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design. In the literature, both Monte Carlo simulation and numerical optimization method
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efficiency and accuracy of this solution. This algorithm can efficiently obtain the global
optimum, and the amount of calculation is considerably reduced.
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1 Introduction timization algorithms such as genetic algorithm and simulated an-

The allocation of tolerances is closely tied to the overall ualitnealing [3] is often used to optimize the folerance, but several
Y 4 Eillion cases must be analyzed to find the optimum using these

and cost of a product. If the tolerance is too loose, the probabili gorithms[4].

of an assembly function acceptaliyield) is low. On the other In the method presented here, techniques based on the Number

hand, if the tolerance is too tight, the manufacturing cost beco f . .
high. Thus the tolerance allocation becomes an optimization p[rnE-?oret'C Method are used in tolerance analysis and syntheses to
timate spec yield and to optimize the tolerance respectively.

lem to qletermlne the op_tlmal aIIotr_nent of the tolerance under tlﬁréstead of random numbers based on Monte Carlo Method,
cgq_stra(unts of_tTde functional requirements and acceptance prcf)k%'eudo-random numbers based on the Number Theoretic Method
ability (spec yield.

A process diagram for a typical statistical tolerance synthes"’ll e utilized to approximate by using a very small number of sam-

. R . pling points. These greatly decrease the computing effort required
process is shown in Fig. [1L]. The manufacturing process modelf the Monte Carlo simulation. At the same time, a sequential

takes the values of the tolerances and uses them to determine ei ; ; .
‘ e : algorithm based on the Number Theoretic Method is effectivel
manufacturing cost and the statistics of the manufacturing varig: lied to solve questions with nonlinear constraints in the prg-

tions. The tolerance analysis process uses the manufactur -
Y P s of tolerance synthesis.

variation statisti ner instan f th rt or m ! . -
ariation statistics to generate instances of the part or asse revious research on tolerance analysis and synthesis is re-

that are then analyzed. The analysis calculates a design functio . L . . i
value for this instance, which is a measure of the product’s p VIJQWEd in the followed section; the technique for reducing calcu

formance. Design function statistics are then calculated for t aetlon effort in tolerance analysis is discussed in section 3; and the

instances that have been analyzed. Typically, the statistics calgéfhn'qlue for optlmlz(;ng the tqleregnce is described in section 4; an
lation is matched to the algorithm for generating the variatio ample Is presented in section 5.

instance$2]. The optimization algorithm to determine the next set

of tolerances to test uses the design function statistics and the

manufacturing cost. The process continues until the optimum tQ; icai Tolerance Synthesis

erances have been found. > Manufacturing
The yield (Y) is computed as the probability. L&, and x;, Manufacturing Cost
represent the lower and the upper I|m|_ts of an individual dimer  Tojerance Process |~ | Manufacturing
sionx; in an assembly. Then the yield is represented as Variance
X1u Xnu q
Y= e X1, ", X Xq, X X1 X 1
M X a(xq n) ¢ (X n) @ (1) Sanmple = Statistical Tolerance Analysis
4 nl Generator
where¢(x4, *+,X,) is the multivariate normal probability density \ Manufacturing
function, and q(xq,"--,x,) is the test function which Variance
checks whether a stochastically selected point is in the reliak Assembly | Dnstance
region. IfF;(x4," - +,x,) >0 for all design functions, wherfg; is an Analysis
assembly constraint function,q(x4,"-*,X,)=1, otherwise
q(xl,'--,xn):O. . . . . .
The Monte Carlo simulation, or random sampling, is bein Statistics Design Function
used extensively for statistical tolerance analysis and synthes Calculator Distribution
but computing effort is large. On the other hand, the number o |
o 3
Algorithm I
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2 Background tionally applied to discrete optimization problems. The algorithm
. - . ensures that all constraints are met, and an optimal solution
Initial research on statistical tolerance synthesis made two e}ﬁéy be found in the meantime. Zhang and WAbg] present a
sumptions:(1) |nd|V|_duaI varl_atlons are normally dlstrlbute_d; .andmethodology to maximize a product’s robustness by appropriately
(2.) the overall de5|g_n f_u_nctlon Of.th.e part or assembly IS IIneaarllocating assembly and machining tolerances. The robust toler-
with respect to the individual variations. These assumptions Uhice design problem is formulated as a mixed nonlinear optimi-
based on two simplificationg:1l) the distributions of the indi- zation model. A simulated annealing algorithm is employed to

vidual variations can be expressed as functions of the toleranggive the model and an example is presented to illustrate the
and (2) all values of the overall design function are normall)fnethodology

distributed with a variance, which is a linear combination of the
individual variations. Finally, using standard optimization techs  Numerical Integration Based on the Number
nigues can solve the statistical tolerance synthesis problem. heoretic Method
However, the assembly analysis shown in Fig. 1 usually prJ—
duces a nonlinear design function. For nonlinear design functions,The essence of the Number Theory Method is to find uniformly
the distribution of values is not normal, and the design functiodistributed points in a domain df°, wherel=[0,1]. This se-
variance is no longer a linear combination of the variance of tligience can be used to replace the random numbers based on
individual variations. In general, the variances and other paraiionte Carlo simulation. There are a number of methods to pro-
eters of the design function distribution cannot be expressed aduxe sets of pointgb, ,k=1,--,n} in 13 [12]. The algorithm to
simple function of the tolerances. produce representative points used in this paper is as follows: Let
Gadallah and ElMaraghy5] proposed a regression analysign;hq, ... hs) be an integral vector, wheig =1, 0<h;<n and
technique. It is similar to finite differences but the points are mogreatest common divisom(h;)=1,i=1,--,s. Let
widely spaced. The result was a quadratic formula approximated _ _ _
by the actual design function. This technique does provide sensiPn(K)=(Kkhy, - khg) = (Qyq, -+, 0kg) (Modn), k=1, --,n,
tivity information, so that the efficient optimization algorithms @)
based on gradient could be used, but the requirements for Momteere 0<qy;<n. Set
Carlo simulations for each point of the orthogonal array means _ . _
that a large number of individual analyses were performed. b= (20— 1)/2n,  i=1;-s, k=10
Skowronski and Turn€l] applied two techniquegorrelation Then {b,} is a set of points inl® with lower discrepancy if
and approximation function, important sampling Monte Carlo (n;h,, ... hS) are carefully selected.
simulation to increase efficiency. The important sampling tech- It has been proved that the sequence discrepancy based on the
nique is especially useful when there are some regions of tabove method for any>0 is as follows[13]
probability space that are more important than others. In tolerance _ sts
synthesis, this region would be the vicinity of the boundary of the DP(P.D)=0(n ) C)
acceptance zone. However, constructing an important function forBecause the Number Theoretic net is uniformly distributed,
such a region may be difficult, since finding the location of thig can be proven that the average integral rate of convergence
boundary in manufacturing variation space is part of the problepased on the Number Theoretic MethodG§n~1"#), and it
of tolerance analysis. may beO(n~*(logn)%) in some cases in the process of integra-
Because the computed yield is virtually the same as the actygigh. On the other hand, the efficiency of Monte Carlo simula-
yield if accurate stochastic analysis methods are used, MoHign is low because the random numbers are not uniformly distrib-
Carlo simulation is used widely to calculate the design functiofted. The average rate of convergence of Monte Carlo simulation
values[3,6,7]. Unfortunately, Monte Carlo simulatio@and other s O(1n), and it is not less tha®(\(In(n))/n) in any case
stochastic methodsrequires many sampling points to assur¢13].
high accuracy. In fact, the accuracy of the basic Monte Carlo
technique is proportional to the square root of the number samplés Sequential Algorithm Based on the Number
used. It may be unsuitable for the inner iteration of many classicphegretic Method

optimization algorithms because of the enormous computational . o
efforts. There are many gradient methods for optimization problems

On the other hand, some optimization algorithms use gradie?HCh_aS the |tc'3rat|on method, Newton’s method, Brown’s method,
or derivative information to optimize toleranf®,9]. They are not duasi Newton's method, etc. Unfortunately, there appear only few
capable of some complex cases, and cannot obtain the global 6€S that the global maximum can be reached, and we can obtain
timization results sometimes. Current research on statistical tolggually & local maximum if the function is not unimodal.
ance synthesis has focused on a class of optimization algorithmé* Sequential algorithm for optimization based on the Number
called direct search techniques. These algorithms do not use (_ill;\?eoretlc Method is contained in detail in a report of Fang and
dient or derivative information in determining the optimistic tol-Vang[14], and it is denoted by SNTO. The continuities are re-
erance since gradient information is difficult to compute. Alquired only for the functiorf{ in SNTO so that the convergence
though the direct search algorithm can obtain global results, théthe approximate minimunvi* and the maximum point* to

convergence rate is slow. the respectiveM and x, are ensured. Besides, it is easy to work
An example of a direct search algorithm that has been useddut a program in SNTO. S
tolerance synthesis is the genetic algoritit]. In a genetic al-  There are many advantages to apply the SNTO optimization

gorithm, sets of tolerance values, call their fitness, are analyzeethod. First, it is assumed that function is continuous, not uni-

and ordered according to their fitnegsbjective function and modal and derivative. Second, this method only calculates the
valug. Those that are most fit are used to create the next gendinction values at representative points, and it need not calculate
tion. Lee determined that a very inaccurate measure of fitnegd§erential quotient value. Third, SNTO does not depend on the

would still allow them to calculate an optimum if they extendedhitial value of optimization, and this is not the same as the tradi-

the algorithm through enough generations. However, a large nutienal optimization method.

ber of assembly analys€80 samples per case, 100 cases per Letaandb be two vectors oR®, wherea;<b;,i=1,-,s. We
generation, and 300 generations for 900,000 analysese re- use[a,b] to denote the rectanglea,,b;]Xx---X[as,bg]. In this
quired and the exact optimum was not found. paper, the initial area is defined €1, 1, 0.1, 0.1, 0.1, 0.1, 0.1,

Another kind of direct search algorithm is the simulated anned-1, 1, 0.1, 0.1, 0)lconsidering the coefficient of2 andx9 in
ing algorithm[3,11]. Simulating annealing algorithms are tradi-objective function.
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The sequential algorithm for solving this example as follows: X1

Step 1. Take n; points P={y=(y¥ - yd), k
=1,--,n4}, which are uniformly scattered on,=[a,b] by the X2
methods in section 3. Find out the minimuvh, and a minimum
point x® of L(x) on Py. X3

Step 2. The domai®, is contracted td;=[a®,b®], where X
a(2)=(a(12) 7...’ag2))7 b(2):(b(12) ’...,ng))’ ai(z):max(xi(l) 4
—c12a;), b@=maxV+c2b;), i=1;-,s, and cP=(b
—a)l2=(c{ ,---,cY). Then, taken, the points P,={y? k
=1,--,n,}, which are uniformly scattered d,, and find out the
minimum. Xs

Step 3. Suppose that in thj¢h step we have found the mini-
mum of the function and the corresponding poifit By a similar X
method we can reduce the dom&nto D;,, and make a set of 02
points onD; ;. ;, by which we can find another minimuM; ., ; of
the function and the corresponding poi«}f’gl. X8

Repeat Step 3 until the search domain is smaller. The last mii 0,
mum M, ; is expected to be closed to the global minimivirof
the function.

X7

5 Tolerance Synthesis Example

Next, a nonlinear-constraint problem posed by Lee was trie Xy
The sample of the assembly is shown in Fig. 2. X 10

This example involves the assembly of two mating parts. Tw X1
of the mating surfaces are at an angle to horizontal. The surfac
have complementary angles and discrepancy between these X 17
angles is a design function.

The corresponding design functions derived from Fig. 2 are as

follows [15]: Fig. 2 Assembly for the non-linear constraint
f1=(x6—x5)—(x8—x7)
f2=(x3—x4)—(x11-x10)
erance. The calculation vector for obtaining the Number Theoretic
f3=(x8—x7)(x2—x3) — (x6—x5)(x10-x9) net is derived from the primitive root of the prime number. These
+tan bi/180)(x10— x9)(x2 — x3 vectors are shown in Table_ 1.
P A A ) Applying the SNTO to this problem, we seg=n,;=---=521
f4=(x6—x%5)(x10—Xx9) — (X8 —X7)(x2—x3) for each step, and the results are given in Table 2.
. The results of a test run are shown in Table 2. For the test run,
+1tan(pi/180)(x10—x9)(x2—x3) the number of representative points was 521, and the number of
f5= —x1+x12+0.01 sampling points was 101. Although there is little difference from
XX Lee and Woo'§15] results for Lee and Johnsorf's0] results, the
f6=x1—x12+0.01 cost and yield had been improved. Compared with the cost ob-

| The first twodq$5|gn ﬂ:r}(ﬁtlo?s are tt:e v_(l_arr]tlc?rI]_agd th; Phorliont 0] algorithm, the result shows that about 34 percent or 5 percent
gefﬁ_f";“fcen Ct(')nnl I?nstr'ot the d‘(‘]f? rpz;r S b t\(:/ Inrthan p lené)ur the cost was reduced respectively on the basis of higher yield.
esign functions restrict the ditierence between the angia The computational complexity of an algorithm can be repre-

0 to.pe within;w/180 raq for §uccessfu| assembly. The last tw ented by various measurements, such as the number of function
\(/:v?tr;](ijrlltlinos Orfq%:i :Eﬁn?r'];? ddi:;f;irilgr?sbaigvgﬁ/lnt\)/\é%:p(asr(t)soto fithmetic operations, the number of function evaluations, the
— U e - number of iterations, and the computation time. Two measures,
40.00125, 2?]'0%'. 9'9985' 9.9985, 30'0(’1 10.0, 30.0, 10'0?*d,3 e number of assembly analyses used in the synthesis and the
40.0, 50.0. The dimensions are assumed to vary as norma 'StHUrpber of floating point operatior@ops), are used to compare

bution random variables. Their variances are assumed to be eqyal .omputational effort required for the synthesis described
to (t;/6), wheret; is the tolerance of theth dimension. ab

o ; . ) . above.
The modified reciprocal cost-function model is used to define tho number of assembly analysis is used as a measure of effi-

the total manufacturing cost 4$5]: ciency because the assembly analysis step is the most computa-
Ci(oy)=2a;x10"%/(60)" (4) tionally expensive. Comparing assembly analyses also compen-

t@ined by Lee and Wo0'§15] algorithm or Lee and Johnson’s

The coefficients in the above equation were set by Lee and
Woo [15] as a;=0.2, a,=1.0, az=a,=0.015, a5;=0.008, a4
=0.009, a;=0.008, ag=0.006, ag=1.0, a,,=0.01, a;;=0.015 Table 1 Calculation Vector for Obtaining Number Theoretic
anda12:0.2, andb1:b2:"':b12: 2.0. net

In the process of tolerance analysis and synthesis, the spec y~—*~
is 95 percent. At the last calculation, Monte Carlo simulation we " " " B bt h5hé b7 h8 w9 RO AL hi2
performed using 20000 sampling points for the calculation rest
to estimate the yields precisely.

In this example, the numbers of the Number Theoretic neta sa1 1 3 ¢ 27 s 243 208 103 309 406 176 7
101 and 521 respectively to calculate the yield and optimize tc

101 13 3 9 27 81 41 22 66 97 89 65 94
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Table 2 Performance of optimization tolerance conditions. The strategy developed in this paper is unique and
practical. As a global criterion, cost minimization is used. Two

Leeand Woo's  Lee and Johnson’s (1993 resuits  Calculated  techniques, quasi random numbers based on the Number Theo-
retic Method and a sequential algorithm based on the Number

Tolerance results I . . K
. (1990) results  paqulel result  result3 Theoretic net, are introduced for tolerance analysis and synthesis.
For the nonlinear constraint problem considered here, the algo-
x1 0.0187 0.01647 001647 001294 001300 rithm successfully identified a good solution with small numbers
of quasi random numbers, and the algorithm satisfied the spec
2 1231 018824 020707 0.86591  0.1935 yield with sufficient precision. .
The optimal costs are significantly reduced to compare with the
a 0.0579 0.05897 005189  0.03385  0.005543 costs pf the. domain-approximation sc.he[ﬁé] for the cases we
have investigated, and the computational effort in this paper is
x4 0.0705 005646  0.05646 006587 000so73  Much less than that of the genetic algorithb0].
The basic idea presented hérriasi random numbers coupled
X5 0.0019 0.00235  0.00235  0.00235  0.002804 with a _seque_nt_lal _algonth)n could _be_ used to s_,olve c_)ther
stochastic-optimization problems. This is a worthwhile subject for
X6 0.0022 0.00212 000212 000212  0.002763 future research.
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