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07300 México, D.F., MEXICO

renteri@esfm.ipn.mx

Abstract

In this paper we compute the second generalized Hamming weight
of the evaluation codes associated to complete bipartite graphs. The
main result depends on the minimum distance and second generalized
Hamming weight of the generalized Reed-Solomon codes.
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1 Introduction

In [20] V. K. Wei introduced a generalization of the minimium distance of a
binary code as a consequence of his studies of the wire-tap channel of type
II. The rth generalized Hamming weight of a linear code C is the size of the
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smallest support of an r− dimensional subcode of C. Moreover, for an [n, k]
linear code C we define the support of C by

supp (C) := {j : there is an element (x1, . . . , xn) ∈ C with xj �= 0}

In fact, if 1 ≤ r ≤ k, the rth generalized Hamming weight of C is defined by

dr(C) := min {| supp (D)| : D is a linear subcode of C and dim (D) = r}

Obviously, d1(C) is the minimum distance of the code C. In this paper we will
work with the case r = 2 and we will compute this value in the case of some
evaluation codes.

2 Evaluation Codes

Let K be a finite field with q elements, let P
l
K be the l− projective space over

K and X = {P1, . . . , Ps} be a subset of P
l
K . We always use the standard

representation for the points in P
l
K , i.e., P = (0, 0, . . . , 0, 1, ai, . . . , al). Let L

be a finite dimensional K− linear space of functions which are defined on the
set X and take values on K. Thus the evaluation map

ev : L → Ks,
ev (f) = (f (P1) , . . . , f (Ps))

defines a K−linear code: CX = ev (L) .
Let S = K [X0, . . . , Xl] =

⊕
d≥0 Sd be the polynomial ring over the fi-

nite field K with the natural graduation. If L = Sd is the d−graded homo-
geneous component of the polynomial ring S, the corresponding linear code
CX (d) := ev (Sd) will be called the evaluation linear code over the set X,
which is isomorphic to Sd/IX (d), where IX =

⊕
d≥0 IX (d) is the graded van-

ishing ideal of X. The dimension of these codes is given by the Hilbert function
of S/IX , i.e., dimK CX(d) = HX(d).

This kind of codes has been studied in many particular cases (cf. [1], [2],
[4], [5], [6], [7], [8], [9], [10], [14], [15], [16],[17], [18]) and their main parame-
ters have been computed. Especific examples have been given with the help
of Macaulay 2 (cf. [11]). In fact, a generating matrix of these codes can
be obtained by finding a Gröbner basis for the ideal IX , and then the cosets
module IX(d) of monomials of degree d not belonging to the leading terms
ideal LT (IX) of IX , forms a K−basis for Sd/IX(d). If B ⊆ Sd is this set of
monomials then (ev(h))h∈B is a generating matrix for CX(d).
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3 Toric Varieties

In this paper we will work with the case where X is a toric variety. Our
definition of a toric variety agrees with the given by R.H. Villarreal in [19].

Let A = (aij) be a fixed m×(n+1) matrix with non negative integer entries
aij and with non-zero columns. Let K [X0, . . . , Xn] and K [t1, . . . , tm] the two
polynomial rings over K, and ϕ the graded homomorphism of K−algebras

ϕ : K[X0, . . . , Xn] → K[t1, . . . , tm]

induced by

ϕ(Xi) = ta1i
1 · · · tami

m

The kernel of ϕ, denoted by IA, is called the toric ideal associated with the
matrix A.

Remark 3.1 When the field K is algebraically closed, we can use Macaulay
2 (cf. [11]) to compute the toric ideal IA (cf. [3]).

The toric variety determined by the matrix A is the subset of the projective
space P

n
K given by

X = {(ta11
1 · · · tam1

m , . . . , t
a1(n+1)

1 · · · tam(n+1)
m ) ∈ P

n
K | t1, . . . , tm ∈ K}

Of course, we take the values of t1, . . . , tm ∈ K so that they define a point in
P

n
K .

4 Complete Bipartite Graphs

Let Km,n be a complete bipartite graph (cf. [12]). The incidence matrix
associated to Km,n is the (m+ n) × (mn) matrix B = (bij) with bij = 1 if the
vertex vi and the edge aj are incident and bij = 0 otherwise.
In the general case, the toric variety X associated to the incidence matrix of
the complete bipartite graph Km,n is given by

X = {(t1tm+1, t1tm+2, . . . , t1tm+n, t2tm+1, t2tm+2, . . . , t2tm+n, . . .
tmtm+1, tmtm+2, . . . , tmtm+n : ti ∈ K∗ for all i = 1, . . . , m+ n}

And in fact, it can be written as

X = {(1, α1, α2, . . . , αn−1, β1, α1β1, α2β1, . . . , αn−1β1,
β2, α1β2, α2β2, . . . , αn−1β2, . . . , βm−1, α1βm−1, α2βm−1, . . . , αn−1βm−1)

: α1, . . . , αn−1, β1, . . . , βm−1 ∈ K∗}
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Let s = #(X) and consider the following evaluation map

θ : K[Z00, . . . , Z(m−1)(n−1)]d → Ks

θ(f) = (f(P1, . . . , f(Ps)))

where X = {P1, . . . , Ps}.
In this case, the evaluation code of order d, CX(d), associated to the in-

cidence matrix of the complete bipartite graph Km,n is the image of the last
evaluation map.

From now on we will use the following notation:

X1 = {(1, α1, . . . , αn−1) : α1, . . . , αn−1 ∈ K∗}

and

X2 = {(1, β1, . . . , βm−1) : β1, . . . , βm−1 ∈ K∗}
Obviously, #(X1) = (q − 1)n−1 and #(X2) = (q − 1)m−1.
Let

θ1 : K[X0, . . . , Xn−1]d → Ks1

θ1(g) = (g(Q1), . . . , g(Qs1))

where s1 = (q−1)n−1 and X1 = {Q1, . . . , Qs1}. Then CX1(d) (the generalized
Reed-Solomon code of order d associated to X1) is the image of the last map
and

CX1(d) � K[X0, . . . , Xn−1]d/IX1(d)

In the same way, we define

θ2 : K[Y0, . . . , Ym−1]d → Ks2

θ2(h) = (h(R1), . . . , h(Rs2))

where s2 = (q−1)m−1 and X2 = {R1, . . . , Rs2}. Then CX2(d) (the generalized
Reed-Solomon code of order d associated to X2) is the image of the last map
and

CX2(d) � K[Y0, . . . , Ym−1]d/IX2(d)

In the next section we will compute the second generalized Hamming weight
in the case of the evaluation codes associated to complete bipartite graphs and
it will depend on the results about generalized Reed-Solomon codes.
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5 Main Result

Let ψ the Segre map (cf. [13]) restricted to the set X1 ×X2 ⊂ P
n−1
K × P

m−1
K ,

and with values in P
mn−1
K . Therefore the image of this map is X. This means

that for each Pij ∈ X we can find two points Qi ∈ X1 and Rj ∈ X2 such
that Pij = ψ(Qi, Rj) for all i = 1, . . . , s1 and j = 1, . . . , s2. Moreover if
Λ = (f(P11), . . . , f(Ps1s2)) ∈ CX(d) then

f(Pij) = f(X0Y0, . . . , Xn−1Ym−1)(Qi, Rj)

for all i = 1, . . . , s1 and j = 1, . . . , s2. In fact let f(X0Y0, . . . , Xn−1Ym−1) =∑
I,J aI,JX

IY J .

Of course in this notation we are using that if I = (i0, . . . , in−1) ∈ N
n, XI will

denote the monomial X i0
0 · · ·X in−1

n−1 and if J = (j0, . . . , jm−1) ∈ N
m, Y J will

denote the monomial Y j0
0 · · ·Y jm−1

m−1 .

For each point Q ∈ X1(R ∈ X2) let

fQ(Y ) =
∑
I,J

aI,JQ
IY J ∈ K[Y0, . . . , Ym−1]d

(respectively fR(X) =
∑

I,J aI,JX
IRJ ∈ K[X0, . . . , Xn−1]d). The codeword

Λ ∈ CX(d) can be seen as a matrix

⎛
⎜⎜⎝
fQ1(R1) · · · fQ1(Rs2)
fQ2(R1) · · · fQ2(Rs2)
· · · · · · · · ·

fQs1
(R1) · · · fQs1

(Rs2)

⎞
⎟⎟⎠ (1)

where the rows are elements of CX2(d) and the columns are elements of CX1(d).

The following theorem is the main result of this work.

Theorem 5.1 The second generalized Hamming weight of the evaluation
codes of order d associated to the incidence matrix of a complete bipartite
graph is given by

δ2(CX(d)) = min {δ(CX1(d)) · δ2(CX2(d)), δ2(CX1(d)) · δ(CX2(d))}

where δ(CXi
(d)) means the minimum distance of the code CXi

(d) . Of course
δ2(CXi

(d)) means the second generalized Hamming weight of the code CXi
(d)

for each i = 1, 2.
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Proof. (A) Let C1 be a 1−dimensional subcode of CX1(d) and C2 be a
2−dimensional subcode of CX2(d). Then the tensor product of linear spaces
C1 ⊗K C2 is a 2−dimensional subcode of CX(d). Thus

δ2(CX(d)) ≤ | supp (C1 ⊗K C2)| = | supp (C1)| · | supp (C2)|

and therefore

δ2(CX(d)) ≤ δ(CX1(d)) · δ2(CX2(d))

In exactly the same way we can prove that

δ2(CX(d)) ≤ δ2(CX1(d)) · δ(CX2(d))

and then

δ2(CX(d)) ≤ min {δ(CX1(d)) · δ2(CX2(d)), δ2(CX1(d)) · δ(CX2(d))} (2)

(B) Let D be a 2−dimensional subcode of CX(d). Any codeword can be seen as
a matrix of the form (1). Let DR be the subcode of CX2(d) ⊆ Ks2 spanned by
the rows of this matrix when we consider the complete matrix corresponding
to any element of D. In a similar way, let DC be the subcode of CX1(d) ⊆ Ks1

spanned by the columns of the same matrix.

We observe that if dimK DR = dimK DC = 1 then dimD �= 2. There-
fore dimK DR ≥ 2 or dimK DC ≥ 2. If dimK DR ≥ 2 then | supp (DR)| ≥
δ2(CX2(d)). If some element of the matrix is nonzero then there are, at least,
δ(CX1(d)) nonzero components in the corresponding column. Thus

| supp (D)| ≥ δ2(CX2(d)) · δ(CX1(d))

and therefore

δ2(CX(d)) ≥ δ2(CX2(d)) · δ(CX1(d)) (3)

In the case that dimK DC ≥ 2 we obtain

δ2(CX(d)) ≥ δ(CX2(d)) · δ2(CX1(d)) (4)

and the result follows from inequalities (2), (3) and (4).
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1352 M. González Sarabia and C. Renteŕıa M.
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[15] C. Renteŕıa, H. Tapia-Recillas, Linear codes associated to the ideal of
points in P

d and its canonical module, Communications in Algebra, 24
(3) (1996), 1083-1090.
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