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Quantum fast Fourier transform and quantum
computation by linear optics
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Using the quantum fast Fourier transform in linear optics the input mode annihilation operators
�â0 , â1 , . . . , âs−1� are transformed into output mode annihilation operators �b̂0 , b̂1 , . . . , b̂s−1�. We show how to
implement experimentally such transformations based on the Cooley–Tukey algorithm, by the use of beam
splitters and phase shifters in a linear optical system. Optical systems implementing 1,2, and 3 qubits discrete
Fourier transform (DFT) are described, and a general method for implementing the n-qubit DFT is analyzed.
These transformations are used on various input radiation states by which phase estimation and order finding
can be computed. © 2007 Optical Society of America
OCIS codes: 270.0270, 200.0200.
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. INTRODUCTION
ptics interferometry has been used in various works to

imulate quantum computations.1–14 In the present work
e discuss the use of the fast Fourier transform15–21

FFT) in linear optics for quantum computation. While
ost of the literature exploiting the use of FFT is for clas-

ical states, quantum FFT has been shown to be effective
or computing phase estimation and prime
actorization22–25 among other quantum computation
lgorithms.26

The realizations of linear optics transformations by
eam splitters (BSs) have been analyzed in previous
orks.19–21 It has been shown2,20 that by using a multi-
ort BS configurations one can realize any unitary opera-
or in Hilbert spaces of arbitrary finite dimension. Vari-
us Einstein–Podolsky–Rosen correlations have been
nalyzed for these systems by Zukowski et al.20 A gener-
lization of the standard four-port BS to a 2N multiport
N input ports and N output ports) has been described,
nd novel quantum mechanical interference phenomena
f two-photon states has been analyzed.21 A realization for
otally symmetric mode couplers, for which the discrete
ourier transform (DFT) is a special case, has been de-
cribed by Törmä et al.,19 where the number of BSs
eeded for its implementation has been estimated. The
ain issue of the present paper, which is different from

hose cited above, is to describe a general algorithm for
he implementation of the DFT using the Cooley–Tukey
lgorithm with single-photon states and to discuss some
f its applications.

Classically, an s-dimensional vector �aj� of complex
umbers can be transformed by the unitary DFT into

bk =
1

s1/2�
j=0

s−1

aj exp�2�ijk/s�, �1�

here the integers j and k represent the indices for the
omponents of the vectors. To apply the DFT to quantum
0740-3224/07/020231-10/$15.00 © 2
ptical systems (a quantum DFT) we apply Eq. (1) to a set
f commuting annihilation operators �â0 , â1 , . . . , âs−1� so
hat Eq. (1) becomes

b̂k =
1

s1/2�
j=0

s−1

âj exp�2�ijk/s�. �2�

he inverse DFT is, of course, the same with â and b̂ re-
laced and with a negative exponent.
In Section 2 we show how to implement experimentally,

sing linear optics, a DFT where the set of output anni-
ilation operators �b̂0 , b̂1 , . . . , b̂s−1� is a DFT of the input
nnihilation operators �â0 , â1 , . . . , âs−1�. Such a transfor-
ation can be accomplished by using only BSs and phase

hifters (PSs) without the use of nonlinear optics. Any
ure input electromagnetic (EM) state which is repre-
ented by series expansion of the input creation operators
perating on the vacuum state �0� leads by this transfor-
ation to an output EM state described by the output cre-

tion operators, operating on the vacuum, which are the
FT of the input ones.27 We show in Section 2 how to

mplement experimentally the DFT using linear optics
perators. Only then we apply in Section 3 the general
ransform to specific input states that can be used in
uantum computation. The possibilities of using mea-
urements in the quantum DFT with nonclassical input
tates are enormous relative to the classical description,
nd some of such transforms are useful for quantum com-
utation. One should notice that the unitary matrix for
FT of the set of commuting operators �â0 , â1 , . . . , âs−1� is
lso used for the DFT of the orthogonal computational ba-
is of quantum states.

In Section 3 we use Eq. (2) for analyzing the transfor-
ations of certain nonclassical input states that might be
sed for phase estimation. In Section 4 we describe cer-
ain phase estimation procedures that can be used for or-
er finding, which is an essential component in prime fac-
orization. Our results are summarized in Section 5.
007 Optical Society of America
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. EXPERIMENTAL REALIZATION OF FAST
OURIER TRANSFORM OF LINEAR
PTICS OPERATORS
unitary transformation, represented by the U�2� group

perating on a 2D vector (such as a single qubit) can be
iven by the matrix

U��,�,�,�� = e−i�� cos���ei��+�� sin���ei�−�+��

− sin���ei��−�� cos���ei�−�−��	 , �3�

here � ,� ,� ,� are four independent parameters.28 By
ultiplying the vector of input parameters â1, â2 from the

eft by the unitary matrix U�� ,� ,� ,�� they are trans-
ormed into the two output operators b̂1, b̂2:


b̂1

b̂2
� = U��,�,�,��
â1

â2
� . �4�

In this paper we shall use a quantum optical imple-
entation for the qubits using the dual-rail construction,

nd the unitary transformations using BSs and PSs.25

he two orthogonal states of the qubit, �0�L and �1�L, are
epresented by the two input or output ports of each BS in
n optical circuit, and the unitary transformation the qu-
its go through is represented by an optical circuit con-
aining a BS and PS alone. A photon in input port â1 of
he BS represents the state �0�L, and a photon in input
ort â2 represents the state �1�L. Any superposition of the
wo is also possible. The balanced BS and � /2 PS in Fig. 1
epresent the Hadamard gate.

A transformation U�� ,� ,� ,�� could thus be imple-
ented using one BS, which has three independent vari-

bles, and one PS, which has one independent variable.2

BS can be described as a four-port device (with two in-
ut ports and two output ports), where any incident beam
oes through a phase shift �, then the amplitudes are ro-
ated by �, and finally the phases are shifted again by an
ngle �.28 A unitary matrix describing the action of a BS
ould therefore be U�0,� ,� ,��. The transformation of Eq.

4) can therefore be implemented by using one BS and one
S.2 One should notice that the transformation matrix
�� ,� ,� ,�� used here for the qubit operators â1,â2 can be
sed for qubit states as well (2D orthogonal quantum
tates).

The DFT is widely used in quantum computation algo-
ithms, and so a fast algorithm for implementing it has
reat significance. A FFT algorithm for a DFT was sug-
ested approximately four decades ago and is known as

ig. 1. Quantum optical circuit representing a qubit �C1â1
† �0�1

C2â2
† �0�2� going through a Hadamard gate (balanced BS and

/2 PS). The Hadamard gate and its realization are well known
rom the basic literature on quantum computation (Ref. 26).
he Cooley–Tukey algorithm.15 It has also been shown
hat any unitary matrix of dimension d can be simply de-
omposed to a multiplication of at most d�d−1� /2 unitary
atrices that act nontrivially on only two or fewer vector

omponents.26 These matrices, representing single qubit
nd CNOT gates, can be implemented using at most one
S and one PS acting on two qubit components, not nec-
ssarily from the same qubit. Thus it is shown that any n
ubit unitary transformation can be implemented by at
ost 2n−1�2n−1� BS and PS combinations. The Cooley–

ukey algorithm improves such a relation as it breaks
own the 2n�2n unitary matrix into n2n−1-qubit transfor-
ations that can be realized by using linear optics by the
se of BS and PS. The Cooley–Tukey algorithm for the
n�2n unitary matrix is the decomposition of this matrix
sing n stages of 2n−1 transformations, where in each
tage the input is given by the output of the previous
tage. The mixing of the mode operators (or the computa-
ional basis of states) is arranged such that the final
ransformation will give the DFT.

A DFT implemented by using quantum states is called
quantum Fourier transform (QFT). For 2n commuting

perators or 2n computational quantum states that repre-
ent n qubits, the 2n-dimensional DFT matrix is repre-
ented by the unitary matrix

FT�n�

=
1

2n/2

��
1 1 1 1 ¯ 1

1 u u2 u3
¯ u2n−1

1 u2 u4 u6
¯ u2�2n−1�

1 u3 u6 u9
¯ u3�2n−1�


 
 
 
 � 


1 u2n−1
u2�2n−1� u3�2n−1�

¯ un�2n−1�

� ,

�5�

here u=exp�2�i /2n�.
We demonstrate the following algorithm, which in-

ludes an implementation of the Cooley–Tukey
lgorithm,15,29 for the design of optical circuits performing
he DFT:

1. The matrix representation of the n-qubit–
n-dimensional DFT is calculated from Eq. (5).
2. Using the Cooley–Tukey algorithm15,29 this matrix

s broken down into a multiplication of n matrices Sk
�n�,

here n is the number of qubits in the DFT and k �k
1, . . . ,n� is associated with the stage of the Cooley–
ukey algorithm. Each matrix represents 2n−1 BS–PS
omponents.

3. Using the Cooley–Tukey algorithm the graphical
epresentation of the optical circuit can be found.

4. Using the matrices Sk
�n� and the graphical represen-

ation of the optical circuit the properties of each BS–PS
omponent is calculated.
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. Two-Dimensional Discrete Fourier Transform
single-qubit–2D DFT is simply represented by the Had-

mard gate.26

1. In matrix representation this would simply be

QFT�1� =
1

�2

1 1

1 − 1� . �6�

2. This matrix represents one BS–PS component,
herefore QFT�1�=S1

�1�, where the upper index represents
he 1-qubit–2D DFT, and the lower index represents the
nly stage in the Cooley–Tukey algorithm.

3. The graphical representation of the optical circuit is
iven in Fig. 1.

4. Using the notation of Eq. (3) (or the graphical rep-
esentation of the optical circuit in Fig. 1) one can easily
nd that the single-qubit–2D DFT (or the Hadamard
ate) consists of a balanced BS ��=� /4�, a � /2 PS, and an
nimportant phase ��=� /2�:

BS1
�1� = U
�

2
,
�

4
,0,

�

2� or BS1
�1� = U
�

2
,
�

4
,
4�

2
,
�

2� , �7�

here the upper index represent the 1-qubit–2D DFT,
nd the lower index represents the only BS–PS compo-
ent in the system.

. Four-Dimensional Discrete Fourier Transform
1. By using the matrix in Eq. (5) it is easily shown that

he matrix representation of a 2-qubit–4D DFT is simply

QFT�2� =
1

2�
1 1 1 1

1 i − 1 − i

1 − 1 1 − 1

1 − i − 1 i
� . �8�

2. Using the Cooley–Tukey algorithm (represented in
ig. 2) this transformation matrix for the input operators

â0 , â1 , â2 , â3� breaks down to the multiplication of two
atrices QFT�2�=S2

�2�S1
�2� (the upper index represents the

-qubit–4D DFT). The first matrix �S1
�2�� represents the

rst stage of the Cooley–Tukey algorithm where two
S–PS components combine operators â0 , â2 and â1 , â3.
he second matrix �S2

�2�� represents the second stage of
he Cooley–Tukey algorithm where two BS–PS compo-
ents combine the operators â0+ â2, â1+ â3 and the opera-
ors â0− â2, â1− â3.

S1
�2� =

1

�2�
1 0 1 0

0 1 0 1

1 0 − 1 0

0 1 0 − 1
� ;

S2
�2� =

1

�2�
1 1 0 0

0 0 1 i

1 − 1 0 0

0 0 1 − i
� , �9�
3. Each line intersection represents a BS–PS compo-
ent (actually all represent the balanced BS–PS compo-
ent BS1

�1� from Subsection 2.A except for one intersection
n which an extra phase ±i, is introduced). Thus the opti-
al DFT circuit is composed of twice the previous 2D DFT
ircuits (a BS–PS component), where the output of each is
onnected to the output of the other through a BS–PS
omponent (one of which is the same as a 2D DFT and one
ew BS–PS component). This optical circuit is depicted in
ig. 3.30

4. Three of the four BS–PS components are exactly the
ame as those of the 2D DFT �BS1

�1�=BS1
�2��, but the fourth

S–PS component is different in the sense that a differ-
nt PS has been introduced (the BS is still balanced) with
alf the phase shift compared to the others:

BS2
�2� = U
�

4
,
�

4
,
7�

4
,
�

2� . �10�

n this notation BS1
�2�=BS1

�1�=U�2� /4 ,� /4 ,8� /4 ,� /2�,
here the upper index represents the number of qubits in

he DFT, and the lower index represents the different
S–PS components.

Using this method we have implemented the
-qubit–4D DFT using only four BS–PS components, as
pposed to the method devised by Reck et al.2 for the lin-

ig. 2. Graphical representation of the transformation using
S–PS components (represented by the intersection of the lines)
f input operators â0 , â1 , â2, and â3, to get the output operators
efining the DFT. The line indicated by the letter i has an extra
S on it. This schematic represents the Cooley–Tukey algorithm
ased on two stage (Refs. 15–18).

ig. 3. Optical circuit representing a two-qubit DFT [all BSs
ave an upper index (2) though not explicitly written]. The 4D
ircuit is composed of twice the previous 2D DFT circuits con-
ected through two other BS–PS components one of which is the
ame as a 2D DFT and one new BS–PS component. The use of
ultiport beam splitters for quantum computation has been ana-

yzed in the literature [i.e., Ref. 20].
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ar optical implementation of any unitary operation, in

hich six BS–PS components are necessary.
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. Eight-Dimensional Discrete Fourier Transform

1. For the 3-qubit–8D DFT we find by using Eq. (5):
QFT�3� =
1

2�2�
1 1 1 1 1 1 1 1

1 ei��/4� i ei�3�/4� − 1 ei5��/4� − i ei�7�/4�

1 i − 1 − i 1 i − 1 − i

1 ei�3�/4� − i ei��/4� − 1 ei�7�/4� i ei�5�/4�

1 − 1 1 − 1 1 − 1 1 − 1

1 ei�5�/4� i ei�7�/4� − 1 ei��/4� − i ei�3�/4�

1 − i − 1 i 1 − i − 1 i

1 ei�7�/4� − i ei�5�/4� − 1 ei�3�/4� i ei��/4�

� . �11�

2. Using the Cooley–Tukey algorithm (represented in Fig. 4) this transformation matrix breaks down to the multipli-
ation of three matrices QFT�3�=S3

�3�S2
�3�S1

�3�. Each matrix (lower index i) represents a different stage i in the Cooley–
ukey algorithm:

S3
�3� =

1

�2�
1 1 0 0 0 0 0 0

0 0 0 0 1 ei
�

4 0 0

0 0 1 i 0 0 0 0

0 0 0 0 0 0 1 ei�3�/4�

1 − 1 0 0 0 0 0 0

0 0 0 0 1 − ei��/4� 0 0

0 0 1 − i 0 0 0 0

0 0 0 0 0 0 1 − ei�3�/4�

� , �12�
S2
�3� =

1

�2�
1 0 1 0 0 0 0 0

0 1 0 1 0 0 0 0

1 0 − 1 0 0 0 0 0

0 1 0 − 1 0 0 0 0

0 0 0 0 1 0 i 0

0 0 0 0 0 1 0 i

0 0 0 0 1 0 − i 0

0 0 0 0 0 1 0 − i

� ,

�13�

S1
�3� =

1

�2�
1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1

1 0 0 0 − 1 0 0 0

0 1 0 0 0 − 1 0 0
� .

�14�

3. The optical circuit performing the 3-qubit–8D DFT
s composed as follows: Each intersection represents a
S–PS component multiplied by a phase factor. Thus the
ircuit is composed of two 4D DFT circuits (four BS–PS
omponents) where the four outputs are combined with
ach other through a BS–PS component (two of these
S–PS components are the same as a those from the 4D
FT, and two are new BS–PS components). The circuit is
epicted in Fig. 5.
4. All of the BS–PS components required consist of bal-

nced BS ��=� /4� but different PS that must reach the
esolution of at least � /8. For the 3-qubit–8D DFT one
nds both the components of BS1

�1� of Subsection 2.A found
n the 2D DFT and of BS2

�2� of Subsection 2.C found in the
D DFT, but also two new components, which contain a
alanced BS but a different PS:

BS3
�3� = U
3�

8
,
�

4
,
15�

8
,
�

2� . �15�

BS4
�3� = U
�

8
,
�

4
,
13�

8
,
�

2� . �16�

nce again, in the notation where the upper index de-
cribes the number of qubits and the lower index repre-
enting the different BS–PS components, BS1

�3�=BS1
�2�

BS1
�1�=U�4� /8 ,� /4 ,16� /8 ,� /2� and BS2

�3�=BS2
�2�

U�2� /8 ,� /4 ,14� /8 ,� /2�.
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. n-Qubit–2n Dimensional Discrete Fourier Transform
1. An n-qubit–2n-dimensional DFT can be represented

y the 2n�2n unitary matrix of Eq. (5).
2. The Cooley–Tukey algorithm breaks down the 2n

2n unitary matrix into n unitary matrices, each repre-
enting a different stage in the Cooley–Tukey algorithm
here in each stage 2n inputs are combined using 2n−1

S–PS components. Thus the algorithm requires n2n−1

S–PS components instead of the 22n components re-
uired for any unitary matrix.
Stage k �1�k�n� can be divided into 2k−1 groups of

n−k+1 inputs, where for group m the input j is combined
using a balanced BS) with input j+2n−k of the same
roup, which is multiplied by a phase factor �

e��i/2k�f�k,m� (using a PS). For the group m of stage k the
unction f�k ,m� is defined as the number m represented
n k bits (base 2) where its digits are reversed, so that, for
xample, for group m=100 (4 in base 2) in stage k=3 the
eversed order is 001 (1 in base 2) and thus the function
�3,4�=1. Another way of defining f�k ,m� recursively
ould be

f�1,1� = 0. �17�

f�k,m� = 2f�k − 1,m� for m � �1, . . . ,2k−2�. �18�

f�k,m� = 2f�k − 1,m − 2k−2� + 1 for m � �2k−2

+ 1, . . . ,2k−2�. �19�

nother stage should be added at the end to rearrange
he order of the outputs.

For example, in the third stage �k=3� of a 4-qubit–16D
FT �n=4� the 16 inputs are divided into four groups of

our inputs where the combinations are between inputs 0
nd 2, 1 and 3; 4 and 6, 5 and 7; 8 and 10, 9 and 11; 12 and
4, 13 and 15. Inputs 6 and 7 are multiplied by the phase
��i/8�4, inputs 10 and 11 are multiplied by the phase
��i/8�2, and inputs 14 and 15 are multiplied by the phase
��i/8�6.

ig. 4. Graphical representation of the transformation using
S–PS components (represented by the intersection of the lines)
f input operators âi with i=0, . . . ,7, to get the output operators

ˆ
i with i=0, . . . ,7. The lines indicated by the letter i, u, u3 have
n extra PS on them with phase � /2, � /4, and 3� /4, respectively.
In the intermediate stage, for the use of short notation, only the
ubscripts, signs and phases of the annihilation operators are de-
oted). This schematic represents the Cooley–Tukey transform

Refs. 15–18) based on three stages.
From the graphical representation we can easily find
he matrices Sk

�n�. The combination of any two inputs p
nd q (e.g., 12 and 14 from the above example) where q
p contributes four elements to the matrices. The value

f the matrix elements �p+1,p+1� and �q+1,p+1� are
/�2 [e.g., (13,13) and (15,13) for the above example],
hile the value of elements �p+1,q+1� and �q+1,q+1�
re � /�2 and −� /�2, respectively [e.g., (13,15) and (15,15)
re e�3�i/4� and −e�3�i/4� for the above example]. All other
lements are 0. Thus one finds

QFT�n� = R�n�Sn
�n�Sn−1

�n� , . . . ,S2
�n�S1

�n�, �20�

here R�n� is the matrix rearranging the order of outputs
rom �b̂ij

� to �b̂j� with j=0, . . . ,2n−1−1 and ij� �0, . . . ,2n−1

1� (notice that Eqs. (9) and (12) include R�2� and R�3� al-
eady multiplied into S2

�2� and S3
�3�, respectively).

In the example where n=4 we find

ig. 5. Optical circuit representing a three-qubit DFT [all BSs
ave an upper index (3) though not explicitly written]. The cir-
uit is composed of two 4D DFT circuits where the outputs are
ombined through two BS–PS components, two of which are the
ame as a those from the 4D DFT and two are new BS–PS com-
onents. In this figure the multiport BSs (Ref. 20) realize the
ooley–Tukey transform (Refs. 15–18) for an 8D DFT.

ig. 6. Optical circuit representing an n-qubit–2n-dimensional
FT composed recursively using two 2n−1-dimensional DFTs.
ach of the outputs of one of these circuits is combined with the
utputs of the other using BS–PS components such that they
onsist of a series of 2n−2 components similar to those used in the
n−1-dimensional DFT and 2n−2 components that differ by a
hase factor of � /2n.
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S3
�4� = 1

�2

⎣
⎢
⎢
⎢
⎡

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 − 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 − 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 i 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 i 0 0 0 0 0 0 0 0

0 0 0 0 1 0 − i 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 − i 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 e��i/4� 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 e��i/4� 0 0 0 0

0 0 0 0 0 0 0 0 1 0 − e��i/4� 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 − e��i/4� 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 e3��i/4� 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 e3��i/4�

0 0 0 0 0 0 0 0 0 0 0 0 1 0 − e3��i/4� 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 − e3��i/4�⎦
⎥
⎥
⎥
⎤

.

�21�
o
b
l
N
2

3
E
T
t
o
v
a
n
t

T
p

T
i
i
i
t
t
a

3. An n-qubit–2n dimensional DFT optical circuit can
asily be recursively assembled out of two �n−1�-qubit–
n−1-dimensional DFT optical circuits where each of the
utputs of one of these circuits is combined with the out-
uts of the other using one BS–PS component as depicted
n Fig. 6. The combining BS–PS components consist of a
eries of 2n−2 components similar to those used in the �n
1�-qubit–2n−1-dimensional DFT, and the 2n−2 compo-
ents that differ by a phase factor of � /2n.
4. All of the BS–PS components required consist of a

alanced BS ��=� /4�, but different PS that must reach
he resolution of at least � /2n. Thus

BSj
�n� = U
 �2n−1 − j + 1��

2n ,
�

4
,
�2n+1 − j + 1�

2n �,
�

2� , �22�

here j=0,1, . . . ,2n−1.
Reck et al.2 showed that any unitary transformation of

n optical modes could be implemented with a 2n port in-
erferometer. Their method gave a general description for
transformation using 2n�2n−1� /2 BS–PS elements. The
ethod explained above, though relevant to the special

ase of the QFT uses only n2n BS–PS elements. Thus for
arge numbers of qubits we find a large saving by a factor

ig. 7. A quantum circuit used to find an n qubit estimation of
he phase 
 of the eigenvalue ei
 of a unitary operator U with an

qubit representation of the eigenvector �u�. ��i� are the inter-
ediate quantum states. This schematic is a standard figure in

uantum computation (Ref. 26).
f 2n /n of the number of BS–PS elements. The lower num-
er of BS–PS components is the same as the one calcu-
ated by Törmä et al.19 for the general case of an
-dimensional DFT (where N does not necessarily equal

n).

. PHOTON STATES AND PHASE
STIMATION MEASUREMENTS
he objective of phase estimation is to find an n-qubit es-

imation of the phase 
 of the eigenvalue ei
 of a unitary
perator U with an m-qubit representation of the eigen-
ector �u�. We assume that we can prepare the state �u�
nd the operator-controlled U2j

�c−U2j
� where j is a non-

egative integer. The well-known quantum circuit solving
his problem is given in Fig. 7, with an output given by31

�0�n�u� →
1

2n/2 �
y=0

2n−1

ei
y�y��u�. �23�

As shown in Fig. 7 the input to the system is

��in� = �0�n�u�. �24�

his circuit can be divided into several steps. The first is
erforming a Hadamard transformation on �0�n:

��1� = Hn�0�n�u� = �Hn
� Im��0�n�u�. �25�

he second step includes the correlation between the reg-
ster with �0�n and the one with �u� that is achieved by us-
ng a c−U2j

gate. Owing to Eq. (23) the register contain-
ng �u� could be considered unchanged and even though
he phase � is determined by it, it could be perceived that
he transformation is performed on the first register
lone. Thus we find that
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��2� = R

n��1� = �R


n
� Im���1�, �26�

here

R

n = �

1 0 0 ¯ 0

0 ei
 0 ¯ 0

0 0 e2i

¯ 0


 
 
 � 


0 0 0 ¯ e�2n−1�i

� . �27�

he final step of the algorithm includes an inverse FT on
he first register alone:

��out� = FTn
−1��2� = �FTn

−1
� Im���2�. �28�

he output of the whole algorithm is given by

��out� = �FTn
−1

� Im��R

n

� Im��Hn
� Im��0n�u� = Pn

m�0�n�u�.

�29�

otice that even though it seems �u� does not explicitly
ontribute to the algorithm, the phase 
 is determined by
t. Thus for the case where n ,m=1:

Pn
m = �

1 + ei
 1 − ei
 0 0

1 − ei
 1 + ei
 0 0

0 0 1 + ei
 1 − ei


0 0 1 − ei
 1 + ei

� . �30�

In the following examples we show measurements of
he phase shift introduced by a linear optical system. Al-
hough other methods for measuring phase shifts will be
ore effective and simpler, the present method of mea-

uring phase shifts is introduced as a simple example for
hase estimation by photons that can lead to order find-
ng as will be analyzed in the next section. This method
hould therefore be important as it is an essential compo-
ent in prime factorization.
Let us assume that we have a linear optical system

hat leads to a phase shift 
 that can be expressed as

ig. 8. Experimental setup transforming the operator â† into
1
2 �â0

† + â1
†ei
+ â2

†e2i
+ â3
†e3i
� [any one photon state could be pro-

uced by just a BSs setup (Ref. 26)]. For one photon inserted into
he optical system the state given by Eq. (32), corresponding to
=4, is produced (using a balanced BS and relevant PS).

 = 2�

1

2
+


2

4
+


3

8
+ ¯ +


n

2n� , �31�

here 0i� �0,1�. For very large values of n Eq. (31) can be
sed as a good approximation for 
 but for the simplicity
f the calculation we assume that the expression of Eq.
31) is exact. Our first aim is to show how 
 can be mea-
ured by the DFT.

We assume that a one-photon state of order s, given by

1

s1/2�
j=0

s−1

âj
† exp�ij
��0�. �32�

an be produced. This state can be introduced by inserting
he one-photon state �â† �0�� in an optical system com-
osed of BS–PS components. In states given by Eq. (32)
he rail associated with the photon (the j port) is corre-
ated to its phase exp�ij
�.32 Figure 8 describes the experi-

ental setup for producing the state given by Eq. (32) for
=4 �n=2�.

Using the methods described in Section 2 we can find
he phase of the state given by Eq. (32) by using the DFT
xperimental scheme of order s where the component j of
he state is inserted into the input port j. The output op-

ratoric vector b�̂ is given by multiplying the operatoric

ector a�̂ from the left by the matrix QFT�n� given by Eq.
5) (where s=2n). Due to the special form of the input
tate given by Eqs. (31) and (32) the DFT of Eq. (32)
ould lead to only one component of the operatoric vector

�̂ [assuming n is finite in Eq. (31)] so that the one photon
ill be measured only in one output port, and there will
e a one-to-one correspondence between the set of num-
ers 
i� �0,1� describing 
 and the corresponding output
ort. We give, however, a more general procedure for ob-
aining the output for the input state described by Eq.
32) by the use of the DFT. This procedure is not limited
o the special form of 
 described above.

To find the output of this scheme using the DFT we ex-

ress the operatoric vector a�̂ using the operatoric vector b�̂

ultiplied on the left by the inverse of Eq. (5):

�
â0

†

â1
†




â2n−1
†

� = QFT−1�n��
b̂0

†

b̂1
†




b̂2n−1
†

� . �33�

sing Eq. (33) the operators âj of Eq. (32) can be ex-
ressed as linear combinations of the operators b�k �k
1,2, . . . ,2n−1�. For the special cases where the input
tates are given by Eqs. (31) and (32) the photon has the
robability to be measured in only one output port j
here there will be a one-to-one correspondence between

he set of numbers 
i� �0,1� describing 
 and the corre-
ponding output port. We demonstrate this effect for n
2:
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�
â0

†

â1
†

â2
†

â3
†
� =

1

2�
1 1 1 1

1 − i − 1 i

1 − 1 1 − 1

1 i − 1 − i
��

b̂0
†

b̂1
†

b̂2
†

b̂3
†
�

= �
b̂0

† + b̂1
† + b̂2

† + b̂3
†

b̂0
† − ib̂1

† − b̂2
† + ib̂3

†

b̂0
† − b̂1

† + b̂2
† − b̂3

†

b̂0
† + ib̂1

† + b̂2
† − ib̂3

†
� . �34�

e therefore find that

�
j=0

3

âj
†eij
 →

1

2
�b̂0

† + b̂1
† + b̂2

† + b̂3
†� + �b̂0

† − ib̂1
† − b̂2

† + ib̂3
†�ei


+ �b̂0
† − b̂1

† + b̂2
† − b̂3

†�e2i
 + �b̂0
† + ib̂1

† + b̂2
† − ib̂3

†�e3i
.

�35�

or the special cases of Fig. 8 where s=4 we obtain

1

2�
j=0

3

âj
†eij
 → �

b̂0
† for 
 = 0 �
1 = 0;
2 = 0�

b̂1
† for 
 = �/2 �
1 = 1;
2 = 0�

b̂2
† for 
 = � �
1 = 0;
2 = 1�

b̂3
† for 
 = 3�/2 �
1 = 1;
2 = 1�

� .

�36�

One should notice that because of the use of operatoric
ectors rather than the vectors of the computational basis
tates the above formalism is more general but reduces to
he conventional one for a one-photon state. Instead of us-
ng a one-photon state as given by Eq. (32) we can use the
-photon state given by

1

s1/2�
j=0

s−1 �âj
† exp�ij
��n

�n!
�0. �37�

or example, if instead of inserting the one-photon state
nto the experimental scheme of Fig. 8 we insert an
-photon number state, we produce the state

1

2�
j=0

3 �âj
†�n exp�ijn
�

�n!
�0�. �38�

epeating the calculation of Eq. (36) for the special values
f 
 given by Eq. (31) we find that the n photons will be
easured in one output port. Once again we get a one-to-

ne correspondence between the set of numbers 
i
�0,1� describing 
 and the corresponding output port for

he measured photons that is the same as that obtained
or the one-photon case.

Although the above methods can be used for measuring
he phase shift of a linear optical system, the additional
dvantages of using this method are for order finding in a
rime factorization scheme, or more generally to obtain
he period of a function f�x� �x=0,1,2,3, . . . �, as will be
nalyzed in Section 4. We point out that our analysis has
een limited by the special form of 
 given by Eq. (31). In
he case where such a relation is not accurate, but still a
ood approximation for large values of n, there is a cer-
ain probability that the photon instead of being mea-
ured in the expected port j will be measured in port j̃
here �j− j̃� should be very small.

. IMPLEMENTATION OF ORDER FINDING
Y THE USE OF LINEAR OPTICS
he search for a polynomial algorithm for the prime fac-

orization problem has been going on for several centuries
ith no classical results. Shor’s quantum factoring algo-

ithm has solved this problem thus potentially speeding
p such algorithms exponentially. The algorithm for fac-
oring an integer N is based on calculating the period r of
he function Fj �mod N� �j=0,1,2, . . . � for a randomly se-
ected integer F between 1 and N such that the greatest
ommon devisor of F and N equals 1.22,23 Once the period
is known two of the factors of N are obtained by calcu-

ating the great common divisor of N and Fr/2±1 (The pro-
ess fails if r is odd or r is even but gives a trivial
olution22,23).

We assume that by using BS–PS components we can
uild the one-photon state (where s=2n):

��� =
1

s1/2�
j=0

s−1

âj
†eifj�0� =

1

�s
�â0

†eif0 + â1
†eif1 + â2

†eif2

+ ¯ + âs−1
† eifs−1��0�, �39�

here the function fj can be related to Fj �mod N� by

fj = 2�
Fj�mod N�

N
, �40�

o that by finding the periodicity of eifj we can find the pe-
iod of the function Fj �mod N� or any other periodic func-
ion modulo N.

In the state of Eq. (39) the rail associated with the pho-
on is correlated to its phase eifj. The state in Eq. (39) can
e prepared by using methods similar to those presented
n Section 3. The system suggested here for period finding
ses correlations between the photon phase and its asso-
iated rail as opposed to physical systems suggested pre-
iously for this purpose,26 where a nonlinear medium was
sed to perform c–U operations by facilitating an inter-
ction between the photons. One should notice that a
ave function of the one-photon state can be prepared as

epresented in Eq. (39) or this equation can be general-
zed to s photons by assuming

��� =
1

s1/2�
j=0

s−1 �aj
†�n

�n ! �1/2 exp�ifj��0�. �41�

To measure the periodicity of fj we operate with the
FT on the operators âj

†. They are transformed to opera-
ors b̂k

† as

âj
† →

1

s1/2�
k=0

s−1

exp�2�ijk/s�b̂k
† . �42�

sing Eq. (42) the state ��� of Eq. (39) is transformed into
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���� =
1

s �
j=0

s−1

�
k=0

s−1

exp�2�ijk/s�b̂k
† exp�ifj��0�. �43�

According to Shor’s algorithm adapted to the state of
q. (43), we can find the period of eifj by measuring the
utput port of the photons. The periodicity of the function
ifj can be related to the periodicity of the output ports in
hich the photons are measured.
We demonstrate this effect by using the explicit expres-

ion of ���� for s=8:

8���� = �b̂0
†�eif0 + eif1 + eif2 + ¯ + eif7�

+ b̂1
†�eif0 + e�2�/8�if1 + e2�2�/8�if2 + ¯ + e7�2�/8�if7�

+ b̂2
†�eif0 + e2�2�/8�if1 + e4�2�/8�if2 + ¯ + e14�2�/8�if7�




+ b̂7
†�eif0 + e7�2�/8�if1 + e14�2�/8�if2 + ¯ + e49�2�/8�if7���0�.

�44�

n example that is expressed in a way similar to Eq. (44)
as been described and analyzed by Berman et al.33 We
ollow their example described for entangled atomic
tates but adapt the formalism to the present photon
tates. Assuming in this example [Ref. 33, Eq. 45] that the
unction fj has the period T=2, i.e., f0= f2= f4= f6, and f1
f3= f5= f7, then the function ���� can be written as

8���� = �b̂0
†�4eif0 + 4eif1� + b̂1

†�eif0�1 + ei�/2 + ei� + e3i�/2�

+ eif1�ei�/4 + e3i�/4 + e5i�/4 + e7i�/4��

+ b̂2
†�eif0�1 + ei� + 1 + ei��

+ eif1�ei�/2 + e3i�/2 + ei�/2 + e3i�/2��




+ b̂7
†�eif0�1 + e3i�/2 + ei� + ei�/2�

+ eif1�e7i�/4 + e5i�/4 + e3i�/4 + ei�/4���0�. �45�

The complex amplitudes of b̂1
†eif0 that are given in the

rackets have the phases 0, � /2, �, and 3� /2. Conse-
uently, these amplitudes cancel each other. The complex
mplitudes corresponding to b̂1

†eif1 have the phases � /4,
� /4, 5� /4, and 7� /4, which also cancel each other. Fol-
owing in a straightforward way we find that the complex
mplitudes corresponding to b̂2

†, b̂3
†, b̂5

†, b̂6
†, and b̂7

† also
anish. However, those of b̂0

† and b̂4
† do not, and we find

���� =
1

2
�b̂0

†�eif0 + eif1� + b̂4
†�eif0 + ei�eif1���0�. �46�

Using the above analysis we find that owing to the pe-
iodicity of the function the photon will be measured only
n the output ports 0 and 4. The probabilities for the one
hoton to be measured in the output ports 0 and 4 are
asily seen from Eq. (46) to be
�eif0 + eif1�2

4
=

1 + cos�f0 − f1�

2
,

�eif0 − eif1�2

4
=

1 − cos�f0 − f1�

2
. �47�

According to Shor’s algorithm the photon will be mea-
ured in the output ports given by k=m�D /T� with m
0,1, . . ., T−1 where D is the number of output ports, and
is the periodicity of the function eifj. In the present

imple example D=8 and T=2 so that k=0,4. Vice versa,
rom the knowledge of k=0,4 and D=8, one finds the pe-
iodicity T=2.

Our aim in analyzing the above specific example and in
he above general analysis is to show a general method by
hich period finding can be realized in experimental lin-
ar optics. One should take into account that we have not
hanged the principles on which Shor’s algorithm is based
o that when we try to apply this specific experimental
ethod to more general cases of order finding we should
se general methods that have been developed in Shor’s
lgorithm,22,23,26 and we refer to the literature for this
urpose. One should also take into account that order
nding is only one component in Shor’s prime factoriza-
ion algorithm.

. SUMMARY AND DISCUSSION
e have shown that the DFT of any n qubits can be real-

zed in a linear optics system with a lower amount of
S–PS components than needed in the general case. The

ower number of BS–PS components is the same as the
ne calculated by Törmä et al.19 The difference between
ur work and theirs is that we give a specific algorithm to
nd the linear optical circuit by following the Cooley–
ukey algorithm and by using BS–PS optical components.
n explicit evaluation of this general method for 1, 2, and
optical qubits has been described and analyzed in Sec-

ion 2.
To implement quantum computation one needs to use

nterference and entanglement processes. While it is rela-
ively easy to obtain the interference effects, the entangle-
ent processes needed in quantum computation are diffi-

ult to achieve. The present work is based on the idea that
y using BS–PS components in an optical system photon
tates can be produced in which the photons’ associated
ails (e.g., the input or output port) are correlated with
heir phase. We use such states for obtaining phase esti-
ation and order finding.
In Section 3 it is shown how these states can be related

o the phases of any linear optical system. Period finding
s shown in Section 4 and is related to the measurement
f these photon states. We believe that there is an advan-
age in the present approach since BS–PS optical compo-
ents have been used extensively in quantum optics, and
e do not need to use nonlinear media based quantum
ates.
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