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Sequential Algorithm Based on
Number Theoretic Method for
Statistical Tolerance Analysis
and Synthesis
Tolerancing is one of the most important tasks in product and manufacturing pro
design. In the literature, both Monte Carlo simulation and numerical optimization me
have been widely used in the process of statistical tolerance analysis and synthes
the computational effort is huge. This paper presents two techniques, quasi random
bers based on the Number Theoretic Method and sequential algorithm based o
Number Theoretic net, to calculate yield and to perform tolerance allocation. An exa
demonstrates the optimal tolerance allocation design and is employed to investiga
efficiency and accuracy of this solution. This algorithm can efficiently obtain the gl
optimum, and the amount of calculation is considerably reduced.
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1 Introduction
The allocation of tolerances is closely tied to the overall qua

and cost of a product. If the tolerance is too loose, the probab
of an assembly function acceptably~yield! is low. On the other
hand, if the tolerance is too tight, the manufacturing cost beco
high. Thus the tolerance allocation becomes an optimization p
lem to determine the optimal allotment of the tolerance under
constraints of the functional requirements and acceptance p
ability ~spec yield!.

A process diagram for a typical statistical tolerance synthe
process is shown in Fig. 1@1#. The manufacturing process mod
takes the values of the tolerances and uses them to determin
manufacturing cost and the statistics of the manufacturing va
tions. The tolerance analysis process uses the manufactu
variation statistics to generate instances of the part or asse
that are then analyzed. The analysis calculates a design fun
value for this instance, which is a measure of the product’s p
formance. Design function statistics are then calculated for
instances that have been analyzed. Typically, the statistics ca
lation is matched to the algorithm for generating the variat
instances@2#. The optimization algorithm to determine the next s
of tolerances to test uses the design function statistics and
manufacturing cost. The process continues until the optimum
erances have been found.

The yield (Y) is computed as the probability. Letxil and xiu
represent the lower and the upper limits of an individual dim
sion xi in an assembly. Then the yield is represented as

Y5E
x1l

x1u

¯E
xnl

xnu

q~x1 ,¯,xn!f~x1 ,¯,xn!dx1¯xn , (1)

wheref(x1 ,¯,xn) is the multivariate normal probability densit
function, and q(x1 ,¯,xn) is the test function which
checks whether a stochastically selected point is in the relia
region. IfFi(x1 ,¯,xn).0 for all design functions, whereFi is an
assembly constraint function,q(x1 ,¯,xn)51, otherwise
q(x1 ,¯,xn)50.

The Monte Carlo simulation, or random sampling, is bei
used extensively for statistical tolerance analysis and synth
but computing effort is large. On the other hand, the number
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timization algorithms such as genetic algorithm and simulated
nealing @3# is often used to optimize the tolerance, but seve
million cases must be analyzed to find the optimum using th
algorithms@4#.

In the method presented here, techniques based on the Nu
Theoretic Method are used in tolerance analysis and synthes
estimate spec yield and to optimize the tolerance respectiv
Instead of random numbers based on Monte Carlo Meth
pseudo-random numbers based on the Number Theoretic Me
are utilized to approximate by using a very small number of sa
pling points. These greatly decrease the computing effort requ
for the Monte Carlo simulation. At the same time, a sequen
algorithm based on the Number Theoretic Method is effectiv
applied to solve questions with nonlinear constraints in the p
cess of tolerance synthesis.

Previous research on tolerance analysis and synthesis is
viewed in the followed section; the technique for reducing cal
lation effort in tolerance analysis is discussed in section 3; and
technique for optimizing the tolerance is described in section 4
example is presented in section 5.

e

Fig. 1 Typical statistical tolerance synthesis process
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rms of Use: http://www.asme.org/about-asme/terms-of-use



n
l
h

o
i

a

o

o
a

c

t

l

o
i

i

i

e

p

m
tion

tely
ler-

imi-
to
the

ly

d on
ro-

Let

n the

d,
nce

a-
la-
rib-
tion

ms
od,
few
btain

er
nd
e-
e

rk

tion
ni-
the
late
the
di-

,

Downloaded From
2 Background
Initial research on statistical tolerance synthesis made two

sumptions:~1! individual variations are normally distributed; an
~2! the overall design function of the part or assembly is line
with respect to the individual variations. These assumptions
based on two simplifications:~1! the distributions of the indi-
vidual variations can be expressed as functions of the tolera
and ~2! all values of the overall design function are norma
distributed with a variance, which is a linear combination of t
individual variations. Finally, using standard optimization tec
niques can solve the statistical tolerance synthesis problem.

However, the assembly analysis shown in Fig. 1 usually p
duces a nonlinear design function. For nonlinear design functi
the distribution of values is not normal, and the design funct
variance is no longer a linear combination of the variance of
individual variations. In general, the variances and other par
eters of the design function distribution cannot be expressed
simple function of the tolerances.

Gadallah and ElMaraghy@5# proposed a regression analys
technique. It is similar to finite differences but the points are m
widely spaced. The result was a quadratic formula approxima
by the actual design function. This technique does provide se
tivity information, so that the efficient optimization algorithm
based on gradient could be used, but the requirements for M
Carlo simulations for each point of the orthogonal array me
that a large number of individual analyses were performed.

Skowronski and Turner@1# applied two techniques~correlation
and approximation function, important sampling! in Monte Carlo
simulation to increase efficiency. The important sampling te
nique is especially useful when there are some regions of
probability space that are more important than others. In tolera
synthesis, this region would be the vicinity of the boundary of
acceptance zone. However, constructing an important function
such a region may be difficult, since finding the location of th
boundary in manufacturing variation space is part of the prob
of tolerance analysis.

Because the computed yield is virtually the same as the ac
yield if accurate stochastic analysis methods are used, M
Carlo simulation is used widely to calculate the design funct
values@3,6,7#. Unfortunately, Monte Carlo simulation~and other
stochastic methods! requires many sampling points to assu
high accuracy. In fact, the accuracy of the basic Monte Ca
technique is proportional to the square root of the number sam
used. It may be unsuitable for the inner iteration of many class
optimization algorithms because of the enormous computatio
efforts.

On the other hand, some optimization algorithms use grad
or derivative information to optimize tolerance@8,9#. They are not
capable of some complex cases, and cannot obtain the globa
timization results sometimes. Current research on statistical to
ance synthesis has focused on a class of optimization algorit
called direct search techniques. These algorithms do not use
dient or derivative information in determining the optimistic to
erance since gradient information is difficult to compute. A
though the direct search algorithm can obtain global results,
convergence rate is slow.

An example of a direct search algorithm that has been use
tolerance synthesis is the genetic algorithm@10#. In a genetic al-
gorithm, sets of tolerance values, call their fitness, are analy
and ordered according to their fitness~objective function and
value!. Those that are most fit are used to create the next gen
tion. Lee determined that a very inaccurate measure of fitn
would still allow them to calculate an optimum if they extend
the algorithm through enough generations. However, a large n
ber of assembly analyses~30 samples per case, 100 cases
generation, and 300 generations for 900,000 analyses! were re-
quired and the exact optimum was not found.

Another kind of direct search algorithm is the simulated anne
ing algorithm @3,11#. Simulating annealing algorithms are trad
Journal of Manufacturing Science and Engineering
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tionally applied to discrete optimization problems. The algorith
ensures that all constraints are met, and an optimal solu
may be found in the meantime. Zhang and Wang@11# present a
methodology to maximize a product’s robustness by appropria
allocating assembly and machining tolerances. The robust to
ance design problem is formulated as a mixed nonlinear opt
zation model. A simulated annealing algorithm is employed
solve the model and an example is presented to illustrate
methodology.

3 Numerical Integration Based on the Number
Theoretic Method

The essence of the Number Theory Method is to find uniform
distributed points in a domain ofI s , where I 5@0,1#. This se-
quence can be used to replace the random numbers base
Monte Carlo simulation. There are a number of methods to p
duce sets of points$bk ,k51,̄ ,n% in I s @12#. The algorithm to
produce representative points used in this paper is as follows:
(n;h1 , . . . ,hs) be an integral vector, whereh151, 0,hi,n and
greatest common divisor (n,hi)51, i 51,̄ ,s. Let

pn~k!5~kh1 ,¯,khs!5~qk1 ,¯,qks!~modn!, k51,̄ ,n,
(2)

where 0,qki<n. Set

bki5~2qki21!/2n, i 51,̄ ,s, k51,̄ ,n

Then $bk% is a set of points inI s with lower discrepancy if
(n;h1 , . . . ,hs) are carefully selected.

It has been proved that the sequence discrepancy based o
above method for any«.0 is as follows@13#

DP~P,D !5O~n21/s1«! (3)

Because the Number Theoretic net is uniformly distribute
it can be proven that the average integral rate of converge
based on the Number Theoretic Method isO(n211«), and it
may beO(n21(log n)s) in some cases in the process of integr
tion. On the other hand, the efficiency of Monte Carlo simu
tion is low because the random numbers are not uniformly dist
uted. The average rate of convergence of Monte Carlo simula
is O(1An), and it is not less thanO(Aln(ln(n))/n) in any case
@13#.

4 Sequential Algorithm Based on the Number
Theoretic Method

There are many gradient methods for optimization proble
such as the iteration method, Newton’s method, Brown’s meth
quasi Newton’s method, etc. Unfortunately, there appear only
cases that the global maximum can be reached, and we can o
usually a local maximum if the function is not unimodal.

A sequential algorithm for optimization based on the Numb
Theoretic Method is contained in detail in a report of Fang a
Wang @14#, and it is denoted by SNTO. The continuities are r
quired only for the functionf i8 in SNTO so that the convergenc
of the approximate minimumM* and the maximum pointx* to
the respectiveM and x0 are ensured. Besides, it is easy to wo
out a program in SNTO.

There are many advantages to apply the SNTO optimiza
method. First, it is assumed that function is continuous, not u
modal and derivative. Second, this method only calculates
function values at representative points, and it need not calcu
differential quotient value. Third, SNTO does not depend on
initial value of optimization, and this is not the same as the tra
tional optimization method.

Let a andb be two vectors ofRs, whereai,bi , i 51,̄ ,s. We
use @a,b# to denote the rectangle@a1 ,b1#3¯3@as ,bs#. In this
paper, the initial area is defined as~0.1, 1, 0.1, 0.1, 0.1, 0.1, 0.1
0.1, 1, 0.1, 0.1, 0.1! considering the coefficient ofx2 andx9 in
objective function.
AUGUST 2001, Vol. 123 Õ 491
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The sequential algorithm for solving this example as follow
Step 1. Take n1 points Pi5$yk

(1)5(yk1
(1) ,¯,yks

(1)), k
51,̄ ,n1%, which are uniformly scattered onD15@a,b# by the
methods in section 3. Find out the minimumM1 and a minimum
point x(1) of L(x) on P1 .

Step 2. The domainD1 is contracted toD15@a(2),b(2)#, where
a(2)5(a1

(2) ,¯,as
(2)), b(2)5(b1

(2) ,¯,bs
(2)), ai

(2)5max(xi
(1)

2ci
(1)/2,ai), bi

(2)5max(xi
(1)1ci

(1)/2,bi), i 51,̄ ,s, and c(1)5(b
2a)/25(c1

(1) ,¯,cs
(1)). Then, taken2 the points P25$yk

(2) ,k
51,̄ ,n2%, which are uniformly scattered onD2 , and find out the
minimum.

Step 3. Suppose that in thej th step we have found the mini
mum of the function and the corresponding pointxj* . By a similar
method we can reduce the domainD j to D j 11 , and make a set o
points onD j 11 , by which we can find another minimumM j 11 of
the function and the corresponding pointxj 11* .

Repeat Step 3 until the search domain is smaller. The last m
mum M j 11 is expected to be closed to the global minimumM of
the function.

5 Tolerance Synthesis Example
Next, a nonlinear-constraint problem posed by Lee was tr

The sample of the assembly is shown in Fig. 2.
This example involves the assembly of two mating parts. T

of the mating surfaces are at an angle to horizontal. The surf
have complementary angles and discrepancy between these
angles is a design function.

The corresponding design functions derived from Fig. 2 are
follows @15#:

f 15~x62x5!2~x82x7!

f 25~x32x4!2~x112x10!

f 35~x82x7!~x22x3!2~x62x5!~x102x9!

1tan~pi/180!~x102x9!~x22x3!

f 45~x62x5!~x102x9!2~x82x7!~x22x3!

1tan~pi/180!~x102x9!~x22x3!

f 552x11x1210.01

f 65x12x1210.01

The first two design functions are the vertical and the horizon
clearance conditions of the two parts. The third and the fou
design functions restrict the difference between the angleu1 and
u2 to be within6p/180 rad for successful assembly. The last tw
conditions require the size difference between two parts to
within 60.01. The nominal dimensions are given asXT5(50.0,
40.00125, 20.05, 9.9985, 9.9985, 30.0, 10.0, 30.0, 10.05, 3
40.0, 50.0!. The dimensions are assumed to vary as normal dis
bution random variables. Their variances are assumed to be e
to (t i /6), wheret i is the tolerance of thei th dimension.

The modified reciprocal cost-function model is used to defi
the total manufacturing cost as@15#:

Ci~s i !5ai31023/~6s i !
bi (4)

The coefficients in the above equation were set by Lee
Woo @15# as a150.2, a251.0, a35a450.015, a550.008, a6
50.009, a750.008, a850.006, a951.0, a1050.01, a1150.015
anda1250.2, andb15b25¯5b1252.0.

In the process of tolerance analysis and synthesis, the spec
is 95 percent. At the last calculation, Monte Carlo simulation w
performed using 20000 sampling points for the calculation re
to estimate the yields precisely.

In this example, the numbers of the Number Theoretic net
101 and 521 respectively to calculate the yield and optimize
492 Õ Vol. 123, AUGUST 2001
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erance. The calculation vector for obtaining the Number Theor
net is derived from the primitive root of the prime number. The
vectors are shown in Table 1.

Applying the SNTO to this problem, we setn05n15¯5521
for each step, and the results are given in Table 2.

The results of a test run are shown in Table 2. For the test
the number of representative points was 521, and the numbe
sampling points was 101. Although there is little difference fro
Lee and Woo’s@15# results for Lee and Johnson’s@10# results, the
cost and yield had been improved. Compared with the cost
tained by Lee and Woo’s@15# algorithm or Lee and Johnson’
@10# algorithm, the result shows that about 34 percent or 5 perc
of the cost was reduced respectively on the basis of higher yi

The computational complexity of an algorithm can be rep
sented by various measurements, such as the number of fun
arithmetic operations, the number of function evaluations,
number of iterations, and the computation time. Two measu
the number of assembly analyses used in the synthesis and
number of floating point operations~flops!, are used to compare
the computational effort required for the synthesis describ
above.

The number of assembly analysis is used as a measure of
ciency because the assembly analysis step is the most com
tionally expensive. Comparing assembly analyses also com

Fig. 2 Assembly for the non-linear constraint

Table 1 Calculation Vector for Obtaining Number Theoretic
net
Transactions of the ASME
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sates for the difference between the manually generated de
function used in the preceding example and design functions
erated by actual CAD packages.

Lee and Johnson@10# use 30 assembly analyses per data po
and evaluate 30,000 data points total in their tolerance synth
and the computational effort is 900,000 individual analyses~30
samples/case, 100 cases/generation, 300 generations for 90
analyses!. One point required about 18,000 flops to evaluate o
case with 30 individual analyses, and 540 Mflops was required
the entire tolerance synthesis.

In this paper, the number of tolerance analysis is 157863~101
representative points/analysis, 521 analyses/iteration, 3 iteratio!.
The computational effort is about 95 Mflops, and this represen
considerable reduction in the number of analyses comparing
Lee and Johnson’s@10# results.

6 Summary
This paper presents a novel method for tolerance analysis

synthesis by distributing tolerances so as to satisfy the stac

Table 2 Performance of optimization tolerance
Journal of Manufacturing Science and Engineering
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conditions. The strategy developed in this paper is unique
practical. As a global criterion, cost minimization is used. Tw
techniques, quasi random numbers based on the Number T
retic Method and a sequential algorithm based on the Num
Theoretic net, are introduced for tolerance analysis and synth
For the nonlinear constraint problem considered here, the a
rithm successfully identified a good solution with small numbe
of quasi random numbers, and the algorithm satisfied the s
yield with sufficient precision.

The optimal costs are significantly reduced to compare with
costs of the domain-approximation scheme@15# for the cases we
have investigated, and the computational effort in this pape
much less than that of the genetic algorithm@10#.

The basic idea presented here~quasi random numbers couple
with a sequential algorithm! could be used to solve othe
stochastic-optimization problems. This is a worthwhile subject
future research.
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