of positive ω-periodic solutions of (3.2) is equivalent to the existence of the positive fixed point of T_{λ} in K.

This lemma is obvious and its proof is omitted.

Lemma 3.4: Assume (A1)-(A4) hold and let $\eta>0$. If $f_{1}(u(t)) \geq \eta$ for any $u \in K$ and for any $t \in[0, \omega]$, then

$$
\left\|T_{\lambda} u\right\| \geq \frac{\lambda p^{2} n \eta}{q} \int_{0}^{\omega} b_{1}(s) d s \int_{0}^{\omega} g(\theta) d \theta\|u\| .
$$

Proof: From the proof of Lemma 3.2, we have

$$
T_{\lambda} u(t) \geq \lambda p \int_{0}^{\omega} F(s, u(s-\tau(s)),(\Phi u)(s-\delta(s))) d s
$$

Then for $u \in K$ and $t \in[0, \omega]$, we have

$$
\begin{aligned}
T_{\lambda} u(t) & \geq \lambda p \int_{0}^{\omega}\left\{b_{1}(s) f_{1}(u(s-\tau(s))) \int_{s-\delta(s)}^{s-\delta(s)+\omega} k(s, \theta) g(\theta) u(\theta-\sigma(\theta)) d \theta\right\} d s \\
& \geq \lambda p n \int_{0}^{\omega}\left\{b_{1}(s) f_{1}(u(s-\tau(s))) \int_{0}^{\omega} g(\theta) u(\theta-\sigma(\theta)) d \theta\right\} d s \\
& \geq \lambda p n \eta \int_{0}^{\omega} b_{1}(s) d s \int_{0}^{\omega} g(\theta) u(\theta-\delta(\theta)) d \theta \\
& \geq \frac{\lambda p^{2} n \eta}{q} \int_{0}^{\omega} b_{1}(s) d s \int_{0}^{\omega} g(\theta) d \theta\|u\|
\end{aligned}
$$

since $f_{1}(u(t)) \geq \eta$ for $u \in K$.
Lemma 3.5: Assume (A1)-(A4) hold and let $\eta>0$. If $f_{1}(u(t)) \geq \eta u(t)$ for any $u \in K$ and for any $t \in[0, \omega]$, then

$$
\left\|T_{\lambda} u\right\| \geq \frac{\lambda p^{3} n \eta}{q^{2}} \int_{0}^{\omega} b_{1}(s) d s \int_{0}^{\omega} g(\theta) d \theta\|u\|^{2}
$$

Proof: From the proof of Lemma 3.4, for $u \in K$ and $t \in[0, \omega]$, we have

$$
\begin{aligned}
T_{\lambda} u(t) & \geq \lambda p n \int_{0}^{\omega}\left\{b_{1}(s) f_{1}(u(s-\tau(s))) \int_{0}^{\omega} g(\theta) u(\theta-\sigma(\theta)) d \theta\right\} d s \\
& \geq \lambda p n \eta \int_{0}^{\omega} b_{1}(s) u(s-\tau(s)) d s \int_{0}^{\omega} g(\theta) u(\theta-\delta(\theta)) d \theta \\
& \geq \frac{\lambda p^{3} n \eta}{q^{2}} \int_{0}^{\omega} b_{1}(s) d s \int_{0}^{\omega} g(\theta) d \theta\|u\|^{2},
\end{aligned}
$$

since $f_{1}(u(t)) \geq \eta u(t)$ for $u \in K$.
Lemma 3.6: Assume (A1)-(A4) hold and $\varepsilon>0$. Let $r>0$. If $f_{2}(u(t)) \leq \varepsilon$ for $u \in \partial K_{r}$ and for any $t \in[0, \omega]$, then

$$
\left\|T_{\lambda} u\right\| \leq \lambda q m \varepsilon \int_{0}^{\omega} b_{2}(s) d s \int_{0}^{\omega} g(\theta) d \theta\|u\| .
$$

Proof: From the definition of T_{λ} and the assumptions (A1)-(A4), for $u \in \partial K_{r}$, we have

$$
\begin{aligned}
\left\|T_{\lambda} u\right\| & \leq \lambda q \int_{t}^{t+\omega} F(s, u(s-\tau(s)),(\Phi u)(s-\delta(s))) d s \\
& =\lambda q \int_{0}^{\omega} F(s, u(s-\tau(s)),(\Phi u)(s-\delta(s))) d s \\
& \leq \lambda q \int_{0}^{\omega}\left\{b_{2}(s) f_{2}(u(s-\tau(s))) \int_{s-\delta(s)}^{s-\delta(s)+\omega} k(s, \theta) g(\theta) u(\theta-\sigma(\theta)) d \theta\right\} d s \\
& \leq \lambda q m \varepsilon \int_{0}^{\omega}\left\{b_{2}(s) \int_{0}^{\omega} g(\theta) u(\theta-\sigma(\theta)) d \theta\right\} d s \\
& \leq \lambda q m \varepsilon \int_{0}^{\omega} b_{2}(s) d s \int_{0}^{\omega} g(\theta) d \theta\|u\| .
\end{aligned}
$$

Then $\left\|T_{\lambda} u\right\| \leq \lambda q m \varepsilon \int_{0}^{\omega} b_{2}(s) d s \int_{0}^{\omega} g(\theta) d \theta\|u\|$ for $u \in \partial K_{r}$ and $t \in[0, \omega]$.
Lemma 3.7: Assume (A1)-(A4) hold and $\varepsilon>0$. Let $r>0$. If $f_{2}(u(t)) \leq \varepsilon u(t)$ for $u \in \partial K_{r}$ and for any $t \in[0, \omega]$, then

$$
\left\|T_{\lambda} u\right\| \leq \lambda q m \varepsilon \int_{0}^{\omega} b_{2}(s) d s \int_{0}^{\omega} g(\theta) d \theta\|u\|^{2} .
$$

Proof: From Lemma 3.6, for $u \in \partial K_{r}$, we have

$$
\begin{aligned}
\left\|T_{\lambda} u\right\| & \leq \lambda q m \int_{0}^{\omega}\left\{b_{2}(s) f_{2}(u(s-\tau(s))) \int_{0}^{\omega} g(\theta) u(\theta-\sigma(\theta)) d \theta\right\} d s \\
& \leq \lambda q m \varepsilon \int_{0}^{\omega}\left\{b_{2}(s) u(s-\tau(s)) \int_{0}^{\omega} g(\theta) u(\theta-\sigma(\theta)) d \theta\right\} d s \\
& \leq \lambda q m \varepsilon \int_{0}^{\omega} b_{2}(s) d s \int_{0}^{\omega} g(\theta) d \theta\|u\|^{2} .
\end{aligned}
$$

Then $\left\|T_{\lambda} u\right\| \leq \lambda q m \varepsilon \int_{0}^{\omega} b_{2}(s) d s \int_{0}^{\omega} g(\theta) d \theta\|u\|^{2}$ for $u \in \partial K_{r}$ and $t \in[0, \omega]$.
Lemma 3.8: Assume (A1)-(A4) hold and let $r>0$, then for $u \in \partial K_{r}$

$$
\left\|T_{\lambda} u\right\| \geq \lambda \frac{p^{2}}{q} n m(r) \int_{0}^{\omega} b_{1}(s) d s \int_{0}^{\omega} g(\theta) d \theta\|u\| .
$$

Proof: For $u \in \partial K_{r}$, we have $f_{1}(u(t)) \geq m(r)$ for $t \in[0, \omega]$. Therefore

$$
T_{\lambda} u(t) \geq \lambda p n \int_{0}^{\omega} b_{1}(s) f_{1}(u(s-\tau(s))) d s \int_{0}^{\omega} g(\theta) u(\theta-\sigma(\theta)) d \theta
$$

$$
\geq \lambda \frac{p^{2}}{q} n m(r) \int_{0}^{\omega} b_{1}(s) d s \int_{0}^{\omega} g(\theta) d \theta\|u\|
$$

Lemma 3.9: Assume (A1)-(A4) hold and let $r>0$, then for $u \in \partial K_{r}$

$$
\left\|T_{\lambda} u\right\| \leq \lambda q m M(r) \int_{0}^{\omega} b_{2}(s) d s \int_{0}^{\omega} g(\theta) d \theta\|u\|
$$

Proof: For $u \in \partial K_{r}$, we have $f_{2}(u(t)) \leq M(r)$ for $t \in[0, \omega]$. Then, from the proof of Lemma 3.6, we get

$$
\begin{aligned}
T_{\lambda} u(t) & \leq \lambda q m \int_{0}^{\omega} b_{2}(s) f_{2}(u(s-\tau(s))) d s \int_{0}^{\omega} g(\theta) u(\theta-\sigma(\theta)) d \theta \\
& \leq \lambda q m M(r) \int_{0}^{\omega} b_{2}(s) d s \int_{0}^{\omega} g(\theta) d \theta\|u\|
\end{aligned}
$$

4. Proofs of main results

4.1. Proof of Theorem 2.1

(i) Take $r_{1}=1$. By Lemma 3.8, for $\lambda>\lambda_{0}$, we have

$$
\left\|T_{\lambda} u\right\| \geq \lambda \frac{p^{2}}{q} n m\left(r_{1}\right) \int_{0}^{\omega} b_{1}(s) d s \int_{0}^{\omega} g(\theta) d \theta\|u\|>\|u\|, \quad u \in \partial K_{r_{1}}
$$

If $f_{20}=0$, then for any $\varepsilon>0$, we can find a positive constant r_{2} with $0<r_{2}<r_{1}$ such that $f_{2}(u) \leq \varepsilon u$ for $0 \leq u \leq r_{2}$. Take ε such that

$$
\lambda q m \varepsilon \int_{0}^{\omega} b_{2}(s) d s \int_{0}^{\omega} g(\theta) d \theta<1
$$

Thus by Lemma 3.7, for $u \in \partial K_{r_{2}}$ and $t \in[0, \omega]$, we have

$$
\begin{aligned}
\left\|T_{\lambda} u\right\| & \leq \lambda q m \varepsilon \int_{0}^{\omega} b_{2}(s) d s \int_{0}^{\omega} g(\theta) d \theta\|u\|^{2} \\
& =\lambda q m \varepsilon r_{2} \int_{0}^{\omega} b_{2}(s) d s \int_{0}^{\omega} g(\theta) d \theta\|u\| \\
& <\lambda q m \varepsilon \int_{0}^{\omega} b_{2}(s) d s \int_{0}^{\omega} g(\theta) d \theta\|u\|<\|u\| .
\end{aligned}
$$

It follows from Lemma 3.1 that

$$
i\left(T_{\lambda}, K_{r_{1}}, K\right)=0, \quad i\left(T_{\lambda}, K_{r_{2}}, K\right)=1, \quad i\left(T_{\lambda}, K_{r_{1}} \backslash \bar{K}_{r_{2}}, K\right)=-1
$$

Then T_{λ} has at least a positive fixed point in $K_{r_{1}} \backslash \bar{K}_{r_{2}}$, which is a positive ω-periodic solution of (3.2).

If $\lim _{x \rightarrow \infty} f_{2}(x)=0$, then for any $\varepsilon>0$, there must be $H>0$ such that $f_{2}(u) \leq \varepsilon$ for $u \geq H$ and $t \in[0, \omega]$. We take ε such that

$$
\lambda q m \varepsilon \int_{0}^{\omega} b_{2}(s) d s \int_{0}^{\omega} g(\theta) d \theta<1 .
$$

Take $r_{3}=\max \left\{3 r_{1}, \frac{H q}{p}\right\}$. Then it follows that $u(t) \geq \frac{p}{q}\|u\| \geq H$ for $u \in \partial K_{r_{3}}$ and $t \in[0, \omega]$. Thus in view of Lemma 3.6, we have

$$
\left\|T_{\lambda} u\right\| \leq \lambda q m \varepsilon \int_{0}^{\omega} b_{2}(s) d s \int_{0}^{\omega} g(\theta) d \theta\|u\|<\|u\|, \quad u \in \partial K_{r_{3}}, \quad t \in[0, \omega] .
$$

Lemma 3.1 implies

$$
i\left(T_{\lambda}, K_{r_{1}}, K\right)=0, \quad i\left(T_{\lambda}, K_{r_{3}}, K\right)=1, \quad i\left(T_{\lambda}, K_{r_{3}} \backslash \bar{K}_{r_{1}}, K\right)=1
$$

Then T_{λ} has at least a positive fixed point in $K_{r_{3}} \backslash \bar{K}_{r_{1}}$, which is also a positive ω periodic solution of (3.2).

If $f_{20}=0$ and $\lim _{x \rightarrow \infty} f_{2}(x)=0$, from the above argument, it is easy to conclude that T_{λ} has at least two positive fixed points in $K_{r_{1}} \backslash \bar{K}_{r_{2}}$ and $K_{r_{3}} \backslash \bar{K}_{r_{1}}$, that is, (3.2) has at least two positive ω-periodic solutions x_{1} and x_{2} in $K_{r_{1}} \backslash \bar{K}_{r_{2}}$ and $K_{r_{3}} \backslash \bar{K}_{r_{1}}$ for $\lambda>\lambda_{0}$, which satisfy

$$
r_{2}<\left\|x_{1}\right\|<r_{1}<\left\|x_{2}\right\|<r_{3} .
$$

(ii) We take $r_{1}=1$. Then by Lemma 3.9, for $0<\lambda<\lambda_{1}$, we have

$$
\left\|T_{\lambda} u\right\| \leq \lambda q m \int_{0}^{\omega} b_{2}(s) d s \int_{0}^{\omega} g(\theta) d \theta M\left(r_{1}\right)\|u\|<\|u\|, \quad u \in \partial K_{r_{1}}
$$

If $\lim _{x \rightarrow 0^{+}} f_{1}(x)=\infty$, then for any $\eta>0$ there must be a positive number $r_{2}<r_{1}$ such that $f_{1}(u) \geq \eta$ for $u \in\left[0, r_{2}\right]$ and $t \in[0, \omega]$. We choose η such that

$$
\frac{\lambda p^{2} n \eta}{q} \int_{0}^{\omega} b_{1}(s) d s \int_{0}^{\omega} g(\theta) d \theta>1
$$

Therefore by Lemma 3.4, we get

$$
\left\|T_{\lambda} u\right\| \geq \frac{\lambda p^{2} n \eta}{q} \int_{0}^{\omega} b_{1}(s) d s \int_{0}^{\omega} g(\theta) d \theta\|u\|>\|u\|, \quad u \in \partial K_{r_{2}} .
$$

Then it follows from Lemma 3.1 that

$$
i\left(T_{\lambda}, K_{r_{1}}, K\right)=1, \quad i\left(T_{\lambda}, K_{r_{2}}, K\right)=0
$$

and $i\left(T_{\lambda}, K_{r_{1}} \backslash \bar{K}_{r_{2}}, K\right)=1$. So T_{λ} has at least one positive fixed point in $K_{r_{1}} \backslash \bar{K}_{r_{2}}$ for $0<\lambda<\lambda_{1}$.

If $f_{1 \infty}=\infty$, then there is $H>0$ such that $f_{1}(u) \geq \eta u$ for $u \in[H, \infty)$, where $\eta>0$ satisfies

$$
\frac{\lambda p^{3} n \eta}{q^{2}} \int_{0}^{\omega} b_{1}(s) d s \int_{0}^{\omega} g(\theta) d \theta>1 .
$$

Take $r_{3}=\max \left\{3 r_{1}, \frac{H q}{p}\right\}$. Then for $u \in \partial K_{r_{3}}$ and $t \in[0, \omega]$, there must be $u(t) \geq$ $\frac{p}{q}\|u\| \geq H$. Again, it follows from Lemma 3.5 that

$$
\begin{aligned}
\left\|T_{\lambda} u\right\| & \geq \frac{\lambda p^{3} n \eta}{q^{2}} \int_{0}^{\omega} b_{1}(s) d s \int_{0}^{\omega} g(\theta) d \theta\|u\|^{2} \\
& =\frac{\lambda p^{3} n \eta}{q^{2}} \int_{0}^{\omega} b_{1}(s) d s \int_{0}^{\omega} g(\theta) d \theta\|u\| r_{3}>\|u\|, \quad u \in \partial K_{r_{3}} .
\end{aligned}
$$

Lemma 3.1 tells that

$$
i\left(T_{\lambda}, K_{r_{1}}, K\right)=1, \quad i\left(T_{\lambda}, K_{r_{3}}, K\right)=0
$$

Thus $i\left(T_{\lambda}, K_{r_{3}} \backslash \bar{K}_{r_{1}}, K\right)=-1$. So T_{λ} has at least one positive fixed point in $K_{r_{3}} \backslash \bar{K}_{r_{1}}$ for $0<\lambda<\lambda_{1}$.

If $\lim _{x \rightarrow 0^{+}} f_{1}(x)=f_{1 \infty}=\infty$, from the above discussion, we can see that T_{λ} has at least two fixed points in $K_{r_{1}} \backslash \bar{K}_{r_{2}}$ and $K_{r_{3}} \backslash \bar{K}_{r_{1}}$, that is, (3.2) has at least two positive ω-periodic solutions x_{1} and x_{2} in $K_{r_{1}} \backslash \bar{K}_{r_{2}}$ and $K_{r_{3}} \backslash \bar{K}_{r_{1}}$ for $0<\lambda<\lambda_{1}$, which satisfy

$$
r_{2}<\left\|x_{1}\right\|<r_{1}<\left\|x_{2}\right\|<r_{3} .
$$

4.2. Proof of Theorem 2.2

If $f_{1 \infty}>f_{20}$ and $\frac{q^{2}}{p^{3} n \int_{0}^{\omega} b_{1}(s) d s}<\frac{1}{q m \int_{0}^{\omega} b_{2}(s) d s}$, then for

$$
\frac{q^{2}}{p^{3} n \int_{0}^{\omega} b_{1}(s) d s \int_{0}^{\omega} g(\theta) d \theta f_{1 \infty}}<\lambda<\frac{1}{q m \int_{0}^{\omega} b_{2}(s) d s \int_{0}^{\omega} g(\theta) d \theta f_{20}},
$$

there must exist a positive number $\varepsilon \in\left(0, f_{20}\right)$ such that

$$
\frac{q^{2}}{p^{3} n \int_{0}^{\omega} b_{1}(s) d s \int_{0}^{\omega} g(\theta) d \theta\left(f_{1 \infty}-\varepsilon\right)}<\lambda<\frac{1}{q m \int_{0}^{\omega} b_{2}(s) d s \int_{0}^{\omega} g(\theta) d \theta\left(f_{20}+\varepsilon\right)}
$$

If $f_{20}<\infty$, then there is a number $1>r_{1}>0$ such that $f_{2}(u) \leq\left(f_{20}+\varepsilon\right) u$ for $u \in\left[0, r_{1}\right]$. Thus $f_{2}(u) \leq\left(f_{20}+\varepsilon\right) u$ for $u \in \partial K_{r_{1}}$. By Lemma 3.7, we have

$$
\left\|T_{\lambda} u\right\| \leq \lambda q m\left(f_{20}+\varepsilon\right) \int_{0}^{\omega} b_{2}(s) d s \int_{0}^{\omega} g(\theta) d \theta\|u\|^{2}
$$

$$
=\lambda q m\left(f_{20}+\varepsilon\right) \int_{0}^{\omega} b_{1}(s) d s \int_{0}^{\omega} g(\theta) d \theta\|u\| r_{1}<\|u\|, \quad u \in \partial K_{r_{1}} .
$$

If $f_{1 \infty}>0$, we can find a number $H>1>r_{1}$ such that $f_{1}(u) \geq\left(f_{1 \infty}-\varepsilon\right) u$ for $u \in[H, \infty)$. Let $r_{2}=\max \left\{3 r_{1}, \frac{H q}{p}\right\}$. It follows that $u(t) \geq \frac{p}{q}\|u\| \geq H$ for $u \in \partial K_{r_{2}}$. Thus $f_{1}(u) \geq\left(f_{1 \infty}-\varepsilon\right) u$ for $u \in \partial K_{r_{2}}$ and $t \in[0, \omega]$. By Lemma 3.5, we get

$$
\begin{aligned}
\left\|T_{\lambda} u\right\| & \geq \frac{\lambda p^{3} n\left(f_{1 \infty}-\varepsilon\right)}{q^{2}} \int_{0}^{\omega} b_{1}(s) d s \int_{0}^{\omega} g(\theta) d \theta\|u\|^{2} \\
& =\frac{\lambda p^{3} n\left(f_{1 \infty}-\varepsilon\right)}{q^{2}} \int_{0}^{\omega} b_{1}(s) d s \int_{0}^{\omega} g(\theta) d \theta\|u\| r_{2}>\|u\|, \quad u \in \partial K_{r_{2}} .
\end{aligned}
$$

From Lemma 3.1, we can obtain

$$
i\left(T_{\lambda}, K_{r_{1}}, K\right)=1, \quad i\left(T_{\lambda}, K_{r_{2}}, K\right)=0
$$

So $i\left(T_{\lambda}, K_{r_{2}} \backslash \bar{K}_{r_{1}}, K\right)=-1$ and T_{λ} has at least one fixed point in $K_{r_{2}} \backslash \bar{K}_{r_{1}}$ for

$$
\frac{q^{2}}{p^{3} n \int_{0}^{\omega} b_{1}(s) d s \int_{0}^{\omega} g(\theta) d \theta f_{1 \infty}}<\lambda<\frac{1}{q m \int_{0}^{\omega} b_{2}(s) d s \int_{0}^{\omega} g(\theta) d \theta f_{20}}
$$

That is, (3.2) has at least one positive ω-periodic solution in $K_{r_{2}} \backslash \bar{K}_{r_{1}}$ for

$$
\frac{q^{2}}{p^{3} n \int_{0}^{\omega} b_{1}(s) d s \int_{0}^{\omega} g(\theta) d \theta f_{1 \infty}}<\lambda<\frac{1}{q m \int_{0}^{\omega} b_{2}(s) d s \int_{0}^{\omega} g(\theta) d \theta f_{20}}
$$

Acknowledgment

The authors are grateful to the reviewers for their valuable comments.

References

[1] R. P. Agarwal, D. O'Regan, Periodic solutions to nonlinear integral equations on the infinite interval modelling infectious disease, Nonlinear Anal., 48, pp. 21-35, 2000.
[2] K. L. Cooke, J. L. Kaplan, A periodic threshold theorem for epidemics and population growth, Math. Biosci., 31, pp. 87-104, 1976.
[3] K. Deimling, Nonlinear Functional Analysis, Berlin, Springer, 1985.
[4] D. Guo, V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Orlando, FL, Academic Press, 1988.
[5] M. Krasnoselskii, Positive solutions of Operator Equations, Groningen, Noordhoff, 1964.
[6] R. W. Leggett, L. R. Williams, A fixed point theorem with application to an infectious disease model, J. Math. Anal. Appl., 76, pp. 91-97, 1980.
[7] P. Liu, Y. K. Li, Multiple positive periodic solutions of nonlinear functional differential system with feedback control, J. Math. Anal. Appl., 288, pp. 819-832, 2003.
[8] H. Wang, Positive periodic solutions of functional differential equations, J. Differential Equations, 202, pp. 354-366, 2004.
[9] H. Wang, On the existence of positive solutions for semilinear elliptic equations in the annulus, J. Differential Equations, 109, pp. 1-7, 1994.

[^0]: ${ }^{1}$ College of Mathematics and Econometrics, Hunan University, Changsha, Hunan 410082, China
 ${ }^{2}$ Department of Mathematics, Changsha University Of Science And Technology, Changsha, Hunan 410076, China, Currtent addres: College of Mathematics and Econometrics, Hunan University, Changsha, Hunan 410082, China, E-mail: junwmath@hotmail.com
 ${ }^{3}$ College of Mathematics and Econometrics, Hunan University, Changsha, Hunan 410082, China

