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bstract

This paper describes applications of molecular simulation to microelectronics processes and the subsequent development of techniques for
ultiscale simulation and multiscale systems engineering. The progression of the applications of simulation in the semiconductor industry from
acroscopic to molecular to multiscale is reviewed. Multiscale systems are presented as an approach that incorporates molecular and multiscale

imulation to design processes that control events at the molecular scale while simultaneously optimizing all length scales from the molecular to the
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provided by Cite
acroscopic. It is discussed how design and control problems in microelectronics and nanotechnology, including the targeted design of processes
nd products at the molecular scale, can be addressed using the multiscale systems tools. This provides a framework for addressing the “grand
hallenge” of nanotechnology: how to move nanoscale science and technology from art to an engineering discipline.

2006 Elsevier Ltd. All rights reserved.
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. Introduction

The main objective of this paper is to discuss recent develop-
ents in molecular simulation, multiscale simulation, and mul-

iscale systems engineering, and how these developments enable
he targeted design of processes and products at the molecular
cale. The control of events at the molecular scale is critical
o product quality in many new applications in medicine, com-
uters, and manufacturing. These applications include nanobi-
logical devices, micromachines, nanoelectronic devices, and
rotein microarrays and chips (Alkire & Braatz, 2004; Drexler,
992; Hoummady & Fujita, 1999; Khanna, 2004; Lee, Lee, &
ung, 2003; Nakano et al., 2001; Prokop, 2001; Sematech, 2004;
sukagoshi et al., 2002). On the other hand, for efficient opera-

ions the manipulated variables available for real-time feedback
ontrol operate at macroscopic length scales (for example, the
ower to heat lamps above a wafer, the fractional opening of

alves on flows into and out of a chemical reactor, the applied
otential across electrodes in an electrochemical process, etc.).
his combination of a need for product quality at the molecular
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cale with the economic necessity that feedback control sys-
ems utilize macroscopic manipulated variables motivates the
reation of methods for the simulation, design, and control of
ultiscale systems.
Nowhere has the trend towards multiscale systems been

ore evident than in the microelectronics field, where multi-
cale simulation has been applied for nearly a decade (e.g., see
avallotti, Nemirovskaya, & Jensen, 2003; Dollet, 2004; Drews,
raatz, & Alkire, 2004; Drews et al., 2005; Jensen, Rodgers,
Venkataramani, 1998; Maroudas, 2000; Nakano et al., 2001;

ieminen, 2002; Rodgers & Jensen, 1998; and citations therein).
ubsequent efforts developed techniques for utilizing multi-
cale simulation models to perform systems engineering tasks,
uch as parameter estimation, optimization, and control (e.g.,
ee reviews by Braatz et al., 2006 and Vlachos, 2005, as well
he papers in this journal issue). This incorporation of mod-
ls that couple molecular through macroscopic length scales
ithin systems engineering tools enables a systematic approach

o the simultaneous optimization of all of the length scales of the
rocess.
Although many of the trends discussed in this paper have
ounterparts in other applications areas, the focus here is on
icroelectronic processes because of the many applications

f molecular and multiscale simulation to these processes. A

https://core.ac.uk/display/357292139?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
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dx.doi.org/10.1016/j.compchemeng.2006.05.022


1 emical Engineering 30 (2006) 1643–1656

r
e
m
o
s
a
c

2
m

c
w
d
d
i
p
d
s
a
f
L
t
w
i
&
1

p
s
f
t
c
i
s
v
b

I
c
l
n
w
t
m
2

c
d
a
w

644 R.D. Braatz et al. / Computers and Ch

eview of the progression of simulation for the design of micro-
lectronic processes, including the increased importance of
olecular and multiscale simulation, is followed by a discussion

f the systems issues that arise when investigating multiscale
ystems and efforts to address these issues. The paper ends with
discussion of future directions in multiscale systems, and con-
lusions.

. The trend in simulation from macroscopic to
olecular length scales

Anyone familiar with the complexity of an integrated cir-
uit knows that its design and manufacture would be impossible
ithout the extensive application of simulation. In the semicon-
uctor industry the simulation of carrier transport in electronic
evices is referred to as device simulation and of the process-
ng steps used to manufacture these devices is referred to as
rocess simulation. Most of the early simulation codes for both
evice and process simulation were based on the simultaneous
olution of conservation equations written as partial differential-
lgebraic (PDAE) equations. Device simulation was necessary
or the design of transistors in the 1960s (Gummel, 1964; Lee,
omax, & Haddad, 1974; Scharfetter & Gummel, 1969), when

he semiconductor industry was just starting, whereas simulation
as applied to many microelectronics manufacturing processes

n the 1980s (Barnes, Colter, & Elta, 1987; Graves, 1987; Graves
Jensen, 1986; Park & Economou, 1990; Thompson & Sawin,

986).
Process and device simulation becomes more challenging as

hysical dimensions shrink. This trend towards smaller length
cales is well illustrated by the well-known Law by Intel co-
ounder Gordon E. Moore (1965), who noted that the number of
ransistors per chip had doubled every year since the integrated
ircuit was invented, and predicted that the trend would continue

nto the future. This pace of innovation somewhat slowed in sub-
equent years (see Fig. 1), which resulted in several proposed
ariations on Moore’s Law, the most popular being that the num-
er of transistors per chip doubles every 18–24 months. The

b
c
o
n

Fig. 1. Moore’s Law represented in terms of the number o
Fig. 2. Integrated circuits on a 300-mm wafer (courtesy of Intel).

nternational Technology Roadmap for Semiconductors indi-
ates that Moore’s Law has a good chance of holding for at
east another decade (Sematech, 2004). Following Moore’s Law
ecessitates packing more transistors into smaller dimensions,
hich has required shrinking the physical dimensions of fea-

ures in electronic devices from micrometers to nanometers, with
olecular dimensions under active investigation (Sematech,

004).
To gain some appreciation for these length scales, integrated

ircuits on a 300-mm wafer are shown in Fig. 2. The semicon-
uctor industry often reports a technology generation in terms of
nominal feature size, which is the minimum width of a metal
ire on the transistor (see Fig. 3). The nominal feature size has

een reduced by many orders-of-magnitude since 1960, to its
urrent dimension of 90 nm. Many of the physical dimensions
f features in a transistor are actually much smaller than the
ominal feature size (see Table 1), and the spatial dimensions

f transistors in an Intel processor (courtesy of Intel).
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Fig. 3. Copper interconnect structures in an electronic device in which all mate-
rials other than copper were etched away, to focus attention on the copper films
and wires (courtesy of IBM).

Table 1
Some physical dimensions of features in a high-volume microprocessor in 2005
(Tables 1g, 47a, and 81a; Sematech, 2004)

Feature Length (nm)

Nominal feature size 90
Physical gate length 32
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arrier thickness for copper wiring 9
hysical gate oxide thickness 1.1

equired to simulate the formation of these features is two orders-
f-magnitude smaller. For example, consider the schematic of a
etal-oxide semiconductor field-effect transistor (MOSFET) in
ig. 4, which is a common type of transistor. The thin layer of
xide acts as an insulator to separate the channel from the gate.
pplying a gate voltage causes the semiconductor in the chan-
el to switch behavior from that of an insulator to a conductor,
o that electrons flow from the source to the drain (the source
nd the drain are typically constructed from copper metal, see
ig. 3). The regions below the source and drain consist of doped
ilicon, with the junction defined as the interface between each
oped silicon region and the silicon material below it. A junction
epth in a modern MOSFET is typically ∼28 nm (see Fig. 4).

imulation of the rapid thermal annealing process used to man-
facture these junctions requires at least 100 grid cells, resulting
grid cell length of 28/100 nm = 0.28 nm, which is the diameter
f a silicon atom! Of course under such situations the contin-

ig. 4. Schematic of a metal-oxide-semiconductor field-effect transistor (cour-
esy of Umberto Ravaioli, University of Illinois at Urbana-Champaign).
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um assumption breaks down, which motivates the modeling of
his process using atomistic simulation (e.g., the DADOS Monte
arlo simulation package, Martin-Bragado et al., 2004; Pinacho
t al., 2004; Rubio et al., 2004).

While most modern simulators for process and device
imulation are still based on PDAE models (Grasser &
elberherr, 2002; Kim, McMurray, Williams, & Slinkman, 1998;
ardhanani & Carey, 2000; Rafferty & Smith, 2000; Sibaja-
ernandez, Xu, Decoutere, & Maes, 2005), a purely PDAE

epresentation becomes less applicable as physical dimensions
hrink, which has resulted in Monte Carlo simulation becoming
mportant, either as a substitute or as an augmentation to solv-
ng PDAE models (Cahill et al., 2003; Grasser, Tang, Kosina, &
elberherr, 2003; Kushner, 1985; Ravaioli, 1998; Saraniti, Tang,
oodnick, & Wigger, 2003; Schoenmaker & Vankemmel, 1992;
ommerer & Kushner, 1992). Molecular simulation has been
pplied to the chemical vapor deposition of gallium arsenide,
hich is used in optoelectronics and certain high-speed inte-
rated circuits (Cavallotti et al., 2003; Jensen et al., 1998),
he electrodeposition of copper to form interconnects (Drews
t al., 2004, 2005), and reactive ion etching, TiN sputtering,
nd tungsten chemical vapor deposition to form contacts to
onnect transistor electrodes to wires (Takagi, Onoue, Iyanagi,
ishitani, & Shinmura, 2005). For some device components
uantum effects have become important, in which case quantum
echanical calculations must be incorporated (Lake, Klimeck,
owen, & Jovanovic, 1997; Sano, Hiroki, & Matsuzawa, 2002;
asileska & Goodnick, 2002).

Most molecular simulation techniques can be categorized
s being among three main types: (1) quantum mechanics, (2)
olecular dynamics, and (3) kinetic Monte Carlo (KMC) sim-

lation. Quantum mechanics methods, which include ab initio,
emi-empirical, and density functional techniques, are useful
or understanding chemical mechanisms and estimating chem-
cal kinetic parameters for gas phase and solid-state systems
Dalpian, Janotti, Fazzio, & da Silva, 1999; La Magna, Alippi,
olombo, & Strobel, 2003). Density functional theory has been
ery heavily used to compute energy barriers in both diffusion
nd chemical reactions (Jeong, Lee, Oh, & Chang, 1998; Lin,
irichenko, Banerjee, & Hwang, 2004; Tuttle, McMahon, &
ess, 2000). The potential energy surface computed by quan-

um mechanics can be incorporated into molecular dynamics
ethods, which solve Newton’s equations of motion for large

umbers of molecules to compute their velocities and positions
ver time. The forces in Newton’s equation (F = ma) can be the
trong forces due to bonds between atoms and/or weaker forces
uch as van der Waals or electrostatic forces. Molecular dynam-
cs methods have been used to construct mechanisms and com-
ute diffusion coefficients for many semiconductor processes
Catellani, Cicero, Righi, & Pignedoli, 2005; Goto, Shimojo,

unejiri, & Hoshino, 2004; Ko, Jain, & Chelikowsky, 2002; La
agna et al., 2003; Lee, Lee, & Scheffler, 2004).
A typical molecular dynamics simulation may involve up to
million atoms and simulate a time period of several nanosec-
nds with time steps of femtoseconds (10−15 s), which is shorter
han the time scales associated with most micro- and nanostruc-
ure formation. By restricting the configuration or state of the
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ig. 5. Six configurations computed during the KMC simulation of the electrod
reen spheres) to form a copper film ∼2–3 atoms thick.

rocess to the identity and positions of atoms and/or molecules
see Fig. 5), KMC methods can simulate structural properties
f matter that cannot be represented by a continuum description
hile being able to simulate for much longer times (hundreds of

econds) than can be achieved using molecular dynamics. The
hemical mechanism, energy barriers, and diffusion coefficients
n the KMC simulation can be obtained from molecular dynam-
cs and quantum mechanics calculations (Nieminen, 2002). The
MC simulation is inherently stochastic, which is consistent
ith the reality of molecular motion. Due to the large number
f degrees of freedom and the stochastic nature of molecular
otion, the real process will follow a different state trajectory

nd arrive at a different state/configuration, each time an exper-
ment is run. Similarly, the configuration resulting from a KMC
imulation will be different nearly each time a KMC simulation
s run. The probability per unit time, W(σ, σ′), that the process
ill undergo a transition from state σ to σ′ can be computed
niquely from the kinetic rates for the individual kinetic steps
hat can occur in the system (see Fig. 6).

The probability distribution for each configuration is
escribed by the Master equation (Fichthorn & Weinberg, 1991):

∂P(σ, t)

∂t
=

∑

σ′
W(σ′, σ)P(σ′, t) −

∑

σ′
W(σ, σ′)P(σ, t) (1)

here P(σ, t) is the probability that the system is in state σ at

ime t. This is the conservation equation for the probability dis-
ribution for each configuration (accumulation = in − out), with
he overall system described by writing Eq. (1) for every pos-
ible state/configuration of the system. Because the number of

ig. 6. The set of transition probabilities from a specific configuration σ to a
arge number of alternative configurations σ′ involving a single reaction step
surface diffusion, adsorption, desorption, surface reaction) during the KMC
imulation of the electrodeposition of copper.
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ion of copper on a substrate (grey spheres) in the presence of additives (red and

ossible states/configurations is too high to solve these state
quations directly, KMC simulation follows a single realization
f the Master equation by calling a random number genera-
or to select among the possible transitions with probabilities
efined by the kinetic rate laws for each allowed kinetic event
e.g., molecule A moves from one lattice site to the adjoining
attice site, molecule A reacts with adjacent molecule B to form

olecule C, etc.). At most one kinetic step can be taken dur-
ng each time step of the KMC algorithm, with the time step
typically on the order of 1 ns) selected so that the time simu-
ated in the KMC algorithm corresponds to real time (Fichthorn

Weinberg, 1991). Although KMC simulation is much faster
han exactly solving the Master equation (Eq. (1)) for each possi-
le configuration, an efficiently implemented KMC simulation
or a process of industrial importance (e.g., 100 × 100 lattice
ith 1011 time steps) typically takes on the order of a day to run.

. The trend towards multiscale simulation and the
elationship with nanotechnology

Beyond its increased focus on molecular simulations, the
emiconductor industry has been moving towards the integration
f simulation domains. For example, the following quotations
re from the International Technology Roadmap for Semicon-
uctors (Sematech, 2004), which describes the detailed tech-
ology requirements for semiconductor devices for the next 15
ears, written by hundreds of company representatives from
he semiconductor industry associations of the United States,
urope, Taiwan, Japan, and Korea:

“The most important trend . . . is the ever increasing need for
improving integration between the various areas of simula-
tion.”
“Different effects which could in the past be simulated sepa-
rately will in future need to be treated simultaneously . . .”

One of the most difficult challenges in modeling and sim-
lation for the semiconductor industry is reported as being the
integrated modeling of equipment, materials, feature scale pro-

esses, and influences on devices” (Table 121 of Asada et al.,
004). This trend of the semiconductor industry towards multi-
cale simulation began to be explored a decade ago, and has been
n active area of research (e.g., see Cavallotti et al., 2003; Dollet,
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ig. 7. Integrated circuits in a 30-cm wafer (top right), a portion of the copper in
way for illustration purposes (left), and the cross-section of two parallel coppe

004; Drews et al., 2004, 2005; Jensen et al., 1998; Maroudas,
000; Nakano et al., 2001; Nieminen, 2002; Rodgers & Jensen,
998; and citations therein). As an illustrative example of the
ultiple length scales involved in a microelectronics manufac-

uring process, consider the electrodeposition of copper (see
ig. 7). To be profitable, the integrated circuits are simultane-
usly manufactured on a 300-mm wafer, so each manufacturing
rocess including the copper electrodeposition process requires
patial uniformity over the 30 cm across the wafer. On the other
and, control of length scales <1 nm are required to achieve uni-
orm filling of trenches to form 90-nm wide copper wires.

The expected future impact of multiscale simulation in the
emiconductor industry is suggested by some of the issues asso-
iated with the most difficult challenges in modeling and sim-
lation, as stated in the International Technology Roadmap for
emiconductors (Table 121 of Asada et al., 2004):
“modeling hierarchy from atomistic to continuum for dopants
and defects in bulk and at interfaces,”
“linked equipment/feature scale models,”

-

nnect structure within a single integrated circuit with all other material etching
s of ∼90 nm in width (bottom).

“process modeling tools for the development of novel nanos-
tructure devices (nanowires, carbon nanotubes, quantum dots,
molecular electronics),”
“device modeling tools for analysis of nanoscale device oper-
ation.”

While the first two issues are clearly associated with mul-
iscale simulation, the second two issues are associated with
anotechnology and nanoelectronics, which are the future of
he semiconductor industry.

The relationship between multiscale simulation and nan-
technology is fairly clear given a coherent definition of nan-
technology. Unfortunately, there are many different definitions
f the word “nanotechnology”:

“the processing of separation, consolidation, and deformation

of materials by one atom or one molecule” (Taniguchi, 1996),
“the ability to work at the atomic, molecular, and supramolec-
ular levels (on a scale of ∼1–100 nm) in order to understand,
create and use material structures, devices, and systems with
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to completely specify a hypothesized mechanism are:

- which chemical species are formed and consumed at the sur-
face?
648 R.D. Braatz et al. / Computers and Ch

fundamentally new properties and functions resulting from
their small structure” (Roco, 2003),
that which “includes the ability to individually address, con-
trol, modify, and fabricate materials, structures, and devices
with nanometer precision, and the synthesis of such structures
into systems of micro-and macroscopic dimensions such as
MEMS-based devices” and “encompasses the understanding
of the fundamental physics, chemistry, biology, and technol-
ogy of nanometer-scale objects and how such objects can
be used in the areas of computation, sensors, nanostruc-
tured materials, and nano-biotechnology” (Nanotechnology,
2005).

To distinguish between the very broad and very narrow
efinitions, some researchers have introduced additional termi-
ology, for example, Drexler (1992) defined molecular man-
facturing as “the construction of objects to complex, atomic
pecifications using sequences of chemical reactions directed
y non-biological molecular machinery” and molecular nan-
technology as comprising “molecular manufacturing together
ith its techniques, its products, and their design and analy-

is.” These terms contrast with molecular engineering, which
s typically defined to be the design of a molecule to have
esired properties (Ghosh, Grade, & Garcia, 2003; Green

Tidor, 2004; Koberstein, 2004; Larson, 2003; Manstein,
004).

Rather than debate which “nanotechnology” or “molecular”
efinitions are the best or most appropriate, the focus here is on
echniques for utilizing multiscale simulation models to perform
ystems engineering tasks, such as parameter estimation, design,
nd control (Braatz et al., 2006; Vlachos, 2005; and papers in
his journal issue). Since multiscale simulation models are capa-
le of directly and simultaneously addressing phenomena across
ength scales from the sub-atomic to macroscopic, the molecular
nd nanometer length scales are also covered, and so any systems
roblems posed for processes at those length scales are just spe-
ial cases of systems problems defined for multiscale systems.
hat is, a systems approach that is sufficiently general to handle
ultiscale systems can also address the problems posed by the

arious definitions of nanotechnology, molecular manufactur-
ng, molecular nanotechnology, and molecular engineering. The
ncorporation of models that couple molecular through macro-
copic length scales within systems tools enables a systematic
pproach to the simultaneous optimization of all of the length
cales, including the optimal control of events at the molecular
cale. Such a multiscale systems framework would address the
grand challenge” of nanotechnology: how to move nanoscale
cience and technology from art to an engineering discipline
Stupp et al., 2002).

The next sections summarize the systems issues character-
stic of multiscale systems as well as our views on how to
ddress these issues. The main ideas are illustrated through
pplications to two processes of importance to the semicon-

uctor industry, one of which involves the successful control
f molecular structure and nanometer physical dimensions by
he manipulation of sub-atomic phenomena at a gas–liquid
nterface.

F
n
(

al Engineering 30 (2006) 1643–1656

. Challenges and requirements

Many challenges arise when building models for molecular
nd multiscale systems:

uncertainties in physicochemical mechanisms,
a sparsity of on-line measurements at the molecular scale,
a sparsity of manipulated variables during processing,
dynamically coupled model structures and high computational
costs for model simulation.

Although quantum mechanics and molecular dynamics cal-
ulations can reduce uncertainties in physicochemical mech-
nisms for some semiconductor processes such as in solid-
tate systems (Jung, Gunawan, Braatz, & Seebauer, 2004a),
hese techniques are not sufficiently developed for obtain-
ng accurate results for other microelectronics processes. As
n example, consider the electrodeposition of copper to form
nterconnects (see Fig. 8). In this process Cu2+ ions in aque-
us solution diffuse and migrate to the surface in response
o a potential applied between counter- and working elec-
rodes. Many chemical species such as sulfuric acid, copper(II)
hloride, polyethylene glycol, mercaptopropanesulfonic acid,
nd 1-(2-hydroxyethyl)-2-imidazolidinethione must be added
o the aqueous solution to produce void-free copper deposits
n sub-100 nm trenches (Andricacos, 1999; Andricacos, Uzoh,
ukovic, Horkans, & Deligianni, 1998). Although there is an

xtensive experimental literature in this area, the detailed chem-
cal interactions of these additives with the copper surface are not
ell understood (Datta & Landolt, 2000; Kondo, Matsumoto, &
atanabe, 2004; Moffat et al., 2000; Moffat, Wheeler, Huber,
Josell, 2001; Moffat, Wheeler, & Josell, 2004; Tan & Harb,

003; West, 2000). Examples of questions that must be answered
ig. 8. Electrochemical process for manufacturing on-chip copper intercon-
ects, in which a rotating disk creates a boundary layer above the wafer surface
not drawn to scale).
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ig. 9. Atomic force microscopy image of an electrodeposited copper surface
5 �m × 5 �m).

what is the physical configuration of each molecule on the
surface (e.g., is the molecule sticking out into the solution or
flat against the surface)?
how many sites does each surface molecule cover?

Existing quantum mechanics and molecular dynamics meth-
ds have not yet advanced to the stage where water can be
eliably modeled by itself (Tu & Laaksonen, 2005; Tuckerman,

arx, & Parrinello, 2002; Wernet et al., 2004; Xenides, Randolf,
Rode, 2005), much less when involved in electrochemical

eactions at a surface (Onda et al., 2005). An important require-
ent of any general multiscale systems framework is that it must

e able to enable the resolution of the unknowns in complex het-
rogeneous mechanisms.

Most molecular systems involve unknown complex hetero-
eneous chemical mechanisms with no sensors available for
easuring concentrations at small length scales (<100 nm) at

ndustrially relevant operating conditions. For example, the main
ensors available for measuring length scales less than 10 �m
or the electrodeposition process in Fig. 8 are scanning electron
icroscopy and atomic force microscopy (see Fig. 9), which
easure surface morphology at the end of the process. Typical

ensors measure macroscopic properties such as current, poten-
ial, and temperature. A challenge for such systems is how to
onstruct an accurate chemical mechanism without in-process
oncentration measurements being available.

Most processes in which control of events at the molecular
cale is important have only 1–2 manipulated variables available
uring processing. For example, the applied potential is the only
anipulated variable during the electrodeposition of copper to

orm an interconnect (see Fig. 8). A challenge for constructing
redictive models for such systems is how to excite the dynamics

uring model identification experiments when so few manipu-
ated variables are available.

Another challenge when addressing molecular and multiscale
ystems is that the computational costs for model simulation are

e
w
∼
w

l Engineering 30 (2006) 1643–1656 1649

igh, and the model structures may require dynamically cou-
ling multiple simulation codes for the various time and length
cales (e.g., see Fig. 10). The variety of simulation codes used
o model the various time and length scales, as well as the vari-
ty of ways in which these codes may be coupled, indicates
hat systems techniques developed for these systems should be
esigned to act directly on simulation inputs and outputs rather
han being developed for every possible mathematical structure
or the model equations. Input-output methods are also moti-
ated by considering that the state dimension for the governing
quations implemented in these simulation codes, such as in
MC simulation, can be too high for systems methods to be
eveloped that act directly on the states. The high computa-
ional cost also indicates that multiscale systems tools must be
ery computationally efficient.

. Multiscale systems: addressing the challenges

This section summarizes our views on how to address the
hallenges posed in the previous section. Substantial unknowns
n a complex heterogeneous mechanism can be resolved by esti-
ating the parameters in each hypothesized mechanism and

pplying existing criteria for model discrimination which select
he mechanism that is most consistent with the experimental
ata (e.g., Burke, Duever, & Penlidis, 1997; Gunawan, Ma,
ujiwara, & Braatz, 2002; Reilly & Blau, 1974; see Fig. 11). The
ncertainties in the parameters in each mechanism are quantified
y probability distributions that are used to design each subse-
uent laboratory experiment, either to further reduce the model
ncertainties or to maximize the ability to distinguish among
he multiple hypothesized mechanisms (Atkinson & Donev,
992). Parameter estimates determined by quantum chemistry
r molecular dynamics calculations can be incorporated using
ayesian estimation, which we have applied to identify the dom-

nant chemical mechanisms during the formation of junctions in
etal oxide semiconductor field effect transistors (Gunawan,

ung, Seebauer, & Braatz, 2003).
The questions of how to construct a chemical mechanism

ithout having in-process concentration measurements and how
o excite the dynamics during model identification while having
ew manipulated variables can be addressed by a combination
f three methods:

. design and implement small-scale (e.g., micro- to millimeter
scale) chemical systems so as to highly excite the experimen-
tal input space,

. extensively utilize scanning probe measurements,

. use stop-and-repeat experiments, in which each batch exper-
iment is stopped and analyzed for numerous time intervals
to produce dynamic data.

In one application of this approach, we designed and imple-
ented the electrochemical apparatus shown in Fig. 12, in which
ach experiment deposits copper onto a flat copper substrate
ith the contact area being a circular disc with diameter of
5 mm. To highly excite the input space, a D-optimal design
ith 36 experiments was implemented for the wide ranges of
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Fig. 10. Schematic of the dynamically coupled multiscale simulation of the electrodeposition of copper into a trench to form a copper wire. A finite volume code which
simulates the potential field and concentration fields of all chemical species in aqueous solution sends the solution concentrations and potential at the solid–liquid
interface to a KMC code which simulates adsorption, desorption, and chemical and electrochemical reactions that occur on the surface. The KMC code computes
fl d–liqu
i in th
c instan
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uxes which are sent to a level set code that simulates the movement of the soli
teration. The different time scales are addressed by implementing many events
an be obtained by iterating all three sets of codes to convergence at each time

nput variables shown in Table 2. Although the industrial inter-
st is in depositing within trenches and vias to form copper
ires and multilayer contacts, the experiments were designed

or deposition on flat surfaces so that surface morphology can
e measured by using scanning probe measurements, in this
ase, atomic force microscopy (see Fig. 9)—greatly expanding
he measurements obtained in each experiment.

Each of the experiments in the D-optimal design was repeated
wo to three times, with each experiment starting with a newly

olished wafer. Eight surface locations were measured for each
xperiment, to characterize both experimental noise and biases.
ince the AFM images are only available at the end of each
xperiment, each experiment was repeated for ∼10 batch times,

ig. 11. Model building using Bayesian estimation and model discrimina-
ion/selection.
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id interface and sends its position to the finite volume code for the subsequent
e KMC code for each time interval of the finite volume code. Higher accuracy
ce.

ith times selected to capture the dynamics for each experi-
ental condition (e.g., see Fig. 13). The parameters in a KMC

ode were estimated by applying the methods in Fig. 11 to
he potential/current and root-mean-squared surface roughness
urves (see Figs. 13 and 14).

One question that arises with such an approach is how well
he model parameters associated with surface diffusion and the
hemical and electrochemical reactions can be extracted from
he current, potential and ex situ surface morphology data, given
he complex nature of the interactions of the additives with the
urface (e.g., see Table 3). A key point is that current and poten-
ial curves and the surface morphology are very sensitive to

hanges in the experimental inputs (shown in Table 2), indi-
ating that the large quantity of experimental data collected for
he wide range of experimental inputs contain substantial infor-

ation about the underlying mechanism. Further, changes in

able 2
ower bound, centerpoint, and upper bound for the inputs for a set of millimeter-
cale electrochemical experiments

erturbed experimental inputs Experimental range

uSO4 concentration 0.3, 0.7, 0.8 M
2SO4 concentration 5, 45, 175 g/L
PS concentration 3, 26.5, 50 ppm
EG concentration 0.1, 0.3, 3 g/L
l− concentration 10, 55, 100 ppm
IT concentration 5, 50, 200 ppb

urrent density 3, 11.5, 20 mA/cm2
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Fig. 12. Millimeter-scale fluidic system used to collect experimental data for
constructing models for copper electrodeposition.

Fig. 13. Applied potential curves for one set of experimental conditions in
Table 2 measured for the experimental system shown in Fig. 12. Each color
corresponds to a batch with a different batch time.

Fig. 14. Root-mean-squared surface roughness as a function of length scale and
time, averaged over eight locations, at one set of experimental conditions in
Table 2.

Table 3
The hypothesized electrochemical-chemical mechanism for the electrodeposi-
tion of copper in the presence of additives resulting from application of the
model building approach of Fig. 11

1. Cu+2(aq) + e− → Cu+(aq)
2. Cu+(aq) + e− ⇔ Cu(s)
3. Cu(s) → Cu(s)(surface diffusion)
4. Cu+(aq) + Cl−(aq) ⇔ CuCl(ads)
5. CuCl(ads) + e− → Cu(s) + Cl−(aq)
6. CuCl(ads) + PEG(aq) ⇔ Cu(I)-Cl-PEG(ads)
7. SPS(aq) + 2e− → 2thiolate−(aq)
8. Cu+(aq) + MPS(aq) ⇔ Cu(I)thiolate(ads) + H+(aq)
9. Cu(I)thiolate(ads) + Cu+(aq) + e− → Cu(s) + Cu(I)thiolate(ads)

10. Cu(I)thiolate(ads) + HIT(aq) → Cu(I)HIT(ads) + MPS(aq)
11. Cu(I)HIT(ads) + H+(aq) + e− → Cu(s) + HIT(aq)
12. thiolate−(aq) + H+(aq) ⇔ MPS(aq)
1
1

t
b
t
m
c
t
i
s
a
f
t
t

T
V
w
r

R

1
2
4
6
8

3. H2SO4(aq) → H+(aq) + HSO4
−(aq)

4. HSO4
−(aq) ⇔ H+(aq) + SO4

−2(aq)

he hypothesized mechanism or the sensitive model parameters
eing estimated have a very strong effect on the current, poten-
ial, and ex situ surface morphology, which suggests that the data

ay be sufficient for the model parameters to be identifiable. The
hemical-electrochemical mechanism that arose from applying
he model building approach of Fig. 11 to the experimental data
s shown in Table 3, with the values of the parameters in the most
ensitive reactions shown in Table 4. The associated uncertainty

nalysis indicated that the model parameters were identifiable
rom the experimental data (readers interested in more details on
he parameter estimation and discussion of results are referred
o Ph.D. theses by Rusli, 2006 and Xue, 2006).

able 4
alues of model parameters in the most sensitive reactions in the mechanism,
ith “(→)” indicating that the sensitive model parameters are only in the forward

eaction.

eactions k α

6.9 × 10−2 m/s 0.20
(→) 1.4 × 10−3 m/s 0.51
(→) 15 m4/mol s –
(→) 100 m4/mol s –
(→) 1.4 × 108 m4/mol s –
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Fig. 15. Electrodeposition of copper on a bipolar gold electrode: electrochemical
cell (top) and schematic of cell (bottom).

Fig. 16. Multistep optimization for the estimation o
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Recently, we have taken this approach of designing
illimeter-scale chemical/electrochemical systems for high-

hroughput data collection a step further, by designing an appara-
us in which the potential varies across the electrode (see Fig. 15).
his enables the measurement of the effects of a wide range of
otential in a single batch experiment. At the end of each exper-
ment the surface morphology is measured along the electrode
y using atomic force microscopy.

The implementation of the systems methods in Fig. 11 is
ell established for deterministic simulation codes (e.g., see
raatz et al., 2006, and references cited therein), whereas the

ystems methods for stochastic simulation codes utilize mul-
istep optimization (see Fig. 16). The multistep optimization
f Raimondeau, Aghalayam, Mhadeshwar, and Vlachos, 2003
tilizes sensitivity analysis to determine the key parameters, fol-
owed by response curve mapping to parameterize the responses
f the simulation model as low-degree polynomials of the key
arameters, and simulated annealing to optimize over the key
arameters. Fig. 16 revises this algorithm to utilize stochas-
ic sensitivities (Drews, Braatz, & Alkire, 2003) and optimal
esign methods to reduce the computational cost per iteration,
nd revises the structure of the low-order models, based on
ny known physics, to improve the quality of the low-order
odel identified in each iteration (Braatz et al., 2006). Either

pproach applies to multiscale simulation codes with arbitrary
but well-posed) dynamic coupling of individual simulation
odes. [Details on multiscale simulation issues including guide-
ines for dynamically coupling codes and conditions for well-
osedness, numerical convergence, and numerical accuracy are
iscussed in previous reviews (Braatz et al., 2006; Karulkar,
f parameters in stochastic simulation codes.

e, Alkire, & Braatz, 2005); this paper focuses on multiscale
ystems issues.]

Once a model is constructed, it can be used for the optimiza-
ion of all time and length scales, using a similarly constructed



R.D. Braatz et al. / Computers and Chemical Engineering 30 (2006) 1643–1656 1653

and c

m
F
o
m
m
c
T
(
t
p
t
s
m
a
t
l

d
r
m
r
h
f
t
i
f
l
m
w
a
r
i
d
M

i
(
t
e
e
s
v
d
a
R
m
S
t
i
h
s
d
d
d
u
a
J

6

c
s
n
t

Fig. 17. Multistep optimization for design

ultistep algorithm (see Fig. 17). The multistep algorithms in
igs. 16 and 17 are the same numerically, but with different
ptimization variables, objectives, and constraints. The opti-
ization objective can be formulated to ensure robustness to the
odel uncertainties quantified in the parameter estimation pro-

edure (e.g., see Nagy & Braatz, 2003, and citations therein).
he optimization variables u can include operating variables

e.g., batch control trajectories), feedback controller parame-
ers, and parameters that define the molecules in the system (e.g.,
olymer chain length, hydrophobicity, etc.). This provides a sys-
ematic methodology for the control of events at the molecular
cale while simultaneously optimizing all length scales from the
olecular to the macroscopic. By its inclusivity of other time

nd length scales, the multiscale systems approach can address
he modeling and design problems of nanotechnology, molecu-
ar nanotechnology, and molecular manufacturing.

Although the multistep algorithms in Figs. 16 and 17 were
esigned for use with stochastic simulation codes, these algo-
ithms also can be applied for processes modeled by deter-
inistic simulation codes, in which case the multistep algo-

ithms are similar to successive quadratic programming. We
ave applied this approach to design a better process for the
ormation of ultrashallow junctions in metal oxide semiconduc-
or field effect transistors. The process for forming junctions
nvolves ion implantation of dopants into bulk semiconductor
ollowed by rapid thermal annealing (RTA) using high-powered
amps. The RTA step electrically activates the dopant but pro-

otes unwanted dopant diffusion into the bulk. A PDAE model
as constructed from Poisson’s equation for the electric field

nd the reaction-diffusion-migration equations which included

eactions for the transfer of boron and silicon atoms between
nterstitial and substitutional positions and for the formation and
issolution of boron, silicon, and mixed boron-silicon clusters.
odel selection methods were used to select among compet-

i
l
i
m

ontrol using stochastic simulation codes.

ng chemical mechanisms and to simplify the reaction network
Jung, Kwok, Braatz, & Seebauer, 2005). Activation energies in
he mechanism were estimated by the application of Bayesian
stimation to density functional theory calculations and isolated
xperiments in the literature, resulting in agreement of mea-
ured boron profiles within ∼1 nm. The simulation model was
alidated with extensive literature data which employed various
oping energies, doses, and temperature programs (Gunawan et
l., 2003). Application of optimization indicated that the existing
TA process in industry was already operating at nearly opti-
al electrical activation and junction depths (Gunawan, Jung,
eebauer, & Braatz, 2004), which motivated the expansion of

he optimization variables to include the bond structure at the sil-
con surface (Jung, Gunawan, Braatz, & Seebauer, 2004b). We
ave shown that modifying the structure of bonds at the silicon
urface enables precise nanometer-scale control of the junction
epth due to a change in the effective surface boundary con-
ition for interstitials. These simulation studies have motivated
iscrete changes in processing conditions, which are being eval-
ated experimentally (Kwok, Dev, Braatz, & Seebauer, 2005)
nd form the basis of a patent application (Seebauer, Braatz,
ung, & Gunawan, 2004).

. Directions for future research

The most important direction for future research is the appli-
ation of the multiscale systems approach to a broad range of
pecific problems. The greatest number of applications in the
ear term is likely to be in micro- and nanoelectronics, given
he head-start in applications of multiscale simulation and the

ntense interest of the semiconductor industry, as cited ear-
ier in this paper. More specific applications are likely to arise
n nanobiomedical sensors and other nanobiological devices,

any of which are closely related to micro- and nanoelectronic
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rocesses in terms of chemistry, physics, materials, and com-
onents. These specific applications will certainly serve also to
mprove the systems tools, as any nontrivial applications are apt
o do.

The multiscale systems tools discussed in the previous section
ave minimal restrictions on the zero dynamics, the integro-
ifferential structure of the governing equations, the simulation
lgorithms, or the form of the nonlinearities or uncertainties.
he optimization in Fig. 17, however, is only well-developed for
nite-time processes, that is, batch and semibatch processes with
limited set of transitions. This is not particularly restrictive for

he vast majority of micro- and nanotechnological processes. On
he other hand, both infinite-time (referred to as “continuous”
n the chemical engineering literature) and finite-time mixed
iscrete-continuous processes with a large number of transitions
ose open theoretical issues. When the optimization is general-
zed to infinite time, the control theoretical notions of unstable
ero dynamics and closed-loop stability become important, and
he use of a purely input-output approach may be too limiting.
o nonconservative technique is available for the analysis of

obustness for nonlinear infinite-time systems, much less the
ptimization of such systems (while it is trivial to make enough
ssumptions on the governing equations to derive sufficient con-
itions for obtaining closed-loop stability, such mathematical
xercises are often of no practical utility). When the process
s finite time with a large number of potential transitions then
he optimization in Fig. 17 can have too many local solutions
r be too computationally expensive to be feasible with avail-
ble computing power. This problem is not completely solved
ven for models described by deterministic equations such as
ifferential-algebraic equations (Chachuat, Singer, & Barton,
005), much less the much more challenging case of stochastic
imulation.

. Conclusions

This paper reviewed the challenges of multiscale systems,
nd how these challenges can be addressed by (i) design and
mplementation of high-throughput millimeter- and micrometer-
cale chemical/electrochemical systems so as to highly excite
he experimental input space, (ii) extensive utilization of scan-
ing probe measurements, (iii) utilization of stop-and-repeat
xperiments, (iv) an iterative model building procedure con-
isting of Bayesian estimation and mechanism selection, and
v) multi-step optimization. It is argued that the multiscale
ystems approach is directly applicable to problems in nan-
technology, molecular nanotechnology, and molecular man-
facturing. The key ideas were illustrated with applications
o two processes of importance to the semiconductor indus-
ry: the electrodeposition of copper to form interconnects and
unction formation in metal oxide semiconductor field effect
ransistors.

It is argued that the most important direction for future

esearch is the application of the multiscale systems approach
o a broad range of specific problems, and that the largest open
heoretical problems are in addressing hybrid and infinite-time

ultiscale systems.
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