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Abstract

Feeding plants containing elevated levels of polyphenols may reduce ruminal CH4 emissions, but at the expense of nutrient utilisation.

There might, however, be non-additive effects when combining high-phenolic plants with well-digestible, high-nutrient feeds. To test

whether non-additive effects exist, the leaves of Carica papaya (high in dietary quality, low in polyphenols), Clidemia hirta (high in

hydrolysable tannins), Swietenia mahagoni (high in condensed tannins) and Eugenia aquea (high in non-tannin phenolics) were

tested alone and in all possible mixtures (n 15 treatments). An amount of 200 mg DM of samples was incubated in vitro (24 h; 39oC)

with buffered rumen fluid using the Hohenheim gas test apparatus. After the incubation, total gas production, CH4 concentration and fer-

mentation profiles were determined. The levels of absolute CH4, and CH4:SCFA and CH4:total gas ratios were lower (P,0·05) when incu-

bating a combination of C. papaya and any high-phenolic plants (C. hirta, S. mahagoni and E. aquea) than when incubating C. papaya

alone. Additionally, mixtures resulted in non-additive effects for all CH4-related parameters of the order of 2–15 % deviation from the

expected value (P,0·01). This means that, by combining these plants, CH4 in relation to the fermentative capacity was lower than that

predicted when assuming the linearity of the effects. Similar non-additive effects of combining C. papaya with the other plants were

found for NH3 concentrations but not for SCFA concentrations. In conclusion, using mixtures of high-quality plants and high-phenolic

plants could be one approach to CH4 mitigation; however, this awaits in vivo confirmation.
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Various investigations are currently under way to identify and

test means for mitigating CH4 emissions that originate from

ruminants due to the activity of methanogenic archaea

during feed fermentation(1). As a product of fermentative

digestion, CH4 emission levels depend considerably on the

quantity and composition of feeds consumed(2). The potential

of mitigating CH4 emissions by the extracts of phenolic com-

pounds, which are synthesised in the intermediary metabolism

of plants, has been demonstrated experimentally(3–5). Also,

the direct inclusion of plants containing phenolics in ruminant

diets reduced CH4 emissions compared with control diets,

both in vitro (6) and in vivo (7,8).

A major drawback in implementing diets with doses of phe-

nolics aimed at reducing CH4 emissions is often a decline in

the digestibility of the feed and therewith the productivity of

the animals(9), even at dosages where toxic side effects are

excluded. As a consequence, there are often no or only

small declines in CH4 per unit of digested feed and, therefore,

food produced. Analysing a larger dataset by principal

components analysis illustrated that plants with high forage

quality are arranged opposite to those with a high CH4-

mitigating potential(10). This indicates that achieving both

goals simultaneously is difficult. Studies by Tiemann

et al.(8,11), where low-quality tropical Brachiaria hay was

combined with highly tanniferous shrub forage, have shown

that any reduction in CH4 was associated with a correspond-

ingly lower utilisation of dietary energy. This may be different

when high-phenolic plants are combined with high-quality

feeds. So far, studies specifically designed to measure the addi-

tivity or non-additivity of the effects (i.e. non-linear effects,

elsewhere also defined as associative effects(12) when investi-

gating combinations of plants) in the context of ruminal CH4

emissions are scarce.

In the present study, we hypothesised that combining

plants characterised by different phenolic profiles with one

having high quality would have general favourable
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non-additive effects in terms of lower CH4 emission relative to

the productivity of ruminal fermentation in vitro. We specifi-

cally looked at in vitro CH4 emissions per unit of SCFA or

total gas as indicators of fermentation productivity. For this

purpose, the leaves of four tropical plants were selected as

model forages. Carica papaya was chosen as forage of high

quality. Clidemia hirta, Swietenia mahagoni and Eugenia

aquea represented forages containing appreciable amounts

of total phenolics but a different phenolic profile. These

plants were selected on the basis of a previous screening

experiment(10). With this kind of experimental design, it is

possible to demonstrate in vitro the non-additivity of the

properties of differing forages, which in the best case can be

used as a first step towards developing forage-based diets

with lowered methanogenic potential without similarly

impaired ruminal fermentation efficiency. However, with this

approach, it is not possible to distinguish whether the result-

ing effects are dose–response effects of any single compound

or interaction effects of different compounds. Although in vitro

evidence has a limited applicability for the situation in vivo, it

provides additional information about the occurrence of such

complementary effects of feeds with differing profiles in plant

secondary compounds on nutrition processes in ruminants,

which have already been described in vivo in another con-

text(13). The present study aimed to indicate areas on which

future in vivo experiments could focus.

Materials and methods

Experimental design and plant material

All plant samples were incubated both individually and in all

possible mixtures (Table 1). The mixtures consisted of two,

three or four plants represented in equal proportions. This

resulted in a total of fifteen treatments. The leaves of

C. papaya were characterised by high crude protein contents,

low contents of fibre and lignin as well as favourably high

in vitro organic matter digestibility(10). This differed clearly

from the properties of the three high-phenolic plants selected

that were rich in phenolics (7- to 9-fold levels of total pheno-

lics compared with C. papaya). Concerning the phenolic pro-

file, C. hirta is rich in hydrolysable tannins (HT), S. mahagoni

contains particularly high levels of condensed tannins (CT) as

well as appreciable levels of HT and non-tannin phenolics

(NTP), and E. aquea is especially rich in NTP and lignin.

The selected plants were considered to be suitable models

for the purpose of comparing plants with quite similar con-

tents but different categories of phenolic compounds. Even

though not very common globally and not used as the sole

feed, the leaves of C. papaya, C. hirta, S. mahagoni and

E. aquea are used either as ruminant feeds in rural areas

(C. papaya and C. hirta) or as traditional veterinary medicinal

plants in the areas around Bogor on the Java island of

Indonesia(10). Since the present study aimed at the basic

question of non-additivity when combining single forages

instead of formulating complex diets, no standardisation was

applied for other nutrients such as crude protein or neutral-

detergent fibre, although this might have interfered with the

effects of phenolic compounds.

The leaves of the experimental plants were collected in

November 2008 from the area of the Indonesian Research

Institute for Animal Production, Ciawi, Bogor, located at an

elevation of 350 m above sea level. About 3 kg fresh matter

of each plant species was sampled. Each sample consisted

of leaves from several individual plants from the same species.

The samples were immediately air-dried in a greenhouse for

2 d, followed by oven-drying overnight at 508C. After drying,

the samples were ground to pass a 1 mm sieve, and then sub-

jected to chemical analysis and in vitro incubation. As the

same batches of the four feeds as those tested in an earlier

study were used in the present study, no new compositional

analyses were performed and the analytical procedures have

been described in detail in Jayanegara et al.(10). Briefly, for

C. papaya, C. hirta, S. mahagoni and E. aquea, the following

concentrations (g/kg DM) were analysed: crude protein, 386,

129, 112 and 199; neutral-detergent fibre, 155, 232, 281 and

479; total extractable phenolics, 25, 216, 207 and 169; total tan-

nins, 8, 212, 138 and 67; CT, 0, 10, 86 and 40; HT, 8, 202, 52

and 27; NTP, 17, 4, 69 and 102(10).

In vitro procedure and analyses

An amount of 200 mg DM of individual plants or mixtures was

incubated with 10 ml of rumen fluid and 20 ml of buffer sol-

ution using the Hohenheim gas test apparatus(14) with modi-

fied syringes(15). The latter have two outlets, in which the

first outlet is designed for filling and emptying the liquid

phase and the second allows sampling from the gas phase.

Incubation was carried out for 24 h at 398C in four subsequent

runs, comprising two treatment replicates per run (n 8). This

was complemented for each run by three syringes without

feed, with standard hay and concentrate. Both standard hay

and concentrate were obtained from the Institute of Animal

Nutrition, University of Hohenheim, Stuttgart, Germany. Data

on the expected amounts of total gas produced from incu-

bation of the standards were used in comparison with those

actually measured, in order to monitor whether incubation

Table 1. Treatment formulation and amounts (mg DM) of
plants incubated in vitro

Treatments P C S E

P 200 – – –
C – 200 – –
S – – 200 –
E – – – 200
PC 100 100 – –
PS 100 – 100 –
PE 100 – – 100
CS – 100 100 –
CE – 100 – 100
SE – – 100 100
PCS 67 67 67 –
PCE 67 67 – 67
PSE 67 – 67 67
CSE – 67 67 67
PCSE 50 50 50 50

P, Carica papaya; C, Clidemia hirta; S, Swietenia mahagoni;
E, Eugenia aquea.

A. Jayanegara et al.2

B
ri
ti
sh

Jo
u
rn
al

o
f
N
u
tr
it
io
n



went in a normal way and to adjust total gas(14). The donor of

rumen fluid was a rumen-cannulated lactating Brown Swiss

cow; the fluid was taken before the morning feeding. In

order to prevent any previous adaptive processes to the phe-

nolics, the cow received hay made from a ryegrass–white-

clover ley with ad libitum access and 0·5 kg/d of dairy cow

concentrate (UFA 149, UFA AG). The cow was cared for

according to the Swiss guidelines for animal welfare. After col-

lection, rumen fluid was strained through four layers of gauze

(1 mm pore size, Type 17; MedPro Novamed AG) in order to

filter out any feed particles.

The volume of fermentation gas produced during 24 h of

incubation was read from the calibrated scale on each glass

syringe. The liquid phase in each syringe was decanted.

Subsequently, 0·15 ml of fermentation gas were withdrawn

with a Hamilton syringe (Hamilton AG) through a gas-tight

septum covering the outlet. This gas sample was injected

into a gas chromatograph (Model 5890 Series II; Hewlett Pack-

ard) for measuring CH4 and H2 concentrations. NH3 and pH of

the incubation liquid were determined with a potentiometer

(Model 632; Metrohm) equipped with the corresponding elec-

trodes. Total NH3 was calculated from NH3 concentration and

the volume of the incubation liquid. SCFA were analysed using

HPLC (LaChrom, L-7000 series; Hitachi Limited) equipped

with an UV–VIS detector, read at 210 nm(10). Total viable

bacterial and protozoal numbers were counted by direct

microscopic counting using Bürker counting chambers

(Blau Brand) with depths of 0·02 and 0·1 mm, respectively.

For bacterial counting, samples were treated with Hayem sol-

ution (HgCl2, 2·5 mg/ml; Na2SO4, 25 mg/ml; NaCl, 5·0 mg/ml).

Viability of bacteria was accounted for by counting only

moving individuals. Before protozoal counting, samples

were treated with 1:10 diluted formalin (40/100, w/v in

water). Only intact protozoa and no fragments were counted.

Calculations and statistical analysis

Following Menke & Steingass(14), gas production from the

blank was subtracted from all samples incubated to obtain

the net gas production. Subsequently, gas production from

the hay standard (44·43 ml gas/200 mg DM; 24 h incubation)

was divided by the measured net value of the hay standard

to provide the correction factor FH. Similarly, gas production

from the concentrate standard (65·18 ml/200 mg DM; 24 h

incubation) was divided by the measured net gas production

of the concentrate standard to provide FC. The average

value of FH and FC was used for the adjustment. Data on

CH4 and H2 concentrations were transformed into volume

(ml, ml) data by multiplying the measured concentrations

with the measured total gas volume. To get a direct meaning-

ful relationship of CH4 to SCFA, molar amounts were calcu-

lated by assuming a density of 0·67 kg/m3 for CH4 gas at

1·013 bar and 168C(16).

The data generated were subjected to a mixed model of

ANOVA. Incubation runs, serving as a block in the ANOVA

model, were considered as random effects, while plant treat-

ments were included as fixed effects. If fixed effects were

significant at P,0·05, multiple comparisons among means

were made using Tukey’s post hoc test. Before ANOVA, bac-

terial and protozoal counts were transformed into their logar-

ithmic units. All statistical analyses were performed using SPSS

statistical software version 17.0(17).

The main purpose of the experiment was to reveal the pre-

sence of non-additive effects. Non-additive effects were

defined as the deviations of the observed values (obtained

by measurements) from the expected values (calculated as

arithmetic means of the values obtained by the respective indi-

vidual plant incubations). These differences were analysed for

all plant mixtures using a paired t test and presented as

(observed value 2 expected value)/expected value £ 100 %

following Niderkorn et al.(12). All expected ratio values were

calculated by the actually measured values for each individual

incubation. This means that the expected values were not cal-

culated from the already averaged ratio values, as shown in

Tables 2 and 3. For the ratio of CH4:total gas (ml/l), the

expected value was calculated as ((CH4 plant1 þ CH4 planti2n)/

n)/((total gas plant1 þ total gas planti2n)/n), where n is the

number of involved plant species. The same principle was

applied for calculating the expected value for the ratio of

CH4:SCFA (mmol/mol).

Results

Effects of plants and combinations of plants on in vitro
fermentation

The total SCFA amount was superior when C. papaya was

incubated compared with the other three plants (P,0·05),

where E. aquea was inferior to C. hirta and S. mahagoni

(Table 2). The acetate:propionate ratio was shifted towards

acetate when E. aquea was incubated compared with the

other three forages (P,0·05). Combining the different forages

resulted in values for SCFA production and proportions of

acetate and propionate being always intermediate between

those obtained from individual incubations. For the molar pro-

portions of butyrate, valerate and their iso forms, the effects

were less clear.

Total gas produced from incubation with C. papaya was

twice that with C. hirta and S. mahagoni (P,0·05), and the

latter two plants produced twice as much total gas compared

with E. aquea (P,0·05; Table 3). The volumes of CH4 and H2

(which on average amounted to only about 0·1 % of that

of CH4) varied, when total gas varied. Nevertheless, the gas

composition differed among the treatments. Incubating

S. mahagoni led to the lowest CH4:total gas ratio among the

individual plants (P,0·05), while incubating C. papaya pro-

duced twice the level. The lowest H2:total gas proportion

was found when E. aquea (40ml/l) was incubated and the

highest with C. papaya (110ml/l; P,0·05; data not shown).

The amounts of CH4 in relation to the amounts of SCFA after

incubation differed (P,0·05) between each of the forage

species, and were ranked in the order of C. papaya .

C. hirta . S. mahagoni . E. aquea. The concentration of

NH3 in the incubation liquid was highest when C. papaya

was incubated alone, whereas the ratio of NH3-N:dietary N

was highest with E. aquea incubation and differed (P,0·05)

Non-additive effects in rumen methane mitigation 3
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from the values measured with the other plants. There were

some differences in the pH of the incubation liquid, but not

(P.0·05) in the logarithmic counts of viable bacteria and pro-

tozoa across all experimental treatments (data not shown).

In general, combining either C. hirta, S. mahagoni or

E. aquea with C. papaya in binary mixtures resulted in

lower total gas production compared with the incubation of

C. papaya alone (P,0·05). CH4-related variables (CH4,

CH4:SCFA and CH4:total gas) were also reduced by mixing

these plants (P,0·05) compared with the incubation of

C. papaya alone. The mixing of C. hirta and/or E. aquea

with S. mahagoni resulted in a lower (P,0·05) CH4:total gas

ratio than all mixtures including C. papaya. Furthermore, all

plant mixtures caused a decrease in the ratio of CH4:SCFA

compared with pure C. papaya incubation (P,0·05). The

lowest ratios were found with the mixtures containing no

C. papaya; however, this resulted in a very low level of

SCFA production. The mixtures containing C. papaya

increased ruminal NH3 concentrations compared with the

mixtures without this plant.

Non-additive effects of using plant mixtures

No non-additive effects on total SCFA concentration were

observed when combining any plant species (Table 4).

Binary mixtures including C. papaya did not result (P.0·05)

in non-additive effects on total gas production. However,

when C. papaya was combined with two or all three high-

phenolic plants, non-additive effects (P,0·05) on gas

production were observed. Combining C. papaya with any

Table 2. Effect of plant species or species combinations on in vitro incubation liquid SCFA profiles (observed values, n 8)

Molar proportion of total SCFA

Treatments* Total SCFA (mmol/l) C2 C3 C4 isoC4 C5 isoC5 C2:C3

P 75·7i 70·9a 16·7d 8·6b,c 1·43c 1·24c 1·09 4·36a

C 50·0b,c 73·6b,c,d 15·4a,b,c 9·0c 0·59a,b 0·52a,b 0·80 4·79a,b,c

S 50·4b,c,d 74·5c,d 16·3b,c,d 6·8a 0·42ab 0·91b,c 1·02 4·60a,b

E 42·7a 74·9d 14·3a 8·5b,c 0·53a,b 0·63a,b 1·16 5·26c,d

PC 60·5 g,h 72·0a,b 16·6c,d 8·6b,c 0·82a,b 0·67a,b 1·21 4·34a

PS 62·3 h 73·0a,b,c,d 16·4c,d 8·4b,c 0·85a,b,c 0·66a,b 0·80 4·47a,b

PE 57·4f,g 72·7a,b,c,d 16·2b,c,d 8·6b,c 0·80a,b 0·74a,b 0·97 4·51a,b

CS 50·9b,c,d 74·5c,d 16·0b,c,d 7·5a,b 0·53a,b 0·56a,b 0·80 4·67a,b,c

CE 47·0a,b 73·9b,c,d 14·5a 9·3c 0·66a,b 0·42a 1·19 5·11c,d

SE 46·9a,b 74·5c,d 15·4a,b,c 8·0a,b,c 0·62a,b 0·57a,b 0·92 4·84b,c,d

PCS 57·5f,g 72·7a,b,c 16·1b,c,d 8·8b,c 1·03b,c 0·55a,b 0·88 4·53a,b

PCE 54·8d,e,f 72·7a,b,c 16·0b,c,d 9·0c 0·62a,b 0·61a,b 1·16 4·56a,b

PSE 56·4e,f,g 72·6a,b,c 15·9b,c,d 9·1c 0·84a,b,c 0·48a 1·17 4·58a,b

CSE 47·7b 74·2b,c,d 15·1a,b 8·5b,c 0·71a,b 0·61a,b 0·90 4·93b,c,d

PCSE 52·9c,d,e 73·9b,c,d 15·7a,b,c,d 8·6b,c 0·39a 0·48a 0·90 4·71a,b,c

SEM 0·83 0·16 0·11 0·10 0·039 0·028 0·044 0·038
P ,0·001 ,0·001 ,0·001 ,0·001 ,0·001 ,0·001 0·449 ,0·001

C2, acetate; C3, propionate; C4, butyrate; C5, valerate; C2:C3, acetate:propionate ratio.
a-i Mean values within a column with unlike superscript letters were significantly different (P,0·05).
* C, Clidemia hirta; E, Eugenia aquea; P, Carica papaya; S, Swietenia mahagoni.

Table 3. Effect of plant species or species combinations on in vitro rumen fermentation measurements (observed values, n 8)

Treatments*
Total gas

(ml)
CH4

(ml)
H2

(ml)
CH4:total gas

(ml/l)
CH4:SCFA
(mmol/mol) pH

NH3

(mmol/l)
NH3-N:dietary N

(mg/mg)

P 44·3 g 8·1i 5·1f 181i 149j 7·38c,d 27·3 h 0·93c,d

C 22·1c 2·5e 1·8c,d 112b,c 69d,e 7·20a 8·8a,b 0·90c

S 22·7c,d 2·1c,d,e 1·2a,b,c 91a 57b,c 7·31b,c 8·4a 0·98c,d

E 10·4a 1·3a 0·4a 122d,e 42a 7·34c 10·7c,d 1·41e

PC 33·1f 4·7 h 3·0e,f 143 g 109i 7·34c 14·1f,g 0·72a

PS 32·6f 4·5 h 2·9e,f 137f,g 100 h 7·32b,c 13·5e,f 0·71a

PE 27·9e 4·5 h 2·2d,e 159 h 107 h,i 7·38c,d 15·8 g 0·86b,c

CS 21·5c 2·3d,e 1·1a,b,c 104b 61c,d 7·26a,b 8·3a 0·90c

CE 15·3b 1·8b,c 1·5b,c,d 115c,d 53b,c 7·32b,c 9·1a,b,c 1·05d

SE 15·9b 1·7a,b 0·9a,b,c 103b 49a,b 7·34c 8·5a,b 1·05d

PCS 28·3e 3·6 g 1·6b,c,d 127e,f 87 g 7·33b,c 10·3b,c,d 0·65a

PCE 24·1d 3·5 g 1·0a,b,c 142 g 87 g 7·38c,d 12·0d,e 0·77a,b

PSE 24·5d 3·3f,g 1·3a,b,c,d 132e,f 80f,g 7·35c,d 11·4d 0·76a,b

CSE 16·9b 1·9b,c,d 0·9a,b,c 111b,c 55b,c 7·33b,c 9·0a,b,c 1·04d

PCSE 22·9c,d 2·9f 0·7a,b 128e,f 77e,f 7·42d 10·3b,c,d 0·75a,b

SEM 0·78 0·16 0·44 2·4 5·1 0·01 0·47 0·022
P ,0·001 ,0·001 ,0·001 ,0·001 ,0·001 ,0·001 ,0·001 ,0·001

a-j Mean values within a column with unlike superscript letters were significantly different (P,0·05).
* C, Clidemia hirta; E, Eugenia aquea; P, Carica papaya; S, Swietenia mahagoni.
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of the other plants (C. hirta, S. mahagoni and E. aquea) led to

non-additive effects (at least at P,0·01) in terms of CH4 emis-

sion, either when expressed as the absolute CH4 amount or as

the CH4:SCFA and CH4:total gas ratios. Non-additive effects,

apparent as negative deviations from the values predicted

when assuming additive responses to the plant combinations,

were observed for mixtures of two, three or four plants, and

ranged from 5 to 15 %, 2 to 15 % and 7 to 10 % for CH4,

CH4:SCFA and CH4:total gas, respectively. In contrast, no

non-additive effects (P.0·05) on CH4 emissions were found

when combining the high-phenolic plants only, i.e. C. hirta,

S. mahagoni and E. aquea, in 2- or 3-fold mixtures. For the

molar amount of CH4 produced per molar amount of SCFA

synthesised, all multiple combinations comprising C. papaya

resulted in non-additive effects (at least at P,0·05). For the

binary combinations, such non-additive effects were found

only for C. papaya together with S. mahagoni and for

C. hirta together with E. aquea (P,0·05). With regard to

NH3-related variables, non-additive effects (negative devi-

ation; P,0·01) of all mixtures of C. papaya combined with

the other plants were observed for NH3 and NH3-N:dietary N.

The magnitude of the effects was considerable with deviations

of mostly more than 220 %. No such effect was found

with combinations of the high-phenolic plants, except for

the mixture of S. mahagoni and E. aquea.

Discussion

In natural environments, ruminants select diets from various

forage resources such as grasses, forbs, shrubs and tree

leaves. These plants may largely vary in their nutritional com-

position such as energy, protein, vitamins and minerals, and in

contents of plant secondary metabolites. Under such con-

ditions, interactions between different kinds of forages and

chemical constituents may occur, which might influence

intake behaviour, digestion, well-being and performance(13,18).

Niderkorn & Baumont(19) described that mixing two or more

different forages can even result in a different response for

various parameters (higher or smaller) from that expected if

just considering the average of the effects of the individual

plants. Yet few studies have specifically investigated the

non-additive effects of dietary ingredients, or plants character-

ised by specific compounds, on rumen fermentation and

digestibility in vitro (20,21) and in vivo (22,23). The results

reported so far are quite variable; some mixtures showed

non-additive effects (either favourable or unfavourable) and

others were simply additive.

There is still particularly little information available on the

non-additive effects of mixed feeds on CH4 emissions(24,25).

Even less literature is available for mixtures involving plants

differing in phenolic profiles(12). This is of a particularly

high interest as feeds rich in total phenolics cannot be fed

alone and it depends on the nature of the relationship

between compounds whether their basic anti-methanogenic

potential(26,27) is enforced, unchanged or decreased by the

combination with plants of high forage quality. In this context,

a favourable non-additive effect would mean that the combi-

nation of a high-phenol ‘plant X’ with a high-quality ‘plant

Y’ would reduce the anti-methanogenic potential coming

from plant X to a proportionately lesser extent than the

feeding value of plant Y. This concept is simplistic in a way

because it cannot answer the question whether any non-

additive effects found are based on a non-linear dose–

response relationship with a single compound or whether

they emerge from an interaction of various plant compounds.

However, even though non-linearity cannot be traced back to

the level of compounds involved (which may also include sec-

ondary compounds other than phenolics), this perspective

might indicate the potential of complementarity on the level

of forages, which is the relevant level in practical livestock

feeding, particularly in smallholder farms of developing tropi-

cal countries.

Non-additive effects of plant mixtures on ruminal
methane formation in relation to the level of ruminal
fermentation

Phenolics have been shown to reduce the population of

methanogenic archaea in the rumen(4) and, therefore, to miti-

gate CH4 emissions. In addition, phenolics interact with other

chemical plant constituents such as protein and carbohydrates

(both fibre and non-fibre carbohydrates) via hydrogen

Table 4. Non-additivity of the effects of the plant mixtures (difference in observed values to expected values, in percentage of the expected
values†) on in vitro rumen fermentation parameters (n 8)

Treatments‡ Total SCFA Total gas CH4 CH4:SCFA CH4:total gas pH NH3 NH3-N:dietary N

PC –3·1 –0·5 –10·1** –6·9 –9·6*** 0·6* –22·3** –22·2***
PS –0·4 –3·0 –12·1*** –10·9* –9·4*** –0·3 –24·3** –25·8***
PE –2·5 1·9 –5·2** –2·2 –7·0** 0·3 –16·8** –27·0***
CS 1·6 –4·1* –1·4 –2·7 2·9 0·0 –4·0 –4·7
CE 1·8 –5·8 –6·0 –7·7* 0·0 0·7 –6·8 –9·8
SE 1·1 –4·3** –1·4 –2·3 3·0 0·2 –11·4* –12·3*
PCS –1·5 –4·5** –14·5*** –12·8** –10·4*** 0·4 –31·0*** –31·5***
PCE –1·8 –5·6* –12·5** –10·5* –7·3*** 0·9* –23·7*** –29·2***
PSE 0·6 –5·3** –15·0*** –15·2** –10·3*** 0·0 –26·3*** –32·0***
CSE 0·1 –8·5** –3·7 –3·7 5·4 0·6** –3·2 –5·3
PCSE –2·8 –7·5* –15·4*** –12·6** –8·3*** 1·5** –25·8*** –29·8***

*P,0·05, **P,0·01, ***P,0·001.
† Mean values of the individual plants present in the mixtures incubated individually.
‡ C, Clidemia hirta; E, Eugenia aquea; P, Carica papaya; S, Swietenia mahagoni.
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bonds(28). Inhibition of carbohydrate digestion leads to a lower

formation of H2, which is a substrate for methanogenesis(29). If

this is the major way to mitigate CH4 emissions, there is no

advantage in implementing this supplementation strategy

into practical feeding as productivity of the animals is concomi-

tantly hampered. The addition of high-phenolic plants to high-

quality forages might result in an even larger depression in

feed utilisation as nutrients of an inherently higher digestibility

might be transformed into indigestible compounds. This was

confirmed in the present study by the adverse non-additive

effects found with some mixtures in total gas production. How-

ever, such unfavourable non-additive effects mainly occurred

for mixtures containing S. mahagoni, which is rich in CT con-

tent (numerically also for the mixture with C. papaya). Apart

from the inhibitory effects of CT on the growth and activity

of rumen micro-organisms and the enzymes secreted(30),

a stable complex between CT and other chemical constitu-

ents(11,31) might explain non-additive effects which decrease

fermentative activity in combinations including S. mahagoni.

The SCFA amounts did not show this effect even in combi-

nations including S. mahagoni. This indicates that the hypoth-

esis that combinations with high-phenolic forages cause

non-additive decreases in ruminal productivity is neither fully

supported nor disproved by the present results. However,

the NTP in E. aquea are likely to possess no or a smaller bind-

ing capability. Also, complexes with HT are degradable under

ruminal conditions(30), which is relevant for C. hirta being rich

in HT. However, it should be noted that C. hirta, when fed at

a high proportion (0·5 parts of the total ration; air-dry basis),

may lead to hepato- and nephrotoxicity and be associated

with gastroenteritis in goats as HT may be absorbed(32).

Concerning CH4 production relative to total gas or SCFA,

substantial non-additive effects were found when incubating

C. papaya together with the high-phenolic plants or their mix-

tures (not significant for some binary combinations concern-

ing SCFA). Even though there could be a certain bias in total

gas, as some of the gas could be CO2 released from the

buffer, both variables pointed to the same direction and thus

indicate that methanogenesis was generally more decreased

than fermentation productivity when adding the high-

phenolic plants to C. papaya. It appears that, in combination

with a high-quality plant, the phenolic compounds inhibit

CH4 production more than expected but not at the cost of a

more than proportionate impairment of ruminal productivity.

In comparison with a high-phenolic plant, a high-quality

plant containing low levels of phenolics might not be affected

as much in the forage value, whereas the phenolics are still

able to exert their direct anti-methanogenic property. This

means that the stoichiometry of CH4 formation might be

affected. If CH4 formation decreases more than the amounts

of either total gas or SCFA, both indicating fermentative pro-

ductivity, there has to be an alternative sink for the emerging

H2. The H2 concentrations in the present study were lower by

a factor of 1000 compared with CH4, which is in accordance

with other studies and makes it generally difficult to explain

alterations in the concentration of CH4 with those in H2
(33).

The concentration of H2 was never increased in treatments

with negative non-additive effects on CH4 traits. For the

combination with the strongest non-additive effects on CH4

(C. papaya, S. mahagoni and E. aquea), the amount of gaseous

H2 also underwent a negative non-additive effect. Thus, there

seemed to have been generally less H2 present in the incu-

bation unit. Lower ruminal H2 concentrations can be a conse-

quence of increased ruminal propionate formation(33).

However, this was not the case with the treatments discussed

here. A shortcoming of the present study is that the concen-

trations of nutrients serving as fermentation substrates alter

too much between the different forage combinations and thus

do not allow for clear stoichiometric comparisons. Further-

more, non-phenolic plant secondary compounds, such as

papain in the papaya leaves, that have not been measured

could have interfered. Although the reasons for this disparity

of non-additive effects remain unclear, the results of the present

study might offer opportunities to develop diets that are conco-

mitantly effective for production and CH4 mitigation.

According to Niderkorn et al.(12) and Robinson et al.(21)

non-additive effects of feeds on total gas production in vitro

may even be clearly more pronounced after a shorter incu-

bation time of 3·5 or 8 h, when compared with 24 h. A lack

of significant non-additive effects on CH4 at 24 h of incubation

was also observed by Goel et al.(34). In that study, combining

different levels of the leaves from Carduus pycnocephalus,

a plant containing phenolics in unknown concentration,

with hay or concentrate did not lead to differences between

the observed and expected values for in vitro CH4 emissions.

The time effect, however, was not measured in the present

study, and all effects found were present after 24 h.

Almost no non-additive effects were found for mixtures of

the high-phenolic plants except with regard to CH4:total gas

and CH4:SCFA. Hypothetically, non-additive effects for mix-

tures of plants containing high concentrations of different phe-

nols could be significant in two extreme cases: either the

effects of different phenolics are mutually strengthening their

activity, which would result in less CH4 than expected from

incubating individual feeds, or they would counterbalance

each other, which would result in the opposite. The response

pattern in non-additive effects on CH4 found in the present

study suggests that such effects are stronger when combining

individual plants that are distinctly different in their general

CH4 production potential than when combining forages

containing similarly high levels of potentially CH4-inhibiting

constituents. The latter plants already produced low CH4 emis-

sions (2·5, 2·1 and 1·3 ml CH4/200 mg DM with C. hirta,

S. mahagoni and E. aquea, respectively, when incubated

alone. This favourably compares with the levels of 2·7, 1·6

and 1·0 ml CH4/200 mg DM described earlier in Jayanegara

et al.(10)). In both experiments, this was far below the level

found with C. papaya (8·1 and 7·4 ml CH4/200 mg DM,

respectively). Even though the high-phenolic plants differed

in their phenolic profiles, CH4 production potential seems to

be especially determined by total phenolic contents rather

than by the specific phenolic fraction (NTP, CT or HT)(10) or

other potentially effective compounds.

Generally, the incubations resulted in SCFA concentrations

and a pH that are comparable with other experiments incubat-

ing high-phenolic feeds(10,35). The resulting pH was high, but
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according to Van Kessel & Russell(36), this should not have

impaired methanogenesis. However, since the pH in the

rumen is expected to be clearly lower in vivo, this is one

factor which makes it necessary to confirm the results also

in in vivo experiments.

Non-additive effects of plant mixtures on ruminal
ammonia formation

The non-additive effects of the plant mixtures on NH3 vari-

ables followed the pattern found with the CH4-related vari-

ables, i.e. they were significant and negative for the mixtures

containing C. papaya, and even to a higher magnitude than

the CH4 variables. Again, the largely contrasting NH3-gene-

rating properties between C. papaya (27 mmol/l) and the

plants characterised by high total phenolics (ranging from

8 to 11 mmol/l) might have opened room for generating

non-additive effects. Mixing forages with high levels of rumin-

ally degradable protein with those elevated in phenolics could

therefore be particularly useful to prevent excessive degra-

dation of protein into NH3 as non-additive effects enhance

this process. The different groups of phenolics have different

protein-binding capacities. While NTP, by definition, do not

bind proteins, this is different with both HT and CT, and the

bonds formed with CT are particularly resistant(30). However,

in the present study, only limited non-additive effects on

NH3 production were found when incubating the plants

with different types of phenolics alone when compared with

incubations of the mixtures with C. papaya.

The general presence of the non-additive effects of plant

combinations with different phenolic profiles might also be

reflected by the fact that combinations of shrub species that

contained different classes of plant secondary metabolites

enhanced intake by ruminants(37–39). This could be explained

by the attempt to achieve a better nutrient balance, to find the

optimum medicinal benefit and to minimise the harmful

effects of each of the toxins(13,37,38,40).

Conclusions

Combining plants containing phenolics with the high-quality

leaves of C. papaya reduced ruminal CH4 emissions more than

predicted from the arithmetic means. This was independent of

the respective phenolic profile. These non-additive effects of

plant combinations were also apparent in the ratio of

CH4:SCFA. Provided the confirmation of such effects in vivo,

this could mean that such mixtures of high-quality and high-

phenolic forages could help to mitigate CH4 without corre-

spondingly extensively reducing ruminal nutrient utilisation.

The mixtures would also prevent excessive degradation of pro-

tein into NH3. Whether or not non-additive effects of combining

such plants can be recovered in vivo and on which compound

interactions they mechanistically rely merits further studies.
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