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Evaluation of Two-Parameter
Approaches to Describe Crack-Tip
Fields in Engineering Structures
The application of two-parameter approaches to describe crack-tip stress fields has gen-
erally focused on Ramberg–Osgood (RO) power law material behavior, which limits the
range of applicability of such approaches. In this work we consider the applicability of a
J-Q or J-A2 approach (the latter is designated here as the J-A approach) to describe the
stress fields for RO power law materials and for a material whose tensile behavior is not
described by a RO model. The predictions of the two-parameter approaches are com-
pared with full field finite-element predictions. Results are presented for shallow and
deep-cracked tension and bend geometries, as these are expected to provide the expected
range of constraint conditions in practice. A new approach for evaluating Q is proposed
for a RO material, which, for a given geometry, makes Q dependent only on the strain
hardening exponent. �DOI: 10.1115/1.3120266�
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Introduction
Under conditions of low crack-tip constraint, J-dominance is

ost and the crack-tip fields may no longer be characterized by a
ingle parameter. Thus two or more parameters are required to
rovide an accurate representation of crack-tip fields under low
onstraint conditions. Two such parameters, which have received
onsiderable attention in literature, are the hydrostatic Q param-
ter �1,2� and the A2 parameter for a power law material �3–5�.
umerical studies of these parameters have generally focused on
amberg–Osgood �RO� power law hardening material behavior,
hich, in practice, is often not representative of engineering ma-

erials. In this paper we evaluate the ability of two-parameter ap-
roaches to describe the crack-tip stress fields for RO power law
ardening behavior and for a material whose tensile behavior is
ot completely described by the RO model. For the latter we
onsider X100 pipeline steel, a high strength carbon steel with
elatively low-strain hardening. We have focused our study on
enter cracked tension M�T� and single edge notch bend SEN�B�
eometries, with a /W of 0.1, 0.4, and 0.7 as these are considered
o cover the range of crack-tip constraint expected in engineering
tructures. The predictions are compared with the full field finite-
lement �FE� crack-tip stress distributions, with differences quan-
ified using an error parameter to provide an evaluation of these
wo-parameter approaches.

Background to Two-Parameter Approaches

2.1 J-Q Approach. From finite-element analyses of cracked
eometries, the difference between the Hutchinson, Rice, and
osengren �HRR� fields �6,7� and the finite-element stress fields
as found in Ref. �1� to be approximately a uniform hydrostatic

tress over the microstructurally significant region ahead of the
rack tip. This feature was observed for tension geometries and
end geometries under low deformation. The uniformity of the
ydrostatic stress was found to be better satisfied when the differ-
nce was taken with respect to the stress field from a finite-
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element small scale yielding �SSY� solution with T=0, where T is
the linear elastic T-stress �8�. Accordingly Q was defined in Ref.
�2� from the equation

�ij = ��ij�SSY;T=0 + Q�0 �1�

where �0 is an appropriately defined normalizing stress, typically
the yield stress.

2.2 J-A Approach. Using an asymptotic mathematical analy-
sis, a three-term solution was developed �3–5� to characterize the
mode-I crack-tip fields for a crack in a RO power law hardening
material described by

�

�0
=

�

�0
+ �� �

�0
�n

�2�

where � is the “yield offset,” n is the strain hardening exponent,
�0 is a normalizing stress, which is usually related to the yield
stress, and �0=�0 /E where E is Young’s modulus. The crack-tip
stress fields in a polar coordinate system �r ,�� are given by

�ij

�0
= � J

��0�0Inr
�1/�n+1�

�̃ij
HRR��� + A� J

��0�0InL
�1/�n+1�� r

L
�s

�̃ij
�1����

+ A2� J

��0�0InL
�1/�n+1�� r

L
�t

�̃ij
�2���� �3�

where J is Rice’s J-integral �9�, and the angular functions �̃ij
�k�, the

stress power exponents s and t, and the dimensionless integration
constant In depend only on n. �Note that slightly different notation
from that used in the earlier work �5,10� has been employed in Eq.
�3�. In particular, the symbol A is used here in place of A2.� The
parameter L in Eq. �3� is a characteristic, normalizing length pa-
rameter, which in previous work has been chosen as the crack
length a, the specimen width W, the thickness B, or unity �5,10�.
Note that for a given stress distribution, the value obtained for A
will depend on the choice of characteristic length L, but the over-
all amplitude of the stress field is unaffected.

Plane strain mode-I dimensionless functions �̃ij
�k�, In, and the

exponents s and t have been tabulated in Ref. �11�. It may be seen
from Eq. �3� that if A=0 the equation reduces to the HRR field.
Thus, J describes the amplitude of the HRR field and A charac-
terizes the “loss of constraint”, which results in a reduction in

stress magnitude relative to the HRR field.
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Evaluating Q From Finite-Element Solutions

3.1 Conventional Evaluation of Q. The constraint parameter
is conventionally evaluated at a fixed normalized distance

head of the crack tip r̄ given by

r̄ = rQ/�J/�0� �4�

here rQ is the physical distance from the crack tip at which Q is
valuated. Typically r̄ is in the range 1� r̄�5, which is the mi-
rostructurally significant range over which stresses and strains
ontrol the fracture process. This can be interpreted in terms of the
rack-tip opening displacement �CTOD� �t, which is defined in
ef. �12� as the relative displacement of the crack faces at a dis-

ance from the crack tip at which 45 deg lines emanating from the
rack tip intersect with the crack faces. In Ref. �12� it was shown
hat under small scale yielding conditions the CTOD can be lin-
arly related to J /�0 by

�t = dn
J

�0
�5�

here dn is defined via the HRR field as

dn = ���0�1/nd̃n �6�

nd d̃n is given by

d̃n =
2ũy�n�

In
�ũx�n� + ũy�n��1/n �7�

here ũx�n� and ũy�n� are dimensionless constants obtained from
he HRR field and are dependent on n. For materials of interest, dn
s typically in the range 0.2�dn�0.7.

Clearly, by combining Eqs. �4� and �5�, we can write that

rQ = � r̄

dn
��t �8�

Taking an average value for dn of 0.5, it follows that if the
ange of evaluation for Q is over the region 1� r̄�5, in terms of
TOD this is 2�t�rQ�10�t.
One of the difficulties associated with evaluating Q at the nor-
alized distance r̄ is that there will be a dependence on the ma-

erial parameters �0 and �, as discussed in Ref. �13�. The depen-
ence of Q on �0 and �, for example, is shown in Fig. 1 for M�T�,
/W=0.1 with n=10. Here Q is evaluated at a distance rQ
2J /�0, �r̄=2�, and J is normalized by a�0. The dependence of Q
n �0 and, to a lesser extent on �, complicates the compilation of
andbook solutions for Q for a RO material. Below we propose an
pproach for eliminating the dependence on � and �0. This con-
iderably simplifies the tabulation of Q for a given geometry, as Q

(a)

Fig. 1 Q versus J /a�0 for a range of valu
at the normalized distance r̄=2
s then dependent only on n.

31406-2 / Vol. 131, JUNE 2009
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3.2 Alternative Definition for Constraint Parameter Q .
The RO model �Eq. �2�� is defined using four parameters, �, �0,
�0, and n, �note that, by definition, E=�0 /�0, and is not an addi-
tional parameter in the material description�. Defining the material
model in this ways allows flexibility in the choice of material
parameters, e.g., �0 can be chosen as the 0.2% flow stress with �0
the corresponding strain. However, as pointed out in Refs. �13,14�,
a RO material model is fully determined using only three material
parameters, so that Eq. �2� may be rewritten as

�

�̂0

=
�

�̂0

+ � �

�̂0
�n

�9�

where the normalizing stress and strain, �̂0 and �̂0, respectively,
are given as

�̂0 = �0/�1/�n−1� �10a�

�̂0 = �0/�1/�n−1� �10b�

Note that �̂0 / �̂0=�0 /�0=E �provided n�1�. Equations �2� and
�9� provide identical representations of a RO material—if material
data are fitted using Eq. �2� �in terms of �, �0, and �0�, the fit can
be equivalently represented as Eq. �9�, with �̂0 and �̂0 defined
using Eq. �10�. The normalizing stress �̂0 can no longer be iden-
tified directly with a particular level of inelastic strain, but from
Eq. �9�, it may be seen that if ���̂0, the material response is in
the linear regime and if ���̂0, the power law term dominates.

In an analysis of a material that obeys Eq. �9�, results will
depend only on the power law exponent n provided stresses are
normalized by �̂0 and strain quantities by �̂0; see e.g., discussion
in Ref. �14�. Thus, an appropriate dimensionless distance r̂ may be
defined as

r̂ = rQ/�J/�̂0�̂0� �11�
and Eq. �1� may be rewritten as

�ij = ��ij�SSY;T=0 + Q�̂0 �12�

By evaluating Q using the dimensionless distance r̂, and normal-
izing J by a�̂0�̂0, the resultant J-Q plot will be independent of �̂0
and �̂0 and depend only on n �for a given geometry�. For example,
all the lines in Fig. 1 collapse onto a single line, as shown in Fig.
2, when normalized appropriately. A different value for Q will be
obtained if Eq. �12� is used rather than Eq. �1�, due to the different
choice of normalizing stress ��̂0 rather than �0� and a different
choice of dimensionless distance �through �̂0�. This issue will be
discussed in more detail later. Note that if �=1, then �̂0=�0 and
�̂0=�0.

3.3 Choice of Normalizing Distance. Having defined the
ˆ ˆ

(b)

of „a… ε0 and „b… �, where Q is evaluated
es
normalized distance r in Eq. �11�, an appropriate value of r at
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hich Q is evaluated must be chosen. Equation �12� indicates that
he second term in the J-Q-representation of the crack-tip fields is
ndependent of distance and thus the same value for Q would be
btained regardless of the position where it is evaluated. However,
q. �12� is an approximation and, in practice, the value obtained

or Q will show some dependence on the distance at which it is
valuated. The value of r̂ should be chosen so that the physical
istance rQ in Eq. �11� is at some appropriate fraction of �t, such
hat Q is evaluated over a microstructurally significant distance.
sing Eqs. �5�, �6�, and �11�, the distance rQ can be shown to be

elated to the crack-tip opening displacement �t by

rQ =
1

�̂0
�n+1�/n� r̂

d̃n

��t �13�

here d̃n has been defined in Eq. �7�.
In this work we have chosen to evaluate Q at a normalized

istance r̂=0.004, which corresponds to a distance of 4�t for the
ase of n=10, �=1, and �0=0.002 �i.e., �̂0=0.002�. Thus, in terms
f the physical distance from the crack tip, Q is evaluated at a
osition

rQ =
1

�̂0
�n+1�/n�0.004

d̃n
��t �14�

his is the point at which Q is evaluated for the cases shown in
ig. 2.
It may be noted that if rQ is defined using the conventional

efinition, Eq. �8�, for low hardening materials the rQ−�t relation-
hip depends weakly on �̂0 �a 1 /n dependence through Eq. �6��
nd choosing r̄=2 will generally ensure that Q is evaluated at a
hysically representative distance. However, Eq. �14� indicates
hat for low hardening materials, rQ /�t is more strongly dependent
n �̂0 ��n+1� /n→1�. Thus, to ensure that rQ falls within the range
�t�rQ�10�t, limits must be placed on the value of �̂0. The
pplicable ranges of �̂0 are obtained from Eq. �15� and for conve-
ience have been grouped into three sets of values of n, i.e.,

2 � 10−3 � �̂0 � 6 � 10−3 for 3 	 n 	 4

1.5 � 10−3 � �̂0 � 4 � 10−3 for 4 � n 	 7

1 � 10−3 � �̂0 � 3 � 10−3 for n � 7 �15�

s long as n and �̂0 lie within these limits, Q will be evaluated in
he range 2�t�rQ�10�t, i.e., at a microstructurally significant
istance. It is expected that most materials commonly encountered
n engineering applications will lie within the limits of applicabil-
ty given in Eq. �15�. If �̂0 is outside these limits, it is recom-

ig. 2 Variation of Q versus J /aε̂0�̂0 for a range of values of ε0
nd �, where Q is evaluated at the normalized distance r̂
0.004
ended that Q is evaluated directly from FE analysis with an

ournal of Pressure Vessel Technology
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appropriate definition of the normalizing distance.
In summary, in this work the parameter Q is determined as the

difference between the normal stress �22 from a finite-element
analysis and the value of �22 obtained from a SSY boundary
analysis with T / �̂0=0, at a normalized distance of rQ /J / ��̂0�̂0�
=0.004. If a RO model is defined using Eq. �2� �i.e., in terms of �,
�0, and �0� Q values may still be obtained from Fig. 2 with �̂0 and
�̂0 defined via Eq. �9�.

In previous work �1,2�, Q was evaluated at the distance
rQ / �J /�0�=2. For �=1 and �0=E /�0=500, this distance is
equivalent to the distance r̂=0.004. However, for other materials,
the new normalized distance is not equivalent to r / �J /�0�=2.
Since Q will have a �weak� dependence on distance, it is expected
that there will be some differences in Q values evaluated at the
new normalized distance and previously published values. Fur-
thermore, since a different normalizing stress, �̂0, has been used in
Eq. �12� rather than �0, this will affect the value of Q. This issue
is discussed further in Sec. 6.3.

4 Evaluation of the Constraint Parameter, A

To allow direct comparison of the J-Q and J-A approaches we
rewrite the J-A stress field in Eq. �3� in terms of �̂0 and �̂0 as
follows:

�ij

�̂0

= � J

�̂0�̂0Inr
�1/�n+1�

�̃ij
HRR���

+ A� J

�̂0�̂0Inr
�1/�n+1�� r

L
��s�n+1�+1�/�n+1�

�̃ij
�1����

+ A2� J

�̂0�̂0Inr
�1/�n+1�� r

L
��t�n+1�+1�/�n+1�

�̃ij
�2���� �16�

Following the approach in Ref. �15�, the value of A is deter-
mined from a finite-element analysis using the “weight averaging
method.” This entails equating the average finite-element stress
between defined limits, to the integral of Eq. �16� between the
same limits of r̂, i.e.,

�
r̂1

r̂2

�FEdr̂ =�
r̂1

r̂2

�J-Adr̂ �17�

where �J-A is the stress field in Eq. �16� and �FE is the normal
��22� FE stress distribution. In Ref. �15�, A is evaluated in the
range 1� r̄�5. Here we have taken the range to be 0.002� r̂
�0.01, which is equivalent to the range taken in Ref. �15� when
n=10, and �=1 and �0=0.002, and is consistent with the evalu-
ation of Q at r̂=0.004.

By substituting Eq. �16� into the right-hand side of Eq. �17�,
and evaluating the integrals, it follows that the value of A can be
determined by solving the quadratic equation

xA2 + yA + z = 0 �18�

where x, y, and z are given by

x = �̃ij
�2�� J

�̂0�̂0L
�t0.01t+1 − 0.002t+1

t + 1

y = �̃ij
�1�� J

ˆ ˆ
�s0.01s+1 − 0.002s+1

s + 1
�0�0L
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z = �̃ij
�HRR�� J

�̂0�̂0L
�−1/�n+1�

�0.01n/�n+1� − 0.002n/�n+1��
n + 1

n

− � J

�̂0�̂0InL
�−1/�n+1��

0.002

0.01
���

FE�r̂,0�
�̂0

dr̂ �19�

he characteristic length L has been taken as the crack length a in
ll calculations.

For comparison, we have also evaluated A by equating the J-A
tress field in Eq. �16� to the FE stress at r̂=0.004 �the same
istance at which Q has been evaluated�. The value of A obtained
rom the two methods is almost identical.

Finite-Element Procedures

5.1 Analyses Performed. Center cracked panels under ten-
ion, designated M�T�, and edge cracked bend specimens, desig-
ated SEN�B�, have been analyzed. The dimensions of the M�T�
pecimens are H /W=2 for a /W=0.1, and H /W=4 for a /W=0.4
nd 0.7, where H is the total height and W is half the width of the
late. The total span S of the SEN�B� specimens is S=4W. The
esults are expected to be independent of specimen height, H /W,
nd S /W and depend only on a /W. The loading for the SEN�B� is
pplied as three point bending with S the distance between the
upport points. Due to symmetry, only a quarter of the M�T� plate
nd a half of the SEN�B� geometry are modeled.

The finite-element analyses were performed using ABAQUS 6.6

16�, with a small displacement formulation. The RO material
nalyses were performed using deformation plasticity whereas the
nalyses for X100 test data used incremental plasticity. It was
ound, however, that the difference in the results between the two
lasticity models is negligible for a small displacement formula-
ion. Four noded two-dimensional plane strain elements �ABAQUS

lement type CPE4H� were used in all cases. The finite-element
eshes were generated with a sharp crack, the crack-tip element

ize ranging from �10−5a to 10−3a, in order to provide detailed
tress distributions at different deformation levels.

5.2 Evaluation of Error for the Two-Parameter
redictions. To provide a quantitative measure of how well the
-A or J-Q approach describes the crack-tip stress distributions,
e have defined a dimensionless error parameter e as

e =

�
r̂1

r̂2

	�FE − �P	dr̂

�
r̂1

r̂2

�FEdr̂

�20�

here �FE is the finite-element stress, �P is the J-A- or
-Q-prediction, and r̂1 and r̂2 are the limits over which the error is
alculated. This parameter gives the average magnitude of the
ifference between the finite-element stress distribution and the
wo-parameter prediction, as a ratio of the average magnitude of
he finite-element stress. The error e is evaluated over a chosen
ange of r̂, which in this work has been taken to be 0.004� r̂

0.01.

Analyses of RO Power Law Materials
In this section we assess the ability of the J-A- and J-Q ap-

roaches to characterize the crack-tip stress fields for materials
hat behave according to the RO material model. Analyses were
erformed for two values of strain hardening exponent, n=5 and
=10, in order to simulate high and moderate hardening materi-
ls, respectively. The results provided can be used for any value of

ˆ 0 and �̂0 but care should be taken in interpreting the results if �̂0
alls outside the applicability limits given in Eq. �15�. The values

f the stress power exponents, s and t, the dimensionless integra-

31406-4 / Vol. 131, JUNE 2009
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tion constant, In, and the mode-I angular stress distributions, �̃ij
�k�

at �=0, are given in Tables 1 and 2 �the data for n=5, 10, and 15
are taken from Ref. �11�, and the data for n=25 are extrapolated
values�.

6.1 Predictions of Normal „�22… Stress Distributions. Fig-
ure 3 shows the normal stress distributions �22 / �̂0 for a shallow-
cracked M�T� geometry under extensive plasticity, for n=10. The

normalizing load P̂0 is the plane strain limit load given in Ref.
�17�, with �0 replaced with �̂0, i.e.,

P̂0 =
4Bb


3
�̂0 �21�

where B is the thickness, and b is the width of the ligament=W
−a. It can be seen in Fig. 3 that both the J-A and J-Q approaches
provide a good prediction of the normal stress distribution in the
M�T� geometry over the microstructurally significant range
0.002� r̂�0.01. The J-Q approach gives a somewhat better pre-
diction than the J-A-prediction �this result is representative of the
deep-cracked M�T� cases and the shallow-cracked �a /W=0.1�
SEN�B� case�.

The results for the deep-cracked SEN�B� geometry are pre-

sented in Fig. 4 for a normalized load of P / P̂0=1.6. Here P̂0 is the
plane strain limit load for a SEN�B� geometry �17�, with �0 re-
placed with �̂0, i.e.,

Table 1 Stress exponents „s and t… and integration constants
„In… for evaluation of A, and values of „�22/ �̂0…SSY;T=0 reference
stress field for evaluation of Q

n s t In ��22 / �̂0�SSY;T=0;r̂=4�10−3

5 0.05456 0.27578 5.024 3.85
10 0.06977 0.2304 4.540 3.37
15 0.06093 0.18435 4.334 –
25 0.0458a 0.130a 4.134a –

aThese values are obtained by extrapolation.

Table 2 Angular stress values �̃ij
„k…

„at �=0… for evaluation of A

n �̃ij
HRR �̃ij

�1� �̃ij
�2�

5 2.2171 0.3184 
3.2224
10 2.4969 0.313 
6.4128
15 2.6162 0.2975 
7.8432
25 2.730a 0.273a 
10.87a

aThese values are obtained by extrapolation.

Fig. 3 Normal stress distributions ahead of the crack tip for an
ˆ
M„T… geometry, a /W=0.1, and n=10, at a load P=1.2P0
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P̂0 =
1.409Bb2�̂0

S
�22�

or this case, both the J-A and J-Q approaches give poor predic-
ions. The result is consistent with those presented in Refs.
1,10�—the poor agreement with the crack-tip field solutions
rises from the fact that the global bending stress impinges on the
rack-tip fields at large deformation. The result in Fig. 4 is also
epresentative of the SEN�B� a /W=0.7 case.

Figures 5 and 6 show the error e defined in Eq. �20�, plotted
gainst the normalized load, for the shallow-cracked M�T�, and
eep-cracked SEN�B� geometries, respectively. It can be seen

ig. 4 Normal stress distributions ahead of the crack tip for a
EN„B… geometry, a /W=0.4, and n=10, at a load P=1.6P̂0

ig. 5 Error e versus normalized load for an M„T… geometry,
/W=0.1, and n=10

ig. 6 Error e versus normalized load for a SEN„B… geometry,

/W=0.4, and n=10

ournal of Pressure Vessel Technology
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from Fig. 5 that the error e for the M�T� geometry is less than 5%
up to the maximum load shown. Similar magnitudes of e were
found for the deep-cracked M�T� cases, and the shallow-cracked
SEN�B�. The value of e for the deep-cracked SEN�B� case is
shown in Fig. 6, from which it can be seen that e increases very

rapidly beyond a load of �1.2P̂0, due to the effect of the global
bending stress on the crack-tip field. A similar trend was seen for
a /W=0.7. Thus, the use of the J-A or J-Q-approach does not
significantly extend the applicability of J-based fracture mechan-
ics to deeply cracked bend specimens when loads are considerably

in excess of the plastic collapse load �P�1.4P̂0�.

6.2 Prediction of von Mises Equivalent Stress. In this sec-
tion, we compare the von Mises equivalent stress ��e� distribu-
tions predicted by the J-Q and J-A approaches for 2D plane strain.

For the J-A approach, the in-plane stress components �22 and
�11, and the shear stress �12 are calculated from Eq. �16�, where
the angular functions �̃ij

�1� and �̃ij
�2� are taken from Ref. �11� and A

is obtained using the procedure described in Sec. 4. The out-of-
plane component �33 is given by �33=0.5��11+�22�. The J-Q
approach uses the von Mises equivalent stress based on the SSY
analysis.

The angular variation of equivalent stress is shown in Fig. 7 for
the shallow-cracked M�T�, a /W=0.1, and n=10, for a load of

1.2P̂0, under large scale plasticity. It may be seen that both the
J-Q and J-A approaches give reasonable predictions. A similar
trend was seen for n=5.

6.3 Discussion of the Alternative Normalizing Distance.
For a RO power law material, the use of the alternative normal-
izing distance r̂=0.004 should give a similar �22 �normal� stress
distribution, as the conventional normalizing distance r̄=2. This
implies that Q�0 in Eq. �1� should be approximately equal to Q�̂0
in Eq. �12�. A measure of the difference in the stress fields ob-
tained using the two normalizing distances has been obtained by
plotting the ratio �S� /�S against normalized load, where �S
=Q�0 and �S�=Q�̂0. This ratio has been plotted in Fig. 8 for the
shallow-cracked M�T� and deeply cracked SEN�B�, representative
of, respectively, low constraint and high constraint conditions. A
value of �S� /�S=1 indicates that the predictions of the stress
field given by the two normalizations are identical. For each ge-
ometry, the error is presented for n=5 and n=10, and a range of
values of �0 and �. Note that Q is evaluated within the range 2
�r /�t�10 for all cases.

For the M�T� geometry, 0.9	�S� /�S	1.1 for n=10, and less
than 1.25 for n=5. The value of �S� /�S for the SEN�B�, a /W
=0.4, geometry is somewhat larger; at the lowest load shown, the

Fig. 7 Angular variation of equivalent von Mises stress for
M„T…, a /W=0.1, at a load of 1.2P̂0
lowest value of �S� /�S is 0.7. Note, however, that at this load
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evel, Q�0, thus �S� and �S are also approximately zero. A more
ppropriate measure of the error at low load is the ratio of the total
tress predicted using the alternative and conventional normaliz-
ng distances, which in this case is less than 1%. At the largest
oad shown, P=1.4P0, the value of �S� /�S is 1.3. This difference
s considered to be reasonable in view of the effect of the global
ending stress on the crack-tip fields at this load level as indicated
n Fig. 4.

The definition of Q proposed in the current paper is based on
he normalizing stress �̂0. If values of Q are available based on the
ormalizing stress �0 in the standard form of the RO law �Eq.
1��, the value of Q obtained using the current normalization may
e estimated as

Qnew =
��ij�SSY;T=0 − ��̂ij�SSY;T=0 + Q�0

�0
�23�

here Qnew indicates the Q value obtained using the current nor-
alization and ��ij�SSY;T=0 and ��̂ij�SSY;T=0 indicate the reference

tress obtained using �0 and �̂0, respectively. Note that Eq. �23�
oes not include the effect of matching distance on Q and only
ccounts for the effect of normalizing stress. Our FE studies show
hat the maximum difference in Q values obtained using either
efinition is 38%, for both the shallow-cracked M�T� and deep-
racked SEN�B� geometries.

Analyses of a Real Material: X100 Pipeline Steel
In practice, engineering materials do not behave according to

he RO power law. Since the J-A approach is based on the RO
odel, however, it is necessary to fit the RO model to the material

tress-strain curve in order to apply the approach. The J-Q ap-
roach can be applied to any material behavior.

(a)

Fig. 8 �S� /�S versus normalized load P
a /W=0.4, geometries

(a)
Fig. 9 True stress-strain curve for �100 ste
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In this section we examine a low hardening, ferritic steel
�X100�, which is used predominantly in oil and gas pipeline ap-
plications. The finite-element stress distributions obtained from
these analyses are then compared with the J-A-prediction obtained
by performing the analyses using a RO model fit to the data, as
well as the J-Q-prediction based on the analyses using the tensile
test data.

The available stress-strain data give Young’s modulus of 211
GPa and a 0.2% proof stress of �640 MPa �18�. Q is determined
at r̂=0.004, where �̂0=�0.2 �0.2% proof stress� and �̂0= �̂0 /E, so
�̂0=�0.2 /E. The value of ��22 / �̂0�SSY;T=0 is 3.25.

7.1 RO Model Fits to The Tensile Test Data. Tensile data
for the RO model are unavailable above �8% strain; therefore the
data were extrapolated based on the trend of the data before 8%.
Two RO fits were made to the data, one to give a good fit in the
low-strain region and the other at high strains. The values of the
RO parameters for the fits are provided in Table 3. The compari-
son between the tensile data and the RO model fits is shown in
Fig. 9. Figure 9�a� shows the fits over the low-strain region �up to
5% strain� and Fig. 9�b� shows the fit over the full range �up to
20% strain�. It may be seen that fit A is close to the test data up to
�5%, while at strain levels above 5%, fit B provides a better fit to
the data. Note that for both fits, �̂0 / �̂0=E=211 GPa.

b)

0 for „a… M„T…, a /W=0.1, and „b… SEN„B…,

Table 3 RO model fits to �100 tensile test data

n �̂0 �̂0

RO model fit A 15 667 3.16�10−3

RO model fit B 25 718 3.41�10−3

b)
(

/ P̂
(

el up to „a… 5% strain and „b… 20% strain
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7.2 Comparison of Q and A Predictions for X100 Material.
he values of A were obtained from the finite-element analyses

ollowing the procedure discussed in Sec. 4. The values of Q were
btained from a finite-element analysis using the tensile test data
llustrated in Fig. 9. The values of A and Q were then inserted into
he appropriate equation and the resultant stress distribution com-
ared with the finite-element stress distribution obtained using the
ensile test data.

Figures 10 and 11 show the normal stress distributions for, re-
pectively, a shallow-cracked M�T�, a /W=0.1, and a deep-

racked SEN�B�, a /W=0.4, at a load P=1.0P̂0. It may be seen for
oth cases that the J-Q-predictions, obtained using the material
ensile response, provide closer agreement with the full finite-
lement solution than the J-A-predictions, obtained using power
aw fits �the J-Q-predictions �dashed lines� are almost indistin-
uishable from the finite-element solution �open symbol��. For the
�T� specimen, the agreement from the J-A-prediction with RO

t B provides a closer agreement than that obtained using fit A.
his is expected since the low constraint shallow-cracked M�T�
ase experiences high-strain levels, and thus at high load better
greement is obtained for the M�T� geometry using the high-strain
t �fit B�.
The high constraint deep-cracked SEN�B� geometry in Fig. 11

xperiences relatively low strain apart from very close to the crack
ip. Thus it is expected that for the SEN�B� geometry, fit A �the
ow-strain fit� will provide better agreement with the finite-
lement stress fields than fit B over most of the crack-tip region.
lose to the crack tip �r̂�0.002�, it may be seen in Fig. 11 that fit
provides close agreement to the finite-element prediction. How-

ig. 10 Normal stress distributions ahead of the crack tip for
n M„T… geometry, a /W=0.1, �100 steel, at a load P=1.0P̂0

ig. 11 Normal stress distributions ahead of the crack tip for a
ˆ
EN„B… geometry, a /W=0.4, �100 steel, at a load P=1.0P0
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ever, this result is of limited significance as finite strain effects
dominate within this region. Thus, for the SEN�B� geometry at
this load level, better agreement is obtained over the region of
interest using fit A.

These results emphasize that care is needed in fitting the RO
law to experimental data if one wishes to obtain an accurate pre-
diction of crack-tip stresses, and an appropriate material fit for one
geometry, load level, or distance may not be appropriate for an-
other. �This conclusion applies to a J-Q or J-A approach if the
tensile response is fitted with a RO model.�

8 Discussion and Conclusions
Finite-element analyses of shallow and deep-cracked M�T� and

SEN�B� geometries have been performed in order to evaluate the
ability of the J-Q and J-A approaches to describe the crack-tip
fields, for both RO power law hardening materials and for a pipe-
line steel, whose tensile behavior is not described by the RO
model. The constraint parameters are essentially equivalent if they
are to be used to provide a constraint-based toughness locus as
discussed in Refs. �2,5�.

The analyses of the RO power law materials have shown that
both the J-A and J-Q approaches give a good prediction of the
normal ��22� stress fields for the shallow and deep-cracked M�T�
geometries and for the shallow-cracked SEN�B� geometry. Per-
haps surprisingly, the approximate J-Q approach gave a consis-
tently better prediction than the asymptotic J-A approach. How-
ever, it should be noted that the J-Q approach requires a
numerically calculated reference field, while the J-A approach
uses the known HRR distribution as a reference field. For the
deep-cracked SEN�B� geometry, both approaches were found to
give a poor prediction under high loads, which is due to the fact
that the global bending stress impinges on the crack-tip fields. The
effect of the global bending stress on the crack-tip fields can be
accounted for by including an additional term in the J-Q or J-A
crack-tip field equations, as discussed in Refs. �19,20�. Both the
J-A and J-Q approaches require either tabulated values of the
parameters, J, A, and Q, or a finite-element analysis to obtain
these parameters. If the J-A approach is being used, the exponents
s and t, and the angular stress distributions �̃ij

�k� must be available.
A J-Q analysis requires the solution of the small scale yielding
�T / �̂0=0� solution for the material in question. For an engineering
material, the J-Q approach has been found to give close agree-
ment with the finite-element stress distribution for the material
considered here, X100 pipeline steel. The applicability of the J-A
distribution, however, is dependent on how well a RO model can
be fitted to the material stress-strain curve.

In practice, it may not be feasible to tabulate Q values for all
materials. Thus the use of a RO model is attractive, and values of
Q for a particular geometry can be tabulated as only a function of
power law exponent, n, when the normalization discussed in Sec.
3.2 is used.
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