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Abstract 
  
The onset of double diffusive stationary and oscillatory convection in a viscoelastic Oldroyd type 
fluid saturated in an anisotropic porous layer heated and soluted from below is studied. The flow 
is governed by the extended Darcy model for Oldroyd fluid. Stability analysis based on the 
method of perturbations of infinitesimal amplitude is performed using the normal mode 
technique. The analysis examines the effect of the Darcy Rayleigh number, the solutal Darcy the 
Rayleigh number, the relaxation time, the retardation time and the Lewis number. Important 
conclusions include the destabilizing effect of the relaxation time, the Darcy Rayleigh number 
and the Lewis number and the stabilizing effect of the solutal Darcy Rayleigh number, the 
retardation time and anisotropy parameter. Some of the results are generalization of the previous 
findings for isotropic porous medium. 
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1. Introduction 
 
Early studies based on the Rayleigh-Benard convection through porous media are mainly 
concerned with the problems of convective instability in a Newtonian fluid. The growing volume 
of work devoted to the Rayleigh-Benard convection in case of fluid saturated porous media has 
been well documented by Ingham and Pop (1998), Nield and Bejan (1999), Vafai (2000) and 
Vadasz (2008). The study of viscoelastic fluid flow in porous media is of considerable interest in 
various engineering fields such as enhanced oil recovery, paper and textile coating, composite 
manufacturing process and bioengineering on the one hand, the high viscosity in viscoelastic 
fluids reduces the chances of occurrence of instability, its elastic nature, on the other hand, 
increases the chances of oscillatory convection. This phenomenon in viscoelastic fluid apart from 
its rheological importance makes the study of the Rayleigh-Benard convection for viscoelastic 
fluids interesting and challenging to the researchers.  
 
However, compared to the well documented works on theoretical and experimental 
investigations of the Rayleigh Benard convection of Newtonian fluids in porous media, only 
limited work on viscoelastic fluid flow in porous media has appeared till date. This may be due 
to the difficulties in solving analytically as well as numerically the complex nature of 
viscoelastic fluids and the nonexistence of simple models for their description and formulation. 
 
Recently, some interesting studies related to a viscoelastic fluid saturated porous medium based 
on the Rayleigh Benard convection have been reported [Rudraiah et al.(1989); Kim et al. (2003); 
Yoon et al.(2004); Malashetty et al.(2006); Malashetty and Swamy (2007); Tan and Masuka 
(2007); Niu et al. (2010)]. Two diffusing components heat and solute work as two stratifying 
agents and if the gradients of these agents, having different diffusivities are simultaneously 
present in a fluid layer, a variety of interesting convective phenomena can occur which are not 
possible in a single component fluid. Sea water and atmosphere are the examples of double-
diffusive convection. Thermosolutal convection problems in fluids in porous media arise in 
oceanography, limnology, geophysics, ground water hydrology, soil sciences and astrophysics.  
  
Nield (1968) was the first to investigate double diffusive convection in a porous medium using 
linear stability theory for various thermal and solutal boundary conditions. Rudraiah et al. (1982) 
used non-linear stability theory to investigate the double diffusive convection in a horizontal 
porous layer. Nield et al. (1993) examined the effect of inclined temperature and solutal 
gradients and showed that both the thermal and solutal Rayleigh numbers contribute significantly 
to the onset of convective instability. Rachana et al. (1995), examined numerically the 
hydromagnetic stability of an unbounded electrically conducting couple stress binary fluid 
mixture having temperature and concentration gradients. They plotted the neutral stability curves 
and found the range of the wave numbers having non-oscillatory unstable, oscillatory unstable 
and stable modes. Goel and Agrawal (1999) examined double diffusive convection in couple 
stress binary fluid mixture and showed that though rotation and magnetic field both inhibit the 
onset of instability; they do not reinforce each other when acting jointly.  
 
Sharma and Rana (2002) examined the stationary convection in the case of thermosolutal 
instability of Walters (model B) a visco-elastic rotating fluid permeated with suspended particles 
and variable gravity field in a porous medium and showed that the solute gradient and rotation 
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have stabilizing effects while the suspended particles are found to have a destabilizing effect on 
the system and the medium permeability has the dual effect on the system under certain 
conditions. The stability of a Maxwell fluid in the Bénard problem based on the Darcy Maxwell 
model for a double diffusive mixture in a porous medium heated and salted from below has been 
examined by Wang and Tan (2008).  
 
Due to geographical and pedagogical processes like sedimentation, compactation, frost action 
and reorientation of the solid matrix, inhomogeneity and anisotropicity are characteristics of 
most of the natural porous materials. It is to be noted that early studies on convection in a porous 
medium have usually ignored these aspects of porous materials. There are artificial porous media 
encountered in numerous systems in industries as well like pelleting used in chemical 
engineering process, fiber material used for insulating purpose and many more. Despite the 
practical importance of the topic, very few studies are reported on the Rayleigh Benard 
convection for anisotropic porous material. Epherre (1975) performed the first study of the onset 
of convection in a horizontal layer with an anisotropic permeability. Tyvand (1980) studied the 
problem of thermohaline instability in anisotropic porous media.  
 
The problem of natural convection in both isotropic and anisotropic porous channels has been 
studied by Nilsen and Storesletten (1990). Malashetty (1993) investigated the effect of 
anisotropy on the onset of convection in a double-diffusive flow. More recently, Malashetty and 
Swamy (2007) investigated the stability of Oldroyd fluid for anisotropic porous layer heated 
from below and cooled from above. In fact their investigation was an extension of the problem 
discussed by Yoon et al. (2004) for anisotropic medium.  
 
Yoon et al. (2004) analyzed the onset of thermal convection in a horizontal porous layer 
saturated with viscoelastic liquid using the simplified constitutive model to examine the effects 
of relaxation times. They also examined the effect of rotation and anisotropy on the onset of 
convection in a horizontal porous layer by using a linear and a weak nonlinear theory. Saravanan 
and Arunkumar (2010) examined the effect of gravity modulation on the onset of convection in a 
horizontally saturated and transversely anisotropic porous fluid layer in which the applied 
temperature gradient is opposite to that of gravity and based on the Darcy-Brinkman boundary 
layer correction. Bhadauria and Srivastava (2010) investigated the thermal instability in an 
electrically conducting two component fluid saturated, porous medium confined between two 
horizontal surfaces subjected to a vertical magnetic field and considering temperature 
modulation of the boundaries, characterized by the Brinkman–Darcy model. The thermal 
instability in a rotating anisotropic porous medium, saturated with viscoelastic fluid based upon 
linear and non-linear theory has been investigated by Kumar and Bhadauria (2011).  
 
As far as the double diffusive convection in anisotropic porous media is concerned, very few 
studies are available so far. Malashetty and Basavaraja (2004) studied the effect of time-periodic 
boundary temperatures on the onset of double diffusive convection in a fluid saturated 
anisotropic porous medium by making a linear stability analysis. The linear stability of a 
viscoelastic liquid saturated horizontal anisotropic porous layer heated from below and cooled 
from above is investigated for Oldroyd type model by Malashetty and Swamy (2007). The 
double diffusive convection in a horizontal anisotropic porous layer saturated with a binary fluid, 
heated and soluted from below with Soret effect has been studied analytically using both linear 
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and non-linear stability analysis by Gaikwad et al. (2009). Malashetty et al. (2009) also 
examined the onset of double diffusive convection in a binary viscoelastic Oldroyd type fluid 
saturated anisotropic porous layer using a linear and weak non-linear stability analysis.  
 
Recently, Shiina and Hishida (2010) obtained the critical Rayleigh number Rac at the onset of 
natural convection by linear stability analysis for high porosity anisotropic horizontal porous 
layers. Malashetty et al. (2011) examined the onset of double diffusive convection in a binary 
viscoelastic Oldroyd type fluid saturated anisotropic rotating porous layer by using a linear and a 
weakly non-linear stability analysis. Capone et al. (2011) analyzed the double-diffusive 
convection in an anisotropic porous layer with a constant through flow, with penetrative 
convection being simulated via an internal heat source. Chen et al. (2011) examined the stability 
analysis of thermosolutal convection in a horizontal porous layer when the solid and fluid phases 
are not in a local thermal equilibrium, and the solubility of the dissolved component depends on 
temperature for double-diffusive convection.  
 
Kumar (2011) examined the combined effect of magnetic field and dust particles on the stability 
of a stratified couple-stress fluid through a porous medium in the presence of magnetic field. The 
double-diffusive convection in an anisotropic porous layer heated and salted from below with 
internal heat source using linear and non-linear stability analyses has been investigated by 
Bhadauria (2012). Some of the important results obtained by him for binary fluid mixture are, 
the effects of mechanical anisotropy and internal Rayleigh number destabilized the system while 
the concentration Rayleigh number are sustain the stability of the system, the magnitude of 
stream functions increases as the thermal Rayleigh number increases.  
 
The aim of the present work is to extend the study of Yoon et al. (2004) to examine the effect of 
anisotropy parameter in double diffusive convection at the onset of oscillatory convection in a 
horizontal porous layer saturated with viscoelastic (Oldroyd) fluid. The modified Darcy equation 
incorporating the viscoelastic effects and two relaxation times for Oldroyd fluid suggested by 
Alisaev and Mirzadyanzade (1975) and Akhatov and Chembrisova (1993) respectively have 
been considered.  
 
2. Physical Problem and Its Formulation 
 
We consider an infinite horizontal anisotropic porous layer of thickness ‘d’ saturated with 
Oldroydian viscoelastic fluid confined between two rigid boundaries as shown in Figure 1. The 
system is heated and soluted from below such that the two rigid boundaries are maintained at 
different temperatures and concentrations. The assumptions used in the present paper are 
 

(i) The porous medium is anisotropic and homogeneous. 
(ii) The saturating fluid is incompressible and non-Newtonian (Oldroydian). 
(iii) The onset of thermal and solutal convection is under the Boussinesq approximation.  
(iv) The bottom boundary is kept at temperature 1T , concentration 1C  and the upper 

boundary is kept at a lower temperature 2T , lower concentration 2C  with fixed        

1 2  T T T  (> 0) and 1 2  C C C  (> 0). 
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Figure 1. Physical Configuration 
 

In view of these assumptions and following Yoon et al. (2004), the governing equations for 
anisotropic porous medium are written as 
  

. 0 q ,                              (1) 

 1 1
                

p g
t t

  
 1

K
q k ,         (2) 

2. T T
t

      
q ,  (3) 

2. C C
t

       
q                                     (4) 

 
and  

   0 1 11 T T C C          ,               (5) 

where q =(u, v, w) is the velocity vector and K is the  permeability tensor    ˆ ˆˆ̂ ˆ̂
x zk ii + jj +k kk  of 

the porous medium. In a plane parallel to horizontal boundary, the permeability is same in both x 
and y directions, however it changes with z,   is the effective viscosity of the fluid,   is the 
relaxation time,   is the retardation time,   is the density, g is the magnitude of gravitational 
acceleration,   is thermal diffusivity,   is solutal diffusivity,   is thermal expansion 
coefficient and   is solutal expansion coefficient. Equation (2) represents the modified Darcy 
equation suggested by Alisaev and Mirzadjanzade (1975) taking into account the Oldroyd’s 
linear model with anisotropic effect.  
 
3. Basic State 
 
The basic state of the system given by 
 

 0,0,0q ,  p p z ,    z  ,  T T z  and  C C z  (6) 

z = d 

z = 0 
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yields, 
 

0
dp

g
dz

  ,     (7) 

1T T z   , (8) 

and 

1C C z    ,                                                                                                                    (9) 

 

where 
T

d
    

 
 and 

C

d
     

 
, both are positive. 

 
4. Mathematical Analysis and Dispersion Relation 
  
To examine the stability conditions by employing linear stability theory, equations (1) to (5) for 
disturbances (also called perturbations) of velocity, temperature and concentration are written in 
linear form as    
 

. 0 q ,      (10) 

 1 1
                 

p g
t t

  
 1

K
q k ,  (11) 

2w
t

   
    


, (12) 

2w
t

   
      


  (13) 

 
and  
 

 0         , (14) 

 
where  , ,u v w   q = , p ,   ,    and   are disturbances in velocity, pressure, temperature, 

concentration and density. 
 
Under the normal mode analysis, we assume the time-dependent periodic disturbances in a 
horizontal plane of the form 
 

           , , , , , ,
        

x yia x ia y nt
w p w z p z z z e    , (15) 

 
where ax and ay are the real wave numbers in the x and y directions respectively and n, in general, 
is complex such that  r in n in  . Infinitesimal perturbations of the rest state may either damp 

or grow depending on the value of the parameter n. 0rn   means that the system is stable and 
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0rn  , even for a single perturbation, indicates that the system is unstable. When 0rn  and 

0in  system is marginally stable under the principle of exchange of stabilities while 0rn  and 

0in  represents over stability of periodic oscillatory motion.  

 
Substituting equation (15) in equations (10)-(14), the stability or instability governing equations 
of the system are given by 
 

     2 2 20
11 1      xk g

n D K a w a n
    


, (16) 

 2 2D a n w      , (17) 

and   

 2 2D a n w       , (18) 

 
where  

d
D

dz
  , 2 2

x ya a a   and 1
x

z

k
K

k
 .   

 
Employing the following non-dimensional parameters 
 

 *, *, * , ,
x y z

x y z
d d d

   
 

, *
1/

a
a

d
 , 

2nd


 ,
D

D* =
1/d

, x
x 2

k*k =
d

, z
z 2

k*k =
d

  

0

w
w* =

U
,

2
0

θ κ
θ* =

βd U
 and 

2
0

γ κ
γ* =

β d U




, (U0 is the dimension of velocity).                  (19) 

 
and removing asterisks, we get the non-dimensional form of equations (16) to (18) as 
 

     2 2 2
11 1      DxD K a w N Le a Ra     ,      (20) 

 2 2D a w      (21) 

and  

 2 2D a Le w     ,                                    (22) 

where   

Le





 (Lewis number), 

4
x

Dx

k g d
Ra




  (Darcy Rayleigh number), 

2d

   (non-dimensional relaxation time), 

2d

   (non-dimensional retardation time), 
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N
 

 

  (buoyancy ratio), 

and  

0




  (kinematic viscosity). 

 
The combined stability governing equation is obtained as 
 

       22 2 2 2 2 2 2
11 1         

D K a D a Le D a Le w                    

       2 2 21 Dx Dx Dx Dxa Ra Rs D a w Ra Le Rs w         ,                                    (23) 

where  
4

x
Dx Dx

k g d
Rs N Le Ra

 
 
 

 


 (solutal Darcy Rayleigh number) . 

 
The boundaries are considered to be impermeable and rigid, therefore the appropriate boundary 
conditions are 
 

2 0 w D w   at  z = 0, 1.                                                                                          (24) 
 
5. Stability Analysis 
 
The eigenvalue problem given by (23) and (24) involving RaDx, RsDx, a,  ,  , Le , 1K  and   as 

parameters, is solved upon assuming that amplitude  w z  is small enough and can be expressed 

as 
 0 sinw w m z  for m = 1, 2, 3, ...,                                                                              (25) 

 
where w0 denotes the amplitude. Substituting equation (25) into equation (23), we obtain 
 

3 2
1 2 3 4 0   A A A A   , (26) 

where  

 2 2 2
1 1A Le m K a   ,                                                                                                      (27) 

 2
2 1  DxA a Le X Ra , (28) 

   2 2 2 2
3 2

      DxA a Le m a X Ra  , (29) 

 
and   

  2 2 2 2
4 3   DxA a m a X Ra ,                                                                                          (30) 

 
with   
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     2 2 2 2 2 2
1

1 2

11     
  
 
 

Dx

m K a Le Le m a
X Rs

Le a

  


,                                          (31) 

 
 

       
  

2 2 2 2 2 2 2 2 22 2 2
1

2 2 2 2 2 2 2 2

11      
  
     

Dx

m K a m a Le m am a
X Rs

Le m a a Le m a

    

   
,  

     (32) 
and  
  

  2 2 2 2 2 2
1

3 2

 
 Dx

m K a m a
X Rs

a

 
.       (33) 

 
Observe that 1A  is positive definite whereas 2 3,A A  and 4A  may be positive or negative real 

numbers. 
 
If 1 2,   and 3  are the roots of equation (26), then 

2
1 2 3

1

   
A

A
   , (34) 

3
1 2 2 3 3 1

1

  
A

A
       (35) 

and  

4
1 2 3

1

 
A

A
   .                                                                                                                  (36) 

 
It is apparent that modes are unstable under the condition 
 

 1 2 3> max , ,DxRa X X X ,     (37) 

 
as in that case 2 3,A A  and 4A all will be negative ensuring the existence of positive root, i.e., 

unstable mode. 
 
Further dividing equation (26) by 2  and equating the imaginary part, we have 
 

3 4
1 2 22

2
0

 
   
 
 

r
i

A A
A


 

, (38) 

 
which clearly shows that 0i  necessarily under condition (35). Therefore, unstable modes will 

grow periodically and not through oscillation. 
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A close observation of the coefficient iA  in equation (26) predicts that the system is again 

unstable if the conditions 2 0A , 3 0A  and 4 0A  hold, because in that case by Descartes’ rule 

of sign at least one root is real and positive.  
 
Dividing equation (26) by   and equating the imaginary part of the resulting equation to zero, 
we get 
 

  2

1 2 42 0    i rA A A   . 

 
It has already been proved that if 2 0A  and 4 0A , then the system is unstable  0r  and 

the modes are oscillatory i( 0)  . In that case, we rewrite the above equation as 

   

  2

1 2 42 0    i rA A A   ,  (39) 

 
and for the consistency of equation (39), we must necessarily have 
  

2

1

0
2

 r

A

A
 , (40) 

 
which provides the first bound on r  for oscillatory unstable modes.  

 
Equation (39) can also be written as 
 

2 2 4
1 2

2

2 0
  

        
i r

A
A A

A
    . 

 
The consistency of this equation requires that 
 

2 4

2


A

A
 , (41) 

 
necessarily. This provides the second bounds on r  for oscillatory unstable modes. 

 
Combining the two regions given by (40) and (41), the oscillatory unstable modes lie outside the 

circle 42 2

2

 r i

A

A
   [given by (41)] and inside the strip 2

1

0
2

 r

A

A
  [given by (40)] shown 

graphically in figure 2. 
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iσ

rσ0

 
Figure 2. 

 
6. Existence of Variational Principle 
  
Let the Principle of Exchange of Stabilities (PES) be valid at the marginal state so that 

0 0  r i  . Putting 0  in equations (20)-(22), we get 

 

   2 2 2
1    DxD K a w N Le a Ra  , (42) 

 2 2  D a w  (43) 

 
and  
 

 2 2  D a w . (44) 

 
Elimination of   and   from equations (42) to (44) leads to  
 

   4 2 2 4 2
1 11 1       DxD K a D K a w N Le a Ra w . (45) 

 
On integration of equation (45) after its multiplication by w, we get 
 

 
1

2
2

1

1


Dx

I
Ra

a NLe I
, (46) 

 
where  
  

     2 2 22 2 4
1 1 1(1 )      I D w K a Dw K a w dz  (47) 

 
and   
 

2
2  I w dz . (48) 
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Let DxRa  be the change in DxRa  when w  is subjected to a small variation w  which is 

compatible with the boundary conditions on w. Then, we get from equations (46)-(48), 
 

    2
1 22

2

1
1

1
    Dx DxRa I N Le a Ra I

a N Le I
   ,                                                      (49) 

where  

   2 2 2 2
1 12  I D a D K a w wdz    (50) 

and  

2 2 I w wdz  .                                                                                                                  (51) 

 
On simplification, equations (49)-(51) provide 
 

       2 2 2 2 2
12

2

2
1

1
       Dx DxRa D a D K a w NLe a Ra w wdz

a NLe I
  . (52) 

 
It follows from equation (52) that 0DxRa  for small arbitrary variations in w  if and only if w  

satisfies equation (45) and the boundary conditions (24). This establishes the existence of 
variational principle.  
 
7. Results and Discussion 
 
a.  Stationary Convection 
 
For stationary convection at marginal state  0, 0 r i  , the corresponding characteristic 

value of the Darcy Rayleigh number, DxRa  is given by 

  

  2 2 2 2 2 2
1

2

 
 Dx Dx

m a m K a
Ra Rs

a

 
, (53) 

 
Equation (53) constitutes the marginal stability curve. As m increases, DxRa  will increase rapidly 

and since we are interested in the most dangerous mode. Therefore, we are confined to the lowest 
order mode producing the minimum of DxRa  for a given wave number. Therefore we set m = 1 

so that minimization of DxRa  with respect to wave number a yields the critical Darcy Rayleigh 

number for stationary convection as 
  

 2. 2 1/ 2
,min 11  stat

Dx DxRa Rs K   (54) 

 
and the corresponding critical wave number is given by  
 

1/ 4
1
a K . 
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We observe that the stationary mode is depending on anisotropy parameter and the concentration 
parameter and is independent of the viscoelastic parameter and the specific heat ratio. Therefore, 
in the absence of salt  0DxRs  for isotropic porous material it is identical with Yoon et al. 

(2004) and in agreement with Malashetty and Swamy (2007) for anisotropic material with 
isotropic mono diffusion thermal convection. The critical wave number is also independent of 
viscoelastic parameter and depends on anisotropic parameter only.   
 
Equation (53) can also be written as for lowest mode m = 1, 

 
2

2 2 2

1
2

1

 
  

  Dx
T

a a
KRs

Ra
K a


, 

where  
4

1

 Dx z
T

Ra k g d
Ra

K




. 

For a single component system  0DxRs , our equation coincides with Bhadauria (2012) for the 

case of thermal isotropy. 

 
(a) 

 
(b) 

              Figure 3. Variations of critical Darcy Rayleigh number with wave number for different solutal Darcy  

                               Rayleigh number for stationary convection when (a) 1K  = 0.5, (b) 2 

 
(a) 

 
(b) 

              Figure 4. Variations of critical Darcy Rayleigh  number with wave number for different anisotropy 

                               parameter  ( 1K ) for stationary convection when (a) RsDx = 10, (b) RsDx = 100 
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In the present case, it is clear from (54) that the solutal Darcy Rayleigh number DxRs  postpones 

instability when the fluid layer is soluted from below. However, if the fluid layer is soluted from 
above  0   , the solutal Darcy Rayleigh number promotes instability. For anisotropic porous 

medium, when the horizontal permeability is more than the vertical permeability, i.e., 1 1K , the 

instability is postponed, whereas it is promoted for 1 1K .  

 
Furthermore, isotropic porous material, i.e., 1 1K  yields the critical Darcy Rayleigh number  

 
. 2

'min 4 stat
D DRa Rs    (55) 

 
and the corresponding critical wave number  
 

ca  . 

 
In the absence of solute  0DxRs , classical results, 24DRa   and ca   [Horton and Rogers 

(1945), Lapwood (1948), Combarnous and Bories (1975), Cheng (1978) and Yoon et al. (2004)] 
are recovered. 
 
It is important to note that the same result was found by Wang and Tan (2008) while discussing 
double diffusion in Darcy Maxwell fluid in isotropic porous medium. 
 
Figures 3 (a) and (b) respectively provide critical Darcy Rayleigh number when 1K =0.5 and 2. A 

comparison of these two graphs shows a stabilizing character of anisotropy parameter when it 
exceeds 1. Both the graphs, however, indicate stabilizing effect of solutal Darcy Rayleigh 
number, consistence with equation (55). Figures 4 (a) and (b) also provide the information about 

1K  and DRs .      

b. General Discussion 
 
The important observations regarding different parameters are 
 
Figures 5 (a) and (b) demonstrate the effect of relaxation time   for 1K = 0.5 and 2 respectively, 

for fixed   (=0.25), Le  (=0.9), DxRa  (=50) and DxRs  (=10). As   increases the range of 

unstable wave numbers increases, indicating that   acts as a catalyst of instability. The 
characterization of modes remains essentially the same for 1K = 0.5 but for 1K  = 2, it is observed 

that initially the modes grow through oscillations and after  =0.75, the periodically growing 
modes are also introduced. 
 
For fixed   (=1), Le  (=0.25), DxRa  (=50) and DxRs  (=10), the unstable region between critical 

wave numbers 
1ca  and 

2ca  is shown in figures 6 (a) and (b). These demonstrate the stabilizing 

character of retardation time   for 1K  = 0.5 and 2 respectively.  
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Two following important observations are made: 
 

(i) There is sharp decline in the upper curve as   increases from 0.01 to 0.05 
reducing sharply the range of unstable wave numbers. 

(ii) The same characterization of modes prevails when the horizontal permeability is 
less than the vertical permeability ( 1K <1). However, when 1K =2, the 

aperiodically growing modes ceases to exist beyond   = 0.1 and the modes grow 
only through oscillations, if we take into account the information from the figure 
6 (b). 
 

 
(a) 

 
(b) 

Figure 5. Variations of critical wave number ac with relaxation time   for (a) 1K = 0.5 and (b) 1K = 2. 

 

 
(a) (b) 

 
Figure 6. Variations of critical wave number ac with retardation time   for (a) 1K = 0.5 and (b) 1K = 2. 
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Figure 7 shows the unstable region between critical wave numbers 

1ca  and 
2ca  for fixed   

(=0.25), Le  (=0.9),   (=0.5), DxRa  (= 50) and DxRs  (= 10). It shows that as the anisotropy 

parameter  1 /x zK k k  increases beyond 1 ( 1K > 1), the range of unstable wave numbers 

decreases, showing, thereby, that if the permeability in horizontal direction is more than the 
permeability in vertical direction, the system becomes more stable. In the initial small range of 

1K  (for 1 1K ), there is sharp decline in the values of 
2ca whereas the increase in the values of 

1ca is slow, the range of unstable wave numbers therefore reduces sharply in this range of 1K . 

Moreover, for large values of 1K , 
1ca  and 

2ca coincide, no mode grows through oscillations or 

periodically and the system becomes completely stable. Instability therefore, predicted on behalf 
of isotropic porous medium may not exist if the medium is anisotropic and the horizontal 
permeability is more than the vertical permeability ( 1K > 1). Moreover, if the horizontal 

permeability is less than the vertical permeability ( 1K < 1), wave numbers predicted to be stable 

on the assumption of isotropic porous medium may infect be unstable.  
 
Further investigations of unstable range of wave numbers (

1 2c ca < a < a ) leads to its 

characterization of mode into oscillatory and non-oscillatory. For a given anisotropy parameter, 
the middle range of unstable modes grows periodically whereas the wave numbers outside on 
both side of this middle range grow through oscillations.  
 

 
Figure 7. Variations of critical wave number ac with anisotropy parameter 1K  
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Figure 8.   Variations of critical wave number ac with critical Darcy Rayleigh number 

RaDx  for anisotropy parameter 1K  = 0.5. 

 
Figure 8 provides the effect of Darcy Rayleigh number DxRa  on the stability or instability of the 

system for fixed   (= 0.25), Le  (=0.25),   (=0.4), DxRs  (= 10) and 1K  (=0.5). It is concluded 

that the system is completely stable for 32DxRa , oscillatory unstable modes are introduced in 

the middle range of wave number 
1 2

osc. osc.
c c c< <a a a  for 32 < DxRa < 41 and as DxRa  further 

increases, the unstable range of wave numbers is divided into oscillatory unstable and non-
oscillatory unstable modes. One periodically growing mode exists in the middle range 

1 2

non-osc. non-osc.
c c c< <a a a  which increases with DxRa  and two oscillatory unstable modes are squeezed 

in two narrow layers on both sides outside this middle range given by 
1 1

osc. non-osc.
c c c< <a a a  and 

2 2

non-osc. osc.
c c c< <a a a . The middle range 

1 2

non-osc. non-osc.
c c c< <a a a  which contains the periodically growing 

modes is further subdivided as shown in Figure 8, the middle layer has one growing and two 
decaying modes whereas the narrow layers on both sides of this middle layer has two growing 
and one decaying modes. The unstable region between critical wave numbers 

1ca and 
2ca  is 

shown. 
 
Figure 9 plots Lewis number Le  against the wave number ac for fixed   (= 0.25),   (=0.4), 

DxRa  (=50), DxRs  (=10) and 1K  (=0.5). The effect of Lewis number Le  is found to be 

destabilizing. The behavior of modes is essentially the same as in Figure 8. The unstable region 
between critical wave numbers 

1ca and 
2ca slightly increases as Lewis number Le  increases as 

shown in table 1 and figure 9. 
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Table 1. Variations of critical wave number ac with Lewis number Le  
Le 

1

osc.
ca  

1

non-osc.
ca  

2

non-osc.
ca  

2

osc.
ca  

0.001 1.794 2.0053 8.1491 9.5169 

0.1 1.7886 2.0018 8.1668 9.5195 

0.5 1.765 1.9862 8.2379 9.5333 

0.9 1.7381 1.9693 8.3078 9.5537 

 
 

 
         Figure 9. Variations of critical wave number ac with Lewis number Le  for anisotropy 

parameter 1K  = 0.5. 

 

  
           Figure 10. Variations of critical wave number ac with Solutal Darcy Rayleigh 

number RsDx  for anisotropy parameter 1K  = 0.5. 
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Figure 10 plots the solutal Darcy Rayleigh number DxRs  against wave number ca  for fixed   

(=0.25), Le  (=0.25),   (=0.4), DxRa  (=100) and 1K  (=0.5). This shows the stabilizing character 

of the solutal Darcy Rayleigh number. The characterization of modes into stable or unstable, 
growing periodically or through oscillations and one periodically growing or two periodically 
growing modes obey the same pattern as in figure 8. The unstable region between critical wave 
numbers 

1ca and 
2ca is shown.  

 
8. Conclusion 
 
The paper has critically examined the effect of anisotropy on the onset of stationary and 
oscillatory convection in a horizontal porous layer saturated with viscoelastic liquid heated and 
soluted from below. If the horizontal permeability is less than the vertical permeability i.e. the 
case when 1K  < 1, the critical Darcy Rayleigh number is reduced implying, thereby, a 

destabilizing effect of anisotropy whereas the critical Darcy Rayleigh number is increased for the 
case when 1K  > 1. The characterization of unstable modes into oscillatory and non-oscillatory is 

also explained numerically through graphs.     
 
NOMENCLATURE 
 
a  wave number      
C  solute concentration 
d  height of the fluid layer    

K  permeability tensor of the porous medium,    ˆ ˆˆ̂ ˆ̂ 
 x zk ii + jj +k kk  

1K   anisotropy parameter x

z

k

k

 
 
 

 

k1  (0, 0, 1)       

Le   Lewis number
   




 

p  pressure      
q  velocity vector (u, v, w) 

DxRa   Darcy Rayleigh number
4

xk g d


 
 
 

  

DxRs   solutal Darcy Rayleigh number
4

xk g d 
 
  

  
 

T  temperature 
t  time 
x, y, z  space coordinates 
 
Greek Symbols 
 
   thermal expansion coefficient    
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   solute expansion coefficient 

   
T

d

 
 
 

       

    
C

d

 
 
 

 

   thermal diffusivity     
   solutal diffusivity 

   retardation time     
   dimensionless retardation time 
   relaxation time     
   dimensionless relaxation time 
   viscosity      
   kinematic viscosity 
   density 
 
Subscripts 
 
c  critical 
0  reference value 
min  minimum 
 
Superscripts 
*  dimensionless quantity 
'   perturbed quantity 
stat.  stationary 
osc.  oscillatory 
non-osc. non-oscillatory 
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