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A Layered Notch filter for High-
Frequency Dynamic Isolation 
An efficient method of isolation from high-frequency vibrations is the use of 
periodically layered composites acting as a mechanical filter. This device is a 
periodically layered stack of alternating materials with widely different densities and 
stiffnesses. The working principle of the device is wave reflection, and the device 
becomes increasingly effective when there is a large impedance mismatch which 
leads to rapid attenuation of an input wave for certain frequency ranges. This filter 
acts only in specific frequency bands. At other frequencies, it will transmit the 
vibratory energy unmodified, thus acting as a mechanical notch filter. The 
theoretical development of the mechanical notch filter is based on the theory of 
waves in periodically layered media. Floquet theory is used to solve the equations for 
the propagation of plane waves through a laminated system of parallel plates of dif­
ferent materials when the direction of propagation is normal to the plates. Several 
experiments were conducted to prove the validity of the mechanical notch filter con­
cept. These experiments demonstrated that the theory is correct and that the results 
have practical application. 

1 Introduction 
In the design of machinery the control of undesirable vibra­

tions is frequently handled by the use of isolation concepts. In 
most cases the frequency of these vibrations is low, e.g., less 
than 100 Hz, and the principles of vibration isolation for this 
range of frequency are relatively well understood [1]. In some 
cases, however, there may be a need to protect very sensitive 
components from higher frequencies and the standard tech­
niques may not be appropriate due to the presence of wave ef­
fects. To deal with high-frequency vibration problems it was 
suggested by Javid [2] that the device known as a mechanical 
filter [3-5] be used. This device is a periodically layered stack 
of alternating materials which have wide differences in density 
and stiffness. A possible application of the device is shown in 
Fig. 1, where it is used to isolate a sensitive component from 
the high-frequency vibrations of the base on which the device 
would normally sit. 

The working principle of the device is wave reflection and 
the device becomes increasingly effective when there is a large 
impedance mismatch between materials. Large differences in 
impedance can lead to rapid attenuation of an input wave for 
certain frequency ranges. This filter acts only in specific fre­
quency bands. At other frequencies it will transmit the vibra­
tions unmodified (as in the case of steady-state vibrations). 

The theoretical development of this system is based on the 
theory of waves in periodically layered media. The equations 
for the propagation of plane waves through a laminated 
system of parallel plates of different materials when the direc­
tion of propagation is normal to the plates are treated by what 
is called Floquet theory [4-6]. The problem of a shear wave 

propagating through an infinite stack of plates each of which 
is infinite in extent allows a very simple solution which can 
provide insight into the existence of stopping bands and an 
understanding of the attenuation of a mechanical filter of this 
kind. An analysis has been given by Lee and Wang [7] and Lee 
[8] for cells containing two layers and by Kahrim-Panahi [9] 
for cells with three layers. 

The fact that real filters have plates of finite extent does not 
appear to affect the response generally, possibly due to the 
fact that in shear waves the errors introduced by the assump­
tion of infinite plates are due to the presence of shear stresses 
in the free surfaces at the edge of each plate. If the width-to-
thickness ratio of each plate is very large, this error will be 
small. This supposition appears to be supported by the results 
of an experimental program. In addition, the theory predicts 
extremely rapid attenuation of the waves when the frequency 
of input is in the center of the stopping bands and thus the 
waves are effectively blocked after only a finite number of 
layers are traversed. The fact that the real stack is finite, as op­
posed to infinite as assumed in the theory, seems therefore not 
to obviate the existence of stopping although it may modify 
their details. 
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FILAMENT 

w(x,t) = u(x)e (1) 

where u is the frequency of steady-state oscillatory input. The 
densities and shear moduli of the filament and matrix 
materials will be denoted by pj, p,„ and Gf, G,„. 

The only nonzero strain and stress components are 

dw 
Y = ^ r - - T(x,t) = G(x)y(x,t) (2) 

o / 2 

a/2 

dx 

The equation of motion takes the form 

d ["_. . du 
~dx\ 

\G(X)-
dx 

+ p(x)w2u = Q (3) 

The functions G(x) and p(x) are periodic functions with 
period a, the cell thickness, and according to Floquet theory 
the solution takes the form 

u(x) = v(x)e'qx (4) 

where v(x) is periodic with period a, and q is a constant wave 
number. The displacement w(x,t) thus takes the form of a 
Floquet wave propagating through the stack 

>(x,t) = v(x)e^ix-^ (5) 

Fig. 2 Infinite, periodically layered composite 

2 Theoretical Background 

In what follows we use terminology common in the theory 
of periodically layered composites in which each cell, of 
thickness a, is made up of two layers of different materials. 
We refer to that layer which is composed of the denser and 
stiffer material as the filament, and the other as the matrix. 
The filament layer is taken to be of thickness b and the matrix 
of thickness a — b. The direction of propagation of plane 
waves through an infinite stack of these cells is normal to the 
layering and distance is denoted by x (Fig. 2). The displace­
ment in the parallel direction is denoted by w(x, t) and it is 
assumed that: 

The second-order differential equation requires two bound­
ary conditions, which in the Floquet theory are supplied by the 
quasi-periodic boundary conditions 

"(-f)=wH>° 
M'(-f)="'(-T>'9a 

(6) 

(7) 

It should be noted that these equations arise from the 
periodicity of v(x) and the requirement of continuity of 
displacement and shear stress across cell boundaries. The or­
dinary differential equation (3) and the quasi-periodic bound­
ary conditions constitute a Sturm-Liouville (or eigenvalue) 
system. Here, the eigenvalue is the wave number q. 

N o m e n c l a t u r e 

a = cell thickness 
b = thickness of filament layer 
c = shear wave speed 

Cj = shear wave speed in fila­
ment material 

cm = shear wave speed in matrix 
material 

ff = natural frequency of first 
thickness shear mode of 
filament layer 

fm = natural frequency of first 
thickness shear mode of 
matrix layer 

f* = natural frequency of first 
thickness shear mode of 
matrix layer of thickness a 

fB = frequency of beginning of 
first stopping band 

fE = frequency of end of first 
stopping band 

fM = frequency of middle of 
first stopping band 

n = number of cells in filter 
p = ratio of acoustic im­

pedances of filament and 
matrix materials 

q = wave number 
qD = imaginary part of wave 

Qi 

QR = 

t = 
u = 

uuu2 = 

V = 

w = 

X = 

z = 

G = 
Gf = 

number q for viscoelastic 
material G„, = 
imaginary part of wave 
number q for elastic G7 = 
material GR = 
real part of wave number R = 
for viscoelastic material 
time RD = 
steady-state component of 
w R* = 
fundamental solutions of S = 
equation of motion 
periodic component of u 
displacement component ZB = 
parallel to layer interfaces 
coordinate in direction 
perpendicular to layer a = 
interfaces 
coordinate parallel to layer 
interfaces and perpen- 5 = 
dicular to direction of 
displacement w y = 
nondimensional frequency; a = 
coordinate in direction of p = 
displacement w Pj = 
shear modulus 
shear modulus of filament p,„ = 
material T = 

shear modulus of matrix 
material 
imaginary part of G 
real part of G 
reduction factor due to 
wave trapping 
reduction factor due to 
damping 
desired degree of reduction 
ratio of thickness of fila­
ment layer to thickness of 
matrix layer 
nondimensional frequency 
of beginning of first stop­
ping band 
ratio of weight of filament 
layer to twice the weight of 
matrix layer 
ratio of imaginary part of 
G to real part of G 
shear strain 
frequency of vibration 
density 
density of filament 
material 
density of matrix material 
shear stress 
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The eigenvalue equation is most conveniently obtained by 
considering two linearly independent solutions of equation 
(3), which we can denote by ux and w2, and taking the eigen-
function as ux + au2 where a is a constant to be determined 
from the boundary conditions. Since the functions G and p in 
(3) are constant in each layer in a cell, the basic solutions ux 

and u2 take particularly simple forms. In the filament, the first 
solution it, is taken to be 

blX b b 
— <x<— 
2 2 

(8) 

where Cy = VG^Tpy-. In the matrix material, b/2<x<a/2, and 
ux takes the form 

(9) 
oix n i . * 

ux =A + cos hZ?+sin 

where A +, B+ are determined from continuity of displace­
ment and stress at the interface between filament and matrix at 
x=b/2. These lead to the solution for ux for the matrix in the 
form 

iob 
it, = c o s • 

2c cos 
•/ 

<~T) bl\X - T - ) 
—psm 

b 

~2~ 

2cf 

<x< 

where 
G I 

a 

Pfcf 
L/ ~* m Pm m 

The solution for ux in the region - (a/2) < x < 
by the foregoing using symmetry. 

The second solution is obtained by taking 

o>x b b 
u2 = sin - — < A : < -

(10) 

(11) 

• (b/2) is given 

(12) 
c / 

in the filament material and using the same technique to ex­
tend it to the matrix material in the regions b/2<x<a/2, 
-a/2-<x< -b/2. When we take both solutions in the form 

u = ux +ait2 (13) 

and use the first quasi-periodic boundary condition, we obtain 
a and the solution for u in the form 

u = cos-

,[. bib bi(a-b) tab oi(a-b) 
11 cos——cos—; psm——sin-2c, 2c„ 2c, 2c„ 

r . cob w(a-b) oib . bi(a-b)' 
I sin——cos—: hpcos——sin-2c, 2c„ 2cf 2c„ 

qa . cox 
x t a n — s i n — 

2 cj 

(14) 

for the filament region -b/2<z<b/2 with a corresponding 
expression in the matrix region. When these two solutions are 
substituted into the second quasi-periodic boundary condi­
tion, we obtain the final eigenvalue equation relating the 
eigenvalue q to the input frequency oo 

oi(a-b) wb 
cosqa = cos c o s — 

cm cf 

4K> (15) 
bi(a-b) . bib 

j sin sin 
PJ cm cf 

It is the basic equation which reveals the existence of a 
wave-blocking filter. In order that the composite system 

transmit waves of a specific frequency co, the eigenvalue q 
must be real. If for some value of OJ the right-hand side of 
equation (15) is of magnitude greater than 1, then q will be 
complex and the imaginary part will give a solution in the 
form of a decaying exponential. Under these circumstances, a 
wave will penetrate in effect only a finite difference into the 
stack. It is clear from equation (15) that if p is large enough, 
the value of the right-hand side can exceed 1 for a wide range 
of oi. The design of the filter follows from this equation and a 
detailed analysis of equation (15) is given in the next section. 

3 Application to Filter Design 

In the design of practical filters, it is essential that there be a 
large impedence mismatch between the two materials and this 
means that the parameter p in equation (15) will be very large. 
We will also be considering very thin layers of either material. 
It follows that the quantity 

u>b 

bl 

27 

2b 

(16) 

is the ratio of two frequencies: the first, OJ/27T, is the input fre­
quency, and cf/2b is the natural frequency of the first 
thickness shear mode of the filament layer. This ratio will be 
very small in most realistic designs, and we thus will approx­
imate sin bib/cj- by oib/cf and cos oib/cf by 1. If l/p with 
respect to p is neglected, then equation (15) becomes 

w(a-b) _ 1 

; 2~ cosqa = cos-
oib bi(a-b) 

) sin 
Cf Cm 

(17) 

It is convenient to rewrite this equation in the form 

cosga = cosz — azsinz 

where 

1 P/b Pf 
2 Pm(a-b) 

S = 
(a-b) 

bi(a-b) 
Z = = 7T 

2TT 

K2(a-b) 

(18) 

(19) 

(20) 

(21) 

In the foregoing, S is a thickness ratio (viz., the ratio of the 
thickness of the filament layer to that of the matrix layer), and 
z is essentially the ratio of the input frequency bi/2ir to that of 
the natural frequency of the first thickness shear mode of the 
compliant layer, c,„/2(a — b). For the regime of practical in­
terest, equation (18) is the key relationship and the basis for 
the design of the band-stopping mechanical filters. 

The design concepts involved are quite straightforward. 
Given that one wishes to block frequencies in a certain band, 
the material properties and the thicknesses of the layers mak­
ing up each cell must be chosen so that the right-hand side of 
equation (18) has magnitude greater than 1 in the frequency 
band of interest. Thus, the edges of the stop bands will be 
given by the condition that cos qa = — 1 or + 1. We see from 
the right-hand side of equation (18) that for small values of z 
(corresponding to small values of u), cos qa will be positive 
and slightly less than 1. As co (and therefore z) increase, cos qa 
diminishes, becoming negative, reaching the value - 1, which 
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Fig. 3 Determination of stopping bands 

is the start of the first stop band, and then decreasing from - 1 
to a minimum and increasing back to - 1 when z = IT, which is 
the end of the first stop band. As co (and z) increase, cos qa will 
become positive, then attain the value + 1, which is the start of 
the second stop band, then increase from + 1 to a maximum, 
and then decrease back to + 1 at z = 2ir, which is the end of the 
second stop band. In this way, an infinite sequence of stop 
bands is generated, each terminating at an integral multiple of 
7T. 

The start of each stop band must be determined numerically 
from equation (18). In practice, we would be interested in only 
the lowest few bands, and also designing the system in such a 
way that the start of the first stop band is as low as possible. 
This will produce the widest possible first stop band. 

Considering the stop bands produced by cos qa = — 1, the 
corresponding values of z are, from equation (18), given by 
roots of 

azsinz = 1 + cosz (22) 

shown graphically in the sketch, Fig. 3. For the stop bands 
produced by cos qa = + 1 , we get the equation 

a?sinz = — 1 + cosz (23) 

whose roots are also shown in Fig. 3. 
The specific roots giving the beginning of each stop band 

may be determined numerically by a relatively simple pro­
cedure. However, for certain conditions it is possible to obtain 
closed-form approximations for the first root. For example, if 
a is small, the first band is narrow and the first root for z is 
close to ir and a simple approximation is 

z = 7r( l-2a) (24) 

More pertinent to filter design are large values of a; here, 
the band is wide and the first root is approximately given by 

z = V2Ax (25) 

Most real filter designs will involve intermediate values of a, 
necessitating a numerical analysis of equation (18). Examples 
will be given in a subsequent section. 

In any real filter we will have a finite (and probably a 
relatively small) number of cells. It is important to know how 
much decay will take place as the wave propagates through a 
filter. For a filter of infinite extent this is given by qx, the im­
aginary part of cos qa when this has a magnitude greater than 

1. For a filter of finite extent, wave reflections will occur at the 
free surfaces at the top and bottom of the filter so that the 
aforementioned qx will no longer be the exact measure of the 
decay. Nevertheless, we can use this as an indicator of how ef­
fectively waves are blocked by the finite element filter when 
they are in a stopping band. For a fixed-frequency u> and cos 
qa < — 1, we obtain 

q = + iq, (26) 

where 

q,a = cosh ~' [ - cosz + azsinz] (27) 

Since w(x, t) = v(x)e'lqx~u,) and v(x) is periodic with period a 

\w(na,t)\max -»<?/« „ „ 

lH>((M)lmax 
where n is the number of cells in the filter. We interpret the 
left-hand side of equation (28) as measuring the ratio of the 
maximum of the response at the top of the filter to the max­
imum of the input at the bottom of the filter. We denote this 
ratio as \/R, where R is the reduction factor associated with 
the filter. The number of cells required to obtain a reduction 
of R is thus given by 

q,a 
which is an important relationship for filter design. For a 
given choice of cell materials and geometry, the number of 
layers can be selected to provide the necessary degree of at­
tenuation, and therefore reduction, at the prescribed frequen­
cy. This frequency must lie within the stop band, since when 
\cosqal < 1, there is no attenuation, and hence no reduction. 

The degree of attenuation for fixed n will vary with frequen­
cy within the stop band. By determining how the reduction 
factor R diminishes as co approaches either edge of the stop 
band (R = 1 at any edge of the stop band), we can define the 
effective range of the stop band, i.e., that range of the fre­
quency oi within the stop band for which R>R*, where R* 
would be the desired degree of reduction for the filter. Once 
the filter has been designed, it is relatively easy to determine its 
effective range by a straightforward numerical evaluation of 
equation (18), also using equation (28). An illustration of this 
will be given later. 

4 Example 

To verify physically the fundamental phenomenon of in­
terest, namely the existence of stop bands in a periodically 
layered medium, some experiments were performed on a block 
of such material. The block, a square 20.32 cm on edge in 
planform, was 13 cells deep. Each cell was 1.27 cm thick and 
consisted of a 0.953-cm-thick layer of rubber bonded to a steel 
layer of 0.318 cm thickness. The properties of these materials 
were 

Gm = 1.38MPa, p,„ = 1.16gm/cm3 

G / =82.7GPa, p7 = 7.7 gm/cm3 

for the rubber and steel materials, respectively. 
Before experiments were commenced, computations were 

performed to determine the first (lowest frequency) stop band. 
This required the use of the following quantities: 

cm = y/Gm/pm = 3.45 x 103 cm per s 

cf = -iGJTpf = 328 x 103 cm per s 
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G,cm 1 
- / - ? L - = 6 3 1 » — Gmcf 

fr = - - f = 516.5xl03 Hz 
lb 

We expected that the lowest stop band of this system would 
have a frequency/of order 103 Hz. Therefore f/ff <*C 1, so 
that we are justified in using the simplified equation (17), or 
equivalently equation (18), rather than the more complex 
equation (15). Thus, we have to find the lowest root z of the 
equation 

cosqa = cosz — azsinz = - 1 (30) 

where a is given by equation (19) and in this case has the value 
1.106. 

A simple numerical solution of equation (30) by the elemen­
tary scheme of the method of chords gives for the lowest root, 
z, a value of 1.2515, which represents the start of the first stop 
band. As mentioned previously, the end of the first stop band 
is given by Z-TT. From equation (21), we recall that 

J ~ J m 
Z7T 7T 

where/ is the frequency of vibration in Hz, and 

J m 
2(a-b) 

(31) 

(32) 

is the natural frequency of the lowest thickness shear mode of 
the rubber layer. This yields for the beginning of the first stop 
band the frequency fB = 722 Hz, and for the end of the first 
stop band the frequency fE = 1808 Hz. The frequency fM at the 
middle of the first stop band is 1265 Hz. Thus, our 
preliminary estimate that the frequency of the first stop band 
would be of order 103 is correct. 

To see how large the attenutation is when the frequency of 
the vibration/is within the stop band, we examine the situa­
tion at the middle of the stop band where / = / M = 1265 Hz. 
Using (31), we compute for the right-hand side of (18) that cos 
qa = -2 .55 , whence, from (27) q,a=\.59. 

For a filter n cells deep, this gives a reduction factor R of 
exp [n qfi\ (see equation (28)). Thus, we have 

n 

R 

13 

9.48 x10 s 

7 

68,200 

3 

118 

Even for a filter of only 3 cells, we get a considerable reduc­
tion (over 100). 

Experiments were performed for n = 13, then n = l, and 
finally for n = 3. The beginning and end of the first stop band 
occurred at frequencies very close to the predicted ones given 
in the foregoing. 

It is important to see how the quantity q,a, which controls 
the reduction factor R, varies as we approach the edges of the 
stop band. As discussed previously, this will define the effec­
tive width of the stop band. We have determined q,a and the 
corresponding values of R for 3 layers (i.e., n = 3) at the l/8th 
point of the stop band (where / = 858 Hz) and at the 7/8th 
point of the stop band (where/= 1672 Hz). We obtain 

/(Hz) 

qfi 

R 

722 

0 

1 

858 

1.012 

20.8 

1265 

1.59 

118 

1672 

1.141 

30.6 

1808 

0 

1 

Thus, we see that even when we are close to the edges of the 
stop band, a three-cell filter gives a considerable degree of 
reduction. 

A certain amount of reduction, unaccounted for in the 
present theory, will also occur due to the viscoelastic nature of 
the rubber. This reduction due to material damping can be 
estimated and compared to that caused by wave trapping pro­
duced by the layering. A shear wave propagating through the 
rubber alone would have a displacement field given by 

with 

w(x,t) = e' 

q-

j(qx-oit) (33) 

(34) = QR + IQD 

where qR is the real part of the wave number and qD represents 
the attenuation factor due to material damping. This factor 
can be written in terms of the real (GR) and imaginary (G,) 
parts of the shear modulus of the rubber as 

.--ST*(4-)N£)*r <"> VG«7P 

with 

6 = arctan b 

8 = 
GR 

(36) 

(37) 

and p is the density of the rubber. Since GR » G, for the rub­
ber used in the bearing, we get 

QD=^- (38) 
2c 

where c = s]GR/p is the speed of shear waves in the rubber. For 
this rubber, 5 = 0.15, and if we consider a filter with three 
cells, the reduction factor, RD, due to damping is at the mid­
point frequency of the stop band (1265 Hz) 

Rn = e 
3qn(a-b) 

= e' 
,(3)(.439)(.375) = J g4 (39) 

The reduction factor R due to wave trapping was, for 3 cells, 
at this frequency, 118. Clearly, material damping plays a 
negligible role in reducing the magnitude of the output; the 
major reduction is caused by wave trapping. 

The block was also cut so that its dimensions in the y direc­
tion was halved, and vibration experiments were performed on 
this reduced block. This reduction in the planform of the 
block should have no effect on its performance as a filter since 
all planes where y is equal to a constant are traction free. Ex­
periments appear to bear out this conclusion. 

The block was then cut along the plane z equal to a constant 
(see Fig. 2) so that its dimension in the z direction was halved. 
This reduction could have an effect on its performance, since 
the planes for which z is a constant are not traction free. As 
discussed in the Introduction to this paper, edge effects will 
thus be present. It was the purpose of these experiments to get 
a preliminary estimate of the importance of edge effects. 

The experimental results will be discussed in Section 7. 

5 Filter Design: Trial and Error 

As an example, consider first the design of a filter with a 
relatively low-frequency stop band. It is desired to design a 
filter that will block a frequency of 400 Hz. The dimensions of 
the filter are to be 3.81 cm x 10.16 cm in planform and 2.54 cm 
deep. To get an effective filter, it should be designed so that 
400 Hz will fall near the middle of the first stop band. 

Let use begin by assuming that a sufficiently high reduction 
factor will be obtained by using 3 cells. Each cell will be com­
posed of a layer of rubber bonded to a layer of steel. Since the 
frequencies to be blocked are relatively low, it is desirable to 
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make the frequency at which the first stop band begins as low 
as possible. Thus, the most compliant rubber available must 
be used. An oil-extended rubber has been produced with the 
following properties [10]: 

G„, =0.260 MPa; p,„ =0.93 gm/cm3 

For steel, we have the following properties: 

G7=82.7GPa; Pm =7.7 gm/cm3 

This yields 

cf = 328 x 103 cm per s 

cm = 1.672X103 cm per s 

p = 1 6 2 3 » 
1 

Note that o)b/Cf~0.02«.l, so that use of the approximate 
relation (18) is justified. 

For our first design attempt we chose S = b/a — b=\/2. 
Thus, since a = 0.847 cm, b = 0.282 cm, and a — b = 0.564 cm. 
Then, a = 2.07 and solving equation (18) with this value of a, 
we obtain for the lowest root ZB> %B = 

0.945. Then, 
fB=0.945/irfm, fm=cm/2(a-b)=1482 Hz, which yields the 
value fB= 446 Hz. The 400-Hz frequency is not within this 
stop band, and thus the design is not appropriate. 

For the second attempt, try 5 = 1 / 3 . Going through the 
same foregoing procedure, zB = 1.136 is obtained, which yields 
fB = 476 Hz, a value even larger than the first attempt. Thus, 
the movement is in the wrong direction, and a value of 5 larger 
than 1/2 must be chosen. 

In the third attempt, use S = 1. This leads to zB =0.6815 and 
fB = 429 Hz, which is an improvement over the two previous 
designs, but is still not suitable. Therefore, again a larger value 
of S is required. 

For the fourth attempt use 5 = 3, which leads to zB =0.3986 
and fB = 501 Hz, which makes this design worse than any of 
the previous three. However, these four designs indicated that 
there must be some particular value of S which, for a given cell 
size a, minimizes fB. We now wish to determine that value of S 
and the corresponding minimum value of fB. For our pur­
poses, this would be the optimal filter. 

6 Optimal Design 

There are several ways to investigate the question of what is 
the optimal value of 5 so as to minimize fB. We begin with the 
simplest approach. It is clear from equation (18) and Fig. 2, 
that one way to obtain a small value of fB is to choose material 
properties and a value of S which make a as large as possible. 
This can be accomplished for values of S of order unity by 
choosing materials such that pf/pm:»1. 

Assume that pj/pm — °° which implies that a — oo. As a—oo, 
ZB-~Q. Thus, 

f(z)=cosz-azsmz— M - — z 2 J - az 

That is, 

f(x)->l-az2 

since a » 1. The beginning of the first stop band, zB, occurs 
when/(z) = - l . Thus 

l = l - a z 2 

whence, z B =V2/a . Now, 

zB C, a 
JB~~7 2{a-b) ~~Jm~a-b 

where/„ = cm/2a is the natural frequency of vibration of the 
first thickness shear mode of a layer of the rubber used in the 

filter with a depth equal to a, the cell depth. The factor fB may 
be rewritten as 

/ * = — izB(l+S)] 
•K 

But zB = V27a with a = 1/2 pj/pm x S. Putting this into the ex­
pression for/B 

Once the materials and cell thickness have been chosen, the 
first bracket is a constant. The dependence of fB on the 
thickness ratio S is expressed solely in the second bracket. 
Therefore, in order to minimize fB, that value of S > 0 which 
minimizes the second bracket must be selected. The second 
bracket is a well-known function whose minimum can be 
found by elementary means, and it occurs when S= 1. This is 
an interesting result, and certainly not an obvious one. The 
optimal filter occurs when the layers of rubber and steel are of 
equal thickness. 

However, it must be kept in mind that the preceding 
analysis is correct only when a^>l. For our choice of 
materials, if we set S = 1, we get a = 4.14, which is not^s>\. 
Thus, we can use 5 = 1 only as a rough guide to optimal design 
when a is not : » 1 . Our four previous design attempts bear 
out the validity of 5 = 1 leading to a near optimal design. Of all 
our designs, the one which gave the lowest value for/g was the 
one where 5 = 1. 

The optimal design problem can be dealt with in a more 
general manner. Let us attempt to construct an algorithm that 
will lead to an optimal design for any value of a > 0. We have 

fB(S)=^-zB(S)[l+S\ 
•K 

(39) 

where zB(S) is the lowest root of equation (18) with cos 
qa = — 1: 

cosz (-^-) Szsinz + 1 = 0 (40) 

In the sequel, as a matter of convenience, the subscript B on ZB 
will be dropped. For a minimum value of fB, we must have 

dfB 

dS 
- = 0 

which implies that 

dz(S) 
(1 + S ) — ^ + z ( S ) = 0 

From equation (40), we get 

dz __ ~zsinz 

~dS V~ 

(41a) 

(41ft) 

(42) 

Ssinz + Szcosz + 2- -smz 
Pf 

Substituting (42) into (41), and simplifying, the optimality 
condition is obtained as 

S=[\ -2G»m/p,)][-
tanz 

(43) 

It is important to recall the meaning of z: it is the lowest root 
of equation (40). 

Based on the optimality condition, equation (43), a simple 
iterative design procedure can now be constructed which will 
lead to the optimal value for S. Say that we have arrived at the 
;'th design attempt. It is associated with the value S,-. We ob­
tain the root z; which is the lowest root of equation (40) with 
S = Sj. How do we choose Si+l to give us a better design? We 
use the optimality condition, equation (43). In the right-hand 
side of equation (43) we substitute for z the value z-,. This then 
produces the value S ; + 1 . That is, 
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S,+ i = [l-2(j)m/pf)] 
tanz,~ (44) 

This process is continued until convergence to the optimal 
value of S occurs. As a partial check on the validity of this for­
mula, consider what happens as pj/pm — °°, which implies that 
a— oo. Then, equation (43) yields S= 1, which was the result 
previously obtained by a direct solution. 

As an illustration of the application of this more refined op-
timality criterion, consider the example discussed in Section 5. 
Let us start with case 3 (where Sx = 1) because our crude 
criterion states that S= 1 is the optimal condition. We can use 
this as input to the more refined criterion, equation (44). It 
was seen that Sl = 1 gives z, =0.6815 and fB =429 Hz, which 
leads to S2 = 0.9027. With this value of S2 we obtain for z2 the 
value 0.7157 and for fB, 429 Hz. This then leads to 
S3 =0.9214, which then gives z3 =0.7075 and fB = 429 Hz. At 
this stage it is seen that the iterative optimization scheme has 
converged. Note tha t / B is not very sensitive to small changes 
in S when S is near the optimal point. For S= 1 or 0.9027 or 
0.9214, we getfB = 429 Hz. There is no point in trying to seek 
greater accurracy. (The true properties of the rubber are not 
known all that accurately.) From a practical point of view, the 
easiest filter to manufacture would be for 5 = 1 , i.e., equal 
thicknesses of steel and rubber. (If there are slight errors in the 
manufacturing process, so that S is not exactly equal to 1, but 
close to it, then our previous results tell us that it is not critical, 
since when S is near \,fB is insensitive to small changes in S.) 
The lowest value of fB attainable for the materials utilized and 
a cell thickness of 0.847 cm is 429 Hz. Thus, such a filter can­
not be used to stop transmission of a disturbance with a fre­
quency of 400 Hz. Therefore, we must try a larger cell size, 
which implies, for the fixed-depth dimension of 2.54 cm, a 
smaller number of cells. 

Next, consider a filter with 2 cells, so that a =1.27 cm. 
Based on our previous work, we also choose S= 1. This leads 
to zB = 0.6815, as for our previous case 3. But now this leads 
t o / B = 286 Hz. It is known that zE, the root associated with 
the end of the first stop band, is z£ = 7r, which leads to 
/ £ =1317 Hz. Thus, the frequency of interest, 400 Hz, lies 
within the stop band, and this.design is potentially acceptable. 

Now, we must check to see if the reduction factor for this 
design is sufficiently high for practical purposes. For this 
design, we obtain q,a = 0.621. Thus, for a filter with 2 cells, 
we have 

If this is not a sufficiently high reduction factor, then the filter 
cannot be designed successfully with this choice of materials. 
One would have to find more suitable materials, e.g., the stiff 
material should have a larger density and a larger shear wave 
speed while the compliant material should have a lower densi­
ty and a slower shear wave speed. 

It is interesting to note that if we could make the filter 1 cell 
thicker (i.e., 3.81 cm instead of 2.54 cm), the reduction factor 
R would increase to the value 132. This value would appear to 
be sufficient high to meet most practical requirements. 

7 Experimental Results 

To verify certain aspects of the foregoing theoretical results, 
experiments were performed on several specimens of 
periodically layered composites. Due to time and cost con­
straints, only a limited program could be pursued. The pur­
pose of these experiments was to ascertain whether the wave-
stopping phenomenon predicted for the infinite composite 
medium would be observed in a block, or mechanical filter, of 
finite dimensions. If wave blocking were observed in the finite 
filter, we then wanted to determine whether the frequencies of 
the start and end of the observed stopping band were ade­

quately predicted by the theory based on the infinite medium. 
Two composites were used in the experiments. The first was 

the composite described in Section 4 and the second was made 
of alternating steel and rubber layers, each with a thickness of 
0.635 cm. The rubber employed was an oil-extended one as 
described in Section 5. The experiments were performed by at­
taching the bottom of a specimen (or filter) to the rigid base of 
a vibration table which was then excited, first by a sine sweep 
input and next by a random input. A transducer attached to 
the rigid base of the vibration table measured the input at the 
bottom of the specimen, and one attached to the top of the 
specimen measured the output there. These measurements 
were fed into a Fourier analyzer which then displayed and 
plotted the transmissibility of the specimen filter. In this way 
we could directly observe whether any wave stopping 
occurred. 

The tests performed on the first composite were with a 
specimen having 13 cells and a planform of 20.32 cm x 20.32 
cm. Wave stopping was observed in a frequency band close to 
that of the lowest predicted from the theory for the infinite 
medium. To assess whether decreasing the planform of the 
filter would obviate the wave-stopping action, the specimen 
was cut in half to produce a filter of 10.16 cm x 20.32 cm. The 
behavior of this filter was essentially the same as that of the 
larger one. Next, this filter was cut so as to remove 6 cells, 
leaving a filter of 7 cells. Tests on that specimen yielded a stop­
ping band whose starting and ending frequencies differed little 
from those obtained in the previous test. This 7-cell filter was 
then cut to reduce its planform to a square 10.16 cm on edge. 
Again, tests demonstrated wave blocking with essentially the 
same frequency interval for the stopping band. For the final 
series of tests on this composite, the 7 cells of the 10.16-cm 
specimen were shaved to 3. Tests on this filter yielded results 
similar to those described in the foregoing. 

Typical experimental data are shown in Figs. 4 and 5 for the 
3-cell filter. The input and output oscilloscope traces under 
sinusoidal excitation at a frequency below that of the first 
stopping band are shown in Fig. 4. The output is not reduced. 
The input and output traces when the excitation frequency is 
within the stopping band of the filter are shown in Fig. 5 and 
the reduction in the output is marked. The transmissibility 
(output/input) versus the frequency of this filter are shown in 
Fig. 6 in which the stopping band is obvious. Within the stop­
ping band, this filter can produce a drop in the transmissibility 
of as much as 40 dB. 

Tests on the second composite were performed on a 
specimen with 3 cells and a planform of 7.62 cm by 12.7 cm. 
The results were similar to those for the first specimen except, 
of course, that different stopping bands and attenuation 
values were obtained. The transmissibility versus frequency 
for this filter is plotted in Fig. 7 where a reduction of as much 
as 60 dB is observed. 

These results demonstrate that the' fundamental wave-
stopping phenomenon predicted by the theory for a 
mechanical filter of infinite extent composed of a periodically 
layered composite is not obviated when the filter is of finite ex­
tent. By reducing the filter to finite extent, the details of its 
behavior are modified, but its basic action is not. 

8 Concluding Remarks 

The study summarized in this paper indicates that it may be 
feasible to use periodically layered composites as mechanical 
filters for a variety of vibration isolation purposes. In com­
parison to conventional vibration isolation methods, the use 
of such mechanical filters would be primarily in the higher 
ranges of frequency. 

The theory employed in this study is based on wave prop­
agation in a periodically layered composite of infinite extent 
and composed of two materials. Given such a medium, the 
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Fig. 4 Input and output for filter when frequency of vibration is below 
first stopping band 
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Fig. 5 Input and output for filter when frequency of vibration is within 
first stopping band 

prediction of frequencies of the stop bands of any particular 
composite is quite straightforward. These stop bands define 
the mechanical filtering action of the medium. Theoretical 
predictions of the beginning and ending frequencies of stop 
bands appear to be corroborated by the experiments. 

However, in practical applications, mechanical filters are of 
finite extent. This then introduces edge effects and reflections 
from the top and bottom face of the filter the consequences of 
which have not been explored analytically. Such studies ap­
pear to be nontrivial. The limited results from the small ex­
perimental program seem to indicate that these effects do not 
obviate the basic physical phenomenon in the layered com­
posite. The filtering effects (i.e., the stop bands) still appear to 
exist as the size of the mechanical filter is reduced to 
reasonable dimensions. This is an area of study which needs 
further investigation, both analytically and experimentally. 

The experiments established that the lowest stopping band 
of the finite filter was predicted quite well by the theory for the 
infinite model. Whether that would be true for the higher fre­
quency stopping bands is an open question. Because of the 
limitations of the experimental equipment, higher frequency 
ranges could not be explored. But in practical application, the 
filter would be designed so that its first stopping band blocked 
the frequency range of interest. The designer would not nor­
mally depend on higher frequency stopping bands to filter out 
a frequency range which needed to be blocked. 

The inverse problem, that of designing a mechanical filter to 
produce a desired stop band, does not appear to be difficult if 
it is based on a model of a periodically layered medium of in­
finite extent (i.e., assuming that edge effects are negligible and 
that reflections from the top and bottom faces of the filter are 
negligible). The equation upon which mechanical filter design 
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Fig. 6 
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Transmissibility versus frequency for first composite (a = 1/2 in., 
in.) 
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Fig. 7 
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Transmissibility versus frequency for second composite (a = 1/2 
1/4 in.) 

is based can, for a large class of problems of interest, be 
simplified so that it is easy to use in practice. 
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