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Using the quantum fast Fourier transform in linear optics the input mode annihilation operators

{6076/17'“

,4,_;} are transformed into output mode annihilation operators {b,,b, ...

,b,_1}. We show how to

implement experimentally such transformations based on the Cooley—Tukey algorithm, by the use of beam
splitters and phase shifters in a linear optical system. Optical systems implementing 1,2, and 3 qubits discrete
Fourier transform (DFT) are described, and a general method for implementing the n-qubit DFT is analyzed.
These transformations are used on various input radiation states by which phase estimation and order finding

can be computed. © 2007 Optical Society of America

OCIS codes: 270.0270, 200.0200.

1. INTRODUCTION

Optics interferometry has been used in various works to
simulate quantum computations.'™* In the present work
we discuss the use of the fast Fourier transform!'®2!
(FFT) in linear optics for quantum computation. While
most of the literature exploiting the use of FFT is for clas-
sical states, quantum FFT has been shown to be effective
for  computing phase estimation and prime
factorization®”®® among other quantum computation
algorithms.?

The realizations of linear optics transformations by
beam splitters (BSs) have been analyzed in previous
works.!*2! Tt has been shown®?° that by using a multi-
port BS configurations one can realize any unitary opera-
tor in Hilbert spaces of arbitrary finite dimension. Vari-
ous Einstein—Podolsky—Rosen correlations have been
analyzed for these systems by Zukowski et al.? A gener-
alization of the standard four-port BS to a 2N multiport
(N input ports and N output ports) has been described,
and novel quantum mechanical interference phenomena
of two-photon states has been analyzed.21 A realization for
totally symmetric mode couplers, for which the discrete
Fourier transform (DFT) is a special case, has been de-
scribed by Torméa et al.,'® where the number of BSs
needed for its implementation has been estimated. The
main issue of the present paper, which is different from
those cited above, is to describe a general algorithm for
the implementation of the DFT using the Cooley—Tukey
algorithm with single-photon states and to discuss some
of its applications.

Classically, an s-dimensional vector {a;} of complex
numbers can be transformed by the unitary DFT into

s-1

by, = EE aj exp(2mijk/s), (1)
J=0

where the integers j and % represent the indices for the
components of the vectors. To apply the DFT to quantum
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optical systems (a quantum DFT) we apply Eq. (1) to a set
of commuting annihilation operators {d¢,d1,...,as_1} SO
that Eq. (1) becomes

1 s-1

1/2
S j=0

b, = a; exp(27ijk/s). (2)

The inverse DFT is, of course, the same with & and b re-
placed and with a negative exponent.

In Section 2 we show how to implement experimentally,
using linear optics, a DFT where the set of output anni-

hilation operators {by,b,...,b, ;} is a DFT of the input
annihilation operators {a(,d1,...,d,_1}. Such a transfor-
mation can be accomplished by using only BSs and phase
shifters (PSs) without the use of nonlinear optics. Any
pure input electromagnetic (EM) state which is repre-
sented by series expansion of the input creation operators
operating on the vacuum state |0) leads by this transfor-
mation to an output EM state described by the output cre-
ation operators, operating on the vacuum, which are the
DFT of the input ones.?’” We show in Section 2 how to
implement experimentally the DFT using linear optics
operators. Only then we apply in Section 3 the general
transform to specific input states that can be used in
quantum computation. The possibilities of using mea-
surements in the quantum DFT with nonclassical input
states are enormous relative to the classical description,
and some of such transforms are useful for quantum com-
putation. One should notice that the unitary matrix for
DFT of the set of commuting operators {G,d1,...,d,_1} is
also used for the DFT of the orthogonal computational ba-
sis of quantum states.

In Section 3 we use Eq. (2) for analyzing the transfor-
mations of certain nonclassical input states that might be
used for phase estimation. In Section 4 we describe cer-
tain phase estimation procedures that can be used for or-
der finding, which is an essential component in prime fac-
torization. Our results are summarized in Section 5.

© 2007 Optical Society of America
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2. EXPERIMENTAL REALIZATION OF FAST
FOURIER TRANSFORM OF LINEAR
OPTICS OPERATORS

A unitary transformation, represented by the U(2) group
operating on a 2D vector (such as a single qubit) can be
given by the matrix

cos(B)e! 9

- sin(,B)ei(V'é)

- . sin(B)el -7+
) ) ’5 =e— “« 7 ) 3
(a,8,7,9) cos(B)el (3)
where «,f,7y,5 are four independent parame‘cers.28 By
multiplying the vector of input parameters a1, @y from the
left by the unitary matrix U(a,B,y,d) they are trans-

formed into the two output operators l;l, 32:

l;l dl
<A )=U(a,,3,%5)(A ) (4)
b2 Qg

In this paper we shall use a quantum optical imple-
mentation for the qubits using the dual-rail construction,
and the unitary transformations using BSs and PSs.®
The two orthogonal states of the qubit, |[0);, and |1);, are
represented by the two input or output ports of each BS in
an optical circuit, and the unitary transformation the qu-
bits go through is represented by an optical circuit con-
taining a BS and PS alone. A photon in input port @; of
the BS represents the state |0);, and a photon in input
port d, represents the state |1);. Any superposition of the
two is also possible. The balanced BS and 7/2 PS in Fig. 1
represent the Hadamard gate.

A transformation U(«a,B,v,8) could thus be imple-
mented using one BS, which has three independent vari-
ables, and one PS, which has one independent variable.?
A BS can be described as a four-port device (with two in-
put ports and two output ports), where any incident beam
goes through a phase shift y, then the amplitudes are ro-
tated by B, and finally the phases are shifted again by an
angle 5.2° A unitary matrix describing the action of a BS
would therefore be U(0, 8, v, §). The transformation of Eq.
(4) can therefore be implemented by using one BS and one
PS.? One should notice that the transformation matrix
Ul(a, B, v, d) used here for the qubit operators a;,a5 can be
used for qubit states as well (2D orthogonal quantum
states).

The DFT is widely used in quantum computation algo-
rithms, and so a fast algorithm for implementing it has
great significance. A FFT algorithm for a DFT was sug-
gested approximately four decades ago and is known as

PS

A

G, |0),;

50:50 BS
Gdy|0),

Fig. 1. Quantum optical circuit representing a qubit (C;a}|0),
+Czd;\0)2) going through a Hadamard gate (balanced BS and
/2 PS). The Hadamard gate and its realization are well known
from the basic literature on quantum computation (Ref. 26).
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the Cooley-Tukey alg_;:orithm.15 It has also been shown
that any unitary matrix of dimension d can be simply de-
composed to a multiplication of at most d(d—1)/2 unitary
matrices that act nontrivially on only two or fewer vector
componen‘cs.26 These matrices, representing single qubit
and CNOT gates, can be implemented using at most one
BS and one PS acting on two qubit components, not nec-
essarily from the same qubit. Thus it is shown that any n
qubit unitary transformation can be implemented by at
most 2"71(2"-1) BS and PS combinations. The Cooley—
Tukey algorithm improves such a relation as it breaks
down the 2" X 2" unitary matrix into n2"~1-qubit transfor-
mations that can be realized by using linear optics by the
use of BS and PS. The Cooley—-Tukey algorithm for the
27 X 2" unitary matrix is the decomposition of this matrix
using n stages of 2"~! transformations, where in each
stage the input is given by the output of the previous
stage. The mixing of the mode operators (or the computa-
tional basis of states) is arranged such that the final
transformation will give the DFT.

A DFT implemented by using quantum states is called
a quantum Fourier transform (QFT). For 2" commuting
operators or 2" computational quantum states that repre-
sent n qubits, the 2"-dimensional DFT matrix is repre-
sented by the unitary matrix

QFT(n)
1
= 2n/2
1 1 1 1 1
1 u u? us w21
1 u? ut ub u2@*-0
. 1 u? u® u® w32 |
1 27t Lee-n et L2

(5)

where u=exp(2i/2").

We demonstrate the following algorithm, which in-
cludes an implementation of the Cooley—Tukey
algorithm,ls’29 for the design of optical circuits performing
the DFT:

1. The matrix representation of the
2"-dimensional DFT is calculated from Eq. (5).

2. Using the Cooley—Tukey algorithmm’29 this matrix
is broken down into a multiplication of n matrices S(n),
where n is the number of qubits in the DFT and % (%
=1,...,n) is associated with the stage of the Cooley—
Tukey algorithm. Each matrix represents 27~1 BS-PS
components.

3. Using the Cooley-Tukey algorithm the graphical
representation of the optical circuit can be found.

4. Using the matrices S}e”) and the graphical represen-
tation of the optical circuit the properties of each BS-PS
component is calculated.

n-qubit—
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A. Two-Dimensional Discrete Fourier Transform
A single-qubit—2D DFT is simply represented by the Had-
amard gate.26

1. In matrix representation this would simply be

1/1 1
QFT(1)=—E L 1) (6)

\r

2. This matrix represents one BS-PS component,
therefore QFT(1)=S (11), where the upper index represents
the 1-qubit—2D DFT, and the lower index represents the
only stage in the Cooley—Tukey algorithm.

3. The graphical representation of the optical circuit is
given in Fig. 1.

4. Using the notation of Eq. (3) (or the graphical rep-
resentation of the optical circuit in Fig. 1) one can easily
find that the single-qubit—-2D DFT (or the Hadamard
gate) consists of a balanced BS (B=7/4), a /2 PS, and an
unimportant phase (a=m/2):

T T T 4T T
BSY=U| —-,—,0,—| orBSP=U|=,—,—,=|, (7)
2°4° 2 2°4° 2 2

where the upper index represent the 1-qubit—2D DFT,
and the lower index represents the only BS—-PS compo-
nent in the system.

B. Four-Dimensional Discrete Fourier Transform
1. By using the matrix in Eq. (5) it is easily shown that
the matrix representation of a 2-qubit—-4D DFT is simply

1 1 1 1
1 i -1 -1
1
1

1
QFT(2) = 3 (8)

-1 1 -1
-1 -1 i

2. Using the Cooley-Tukey algorithm (represented in
Fig. 2) this transformation matrix for the input operators
{d¢,d1,d9,a3} breaks down to the multiplication of two
matrices QFT(2)=S(22)S(12) (the upper index represents the
2-qubit—-4D DFT). The first matrix (S(lz)) represents the
first stage of the Cooley—Tukey algorithm where two
BS-PS components combine operators dg,ds and aq,as.
The second matrix (S(22)) represents the second stage of
the Cooley-Tukey algorithm where two BS—-PS compo-
nents combine the operators G¢+dq, @d1+a3 and the opera-
tors &0—&2, dl—d3.

1 0
S<2>=i_ 0 1 0 1
2|t 0 -1 ’
0 1 o0 -1
1 0 0
1o o0 1 i
8P =— 9
721 -1 0 o0 ©)
0 0 1 -i
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A ~ ~ ~
a a a, a,
Stage 1
a0+02 a1+a3 lIU—tIZ a —113
Stage 2
qa,+tda, + z+¢1vi :’0+f"1_a A—ma ~
a“—a1+a2—¢13 a,—ia —a,+id,

Fig. 2. Graphical representation of the transformation using
BS-PS components (represented by the intersection of the lines)
of input operators a,, d;, a,, and as, to get the output operators
defining the DFT. The line indicated by the letter ; has an extra
PS on it. This schematic represents the Cooley—Tukey algorithm
based on two stage (Refs. 15-18).

>

3 a,
BS, I Sy
51 «— 4
a(; —_ —_— 5
BS! 1 S,
i, b,

Fig. 3. Optical circuit representing a two-qubit DFT [all BSs
have an upper index (2) though not explicitly written]. The 4D
circuit is composed of twice the previous 2D DFT circuits con-
nected through two other BS-PS components one of which is the
same as a 2D DFT and one new BS-PS component. The use of
multiport beam splitters for quantum computation has been ana-
lyzed in the literature [i.e., Ref. 20].

3. Each line intersection represents a BS-PS compo-
nent (actually all represent the balanced BS-PS compo-
nent BS(ll) from Subsection 2.A except for one intersection
in which an extra phase =i, is introduced). Thus the opti-
cal DFT circuit is composed of twice the previous 2D DFT
circuits (a BS-PS component), where the output of each is
connected to the output of the other through a BS-PS
component (one of which is the same as a 2D DFT and one
new BS—PS component). This optical circuit is depicted in
Fig. 3.3°

4. Three of the four BS—PS components are exactly the
same as those of the 2D DFT (BS{=BS?), but the fourth
BS—PS component is different in the sense that a differ-
ent PS has been introduced (the BS is still balanced) with
half the phase shift compared to the others:

(10)

a o 77
BSY =U :

4442

In this notation BS?=BS\V=U(27/4,7/4,8w/4,7/2),
where the upper index represents the number of qubits in
the DFT, and the lower index represents the different
BS-PS components.

Using this method we have implemented the
2-qubit—4D DFT using only four BS-PS components, as
opposed to the method devised by Reck et al.? for the lin-
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ear optical implementation of any unitary operation, in
which six BS-PS components are necessary.
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C. Eight-Dimensional Discrete Fourier Transform
1. For the 3-qubit—8D DFT we find by using Eq. (5):

1 1 1 1 1 1 1 1
1 i) i QBT _q o5 _j )
1 i -1 -1 1 i -1 -1
1|1 oG i i) 1 i i i 574)
FT(3) = ——= 11
QFT(3) 22[1 -1 1 -1 1 -1 1 -1 (11
1 eG4 i QT _q i) _i i 37/4)
1 -1 -1 i 1 -1 -1 i
1 i — QBT 1 i i )

2. Using the Cooley—Tukey algorithm (represented in Fig. 4) this transformation matrix breaks down to the multipli-
cation of three matrices QFT(3)=SSS'SY. Each matrix (lower index i) represents a different stage i in the Cooley—

Tukey algorithm:

1 1 0 0
0 0 0 0
0o 0 1
sg3>=i_ 0 0 0 O
V21 -1 0 o0
0 0 0 0
0 1 -
0 0 0
(1 0 0 0 0 0 0]
0 1 0 1 0 0 0 0
1 0 -1 0 0 0 0 0
o L 0 1 0 -1 0 0 0 0
> 200 0 0 0 1 0 i o
0 0 0 0 0 1 0 i
0 0 0 0 1 0 -i 0
0 0 0 0o 0 1 o0 -—i
) (13)
1 0 0 0 1 0 0 o0
0 1 0 0 0 1 0 0
S<3>_i 0 0 1 0 o0 0 1 0
tTyg2|loo 0 0 1 0 o o0 1}
1 0 0 0 -1 0 0 0
0 1.0 0 0 -1 0 0
i (14)

3. The optical circuit performing the 3-qubit—-8D DFT
is composed as follows: Each intersection represents a
BS-PS component multiplied by a phase factor. Thus the
circuit is composed of two 4D DFT circuits (four BS-PS
components) where the four outputs are combined with

0 0 0 0

1 iy 0 0

0 0 0 0

0 0 1 ei(37r/4)

0 0 0 o | (12)
1 =™ 0 0

0 0 0 0

0 0 1 _ ei(37-r/4)

each other through a BS-PS component (two of these
BS-PS components are the same as a those from the 4D
DFT, and two are new BS—PS components). The circuit is
depicted in Fig. 5.

4. All of the BS—-PS components required consist of bal-
anced BS (B=m/4) but different PS that must reach the
resolution of at least #/8. For the 3-qubit-8D DFT one
finds both the components of BS(ll) of Subsection 2.A found
in the 2D DFT and of BS(QZ) of Subsection 2.C found in the
4D DFT, but also two new components, which contain a
balanced BS but a different PS:

37 m 167w

BSY=U\—. .5 |- (15)
84 8 2
T 137 7

BSEE’):U o T o oo ] (16)
84 8 2

Once again, in the notation where the upper index de-
scribes the number of qubits and the lower index repre-
senting the different BS—PS components, BS(13)=BS(12)
=BSY=U(4n/8,7/4,167/8,7/2) and  BSY=BSY
=UQ2n/8,7/4,147/8,7/2).
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D. n-Qubit-2" Dimensional Discrete Fourier Transform

1. An n-qubit—2"-dimensional DFT can be represented
by the 2" X 2" unitary matrix of Eq. (5).

2. The Cooley-Tukey algorithm breaks down the 2"
X 2" unitary matrix into n unitary matrices, each repre-
senting a different stage in the Cooley—Tukey algorithm
where in each stage 2" inputs are combined using 2"!
BS-PS components. Thus the algorithm requires n2"!
BS-PS components instead of the 22" components re-
quired for any unitary matrix.

Stage k£ (1=k=n) can be divided into 2*~1 groups of
27-k+1 inputs, where for group m the input j is combined
(using a balanced BS) with input j+2"* of the same
group, which is multiplied by a phase factor ¢
= (/29 tksm) (using a PS). For the group m of stage k& the
function f(k,m) is defined as the number m represented
in % bits (base 2) where its digits are reversed, so that, for
example, for group m=100 (4 in base 2) in stage k=3 the
reversed order is 001 (1 in base 2) and thus the function
f(3,4)=1. Another way of defining f(k,m) recursively
would be

f1,1)=0. (17)
flk,m)=2f(k—1,m) form e{1,...,2"72}. (18)

fb,m)=2f(k—1,m-2"2)+1 form e {2¢2
+1,...,2%2, (19)

Another stage should be added at the end to rearrange
the order of the outputs.

For example, in the third stage (k=3) of a 4-qubit—16D
DFT (n=4) the 16 inputs are divided into four groups of
four inputs where the combinations are between inputs 0
and 2,1 and 3;4 and 6, 5 and 7; 8 and 10, 9 and 11; 12 and
14, 13 and 15. Inputs 6 and 7 are multiplied by the phase
e84 inputs 10 and 11 are multiplied by the phase

e(™/82 and inputs 14 and 15 are multiplied by the phase
(il8)6
e )

&0 &1 &2 a3 &4 65 &6 &7
Stage 1

a5t 6] BI04 {5} o6} B
Stage 2

P24.6} 1,357} P.24-6} §,-3.5-7}o2i,4,-6i}

/ §1,3:,-5,-7:} §1,-3i,-5,7i}
Stage 3
b b, B, B b, by b, b,

Fig. 4. Graphical representation of the transformation using
BS-PS components (represented by the intersection of the lines)
of input operators a; with i=0,...,7, to get the output operators

b; with i=0,...,7. The lines indicated by the letter i, u, u® have
an extra PS on them with phase 7/2, /4, and 37/4, respectively.
(In the intermediate stage, for the use of short notation, only the
subscripts, signs and phases of the annihilation operators are de-
noted). This schematic represents the Cooley-Tukey transform
(Refs. 15-18) based on three stages.

[ 9
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a
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<—a6 i 60
b A
BS, Tpg, b
é‘0 _‘bﬁ
BY| P
a 3 BAS1
by aq
-~ BS, ! BS,
1 b,
2, a,
Bsy| L BS
BS, g 1

Fig. 5. Optical circuit representing a three-qubit DFT [all BSs
have an upper index (3) though not explicitly written]. The cir-
cuit is composed of two 4D DFT circuits where the outputs are
combined through two BS-PS components, two of which are the
same as a those from the 4D DFT and two are new BS-PS com-
ponents. In this figure the multiport BSs (Ref. 20) realize the
Cooley-Tukey transform (Refs. 15-18) for an 8D DF'T.

DFT of order n
, DFT
L of order
.l n-1
azn—l
sy, DFT
; of order
4 - n-1
2

Fig. 6. Optical circuit representing an n-qubit—2"-dimensional
DFT composed recursively using two 2"-!-dimensional DFTs.
Each of the outputs of one of these circuits is combined with the
outputs of the other using BS-PS components such that they
consist of a series of 22 components similar to those used in the
2"-1.dimensional DFT and 2"2 components that differ by a
phase factor of 7/2".

From the graphical representation we can easily find
the matrices Sge”). The combination of any two inputs p
and q (e.g., 12 and 14 from the above example) where ¢
>p contributes four elements to the matrices. The value
of the matrix elements (p+1,p+1) and (g+1,p+1) are
1/V2 le.g., (13,13) and (15,13) for the above example],
while the value of_elements (p+1,9+1) and (g+1,9+1)
are ¢/ \E and —¢/ 2, respectively [e.g., (13,15) and (15,15)
are e®™4 and —eB™4) for the above example]. All other
elements are 0. Thus one finds

QFT(n) =R™WSIS\™,, ... S48, (20)

where R®™ is the matrix rearranging the order of outputs
from {éij} to {lA)J-} with j=0,...,2""'~1 and i;&{0,...,2""!
-1} (notice that Eqgs. (9) and (12) include R® and R® al-

ready multiplied into S(22) and SgS), respectively).
In the example where n=4 we find
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1 0 0 0 0 0 0 0
o1 0 1 0 0 0 0 0
1 0 -1 0 0 0 0 0 0
o 1 0 -1 0 0 0 0 0
o 0 0 o0 1 0 i 0 0
o 0 0 0 0 1 0 i 0
o 0 0 0 1 0 —-i 0 0
o 0 0 0 0 1 0 —i 0
=350 o o o o 0o o o 1
o 0 0 ©0 0 0 0 0 0
o 0 0o o0 ©0 0 0 o0 1
0o 0 0 ©0 0 0 0O 0 0
o 0 0 ©0 0 0 0 0 0
0o 0 0 0 0 0 0O 0 0
o 0 0 0 0 0 0O 0 0
0o 0o 0o 0o 0o 0 0 0 0

3. An n-qubit—2" dimensional DFT optical circuit can
easily be recursively assembled out of two (n—1)-qubit—
2"-1.dimensional DFT optical circuits where each of the
outputs of one of these circuits is combined with the out-
puts of the other using one BS—PS component as depicted
in Fig. 6. The combining BS—PS components consist of a
series of 2”2 components similar to those used in the (n
—1)-qubit-2"1-dimensional DFT, and the 2"~ compo-
nents that differ by a phase factor of 7/2".

4. All of the BS-PS components required consist of a
balanced BS (B=m/4), but different PS that must reach
the resolution of at least #/2". Thus

. @ —j+)m (2" -j+1) =
BSW=U - , (22)

’ ’ 7T7 -
A 4 n 2
where j=0,1,...,2"-1.

Reck et al.? showed that any unitary transformation of
2™ optical modes could be implemented with a 2" port in-
terferometer. Their method gave a general description for
a transformation using 2"(2"-1)/2 BS—PS elements. The
method explained above, though relevant to the special

case of the QFT uses only n2" BS-PS elements. Thus for
large numbers of qubits we find a large saving by a factor

‘Win> "I’] > ‘W2> ‘yl(mt>
n
0) ] FT=— [0)

L
) 7 v )

Fig. 7. A quantum circuit used to find an n qubit estimation of
the phase 6 of the eigenvalue e’ of a unitary operator U with an
m qubit representation of the eigenvector |u). |¢4;) are the inter-
mediate quantum states. This schematic is a standard figure in
quantum computation (Ref. 26).
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0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 e(m/4) 0 0 0 0 0

1 0 g™ 0 0 0 0

0 —e™4 0 0 0 0 0

1 0 —e™ 0 0 0 0

0 0 0 1 0 3/ 0

0 0 0 0 1 0 34
0 0 0 1 0 -4 0

0 0 0 0 1 0 - e |

(21)

[
of 2"/n of the number of BS—PS elements. The lower num-
ber of BS-PS components is the same as the one calcu-
lated by Toérma et al. 9 for the general case of an

N-dimensional DFT (where N does not necessarily equal
2m).

3. PHOTON STATES AND PHASE
ESTIMATION MEASUREMENTS

The objective of phase estimation is to find an n-qubit es-
timation of the phase 6 of the eigenvalue e’ of a unitary
operator U with an m-qubit representation of the eigen-
vector |u). We assume that we can prepare the state |u)
and the operator-controlled U? (c—U?) where j is a non-
negative integer. The well-known quantum circuit solving
this problem is given in Fig. 7, with an output given by31

21
10"l — > e lyu). (23)
y=0

As shown in Fig. 7 the input to the system is
|¥in) = [0)"|uc). (24)

This circuit can be divided into several steps. The first is
performing a Hadamard transformation on |0)*:

|¢) = H"(0)"|u) = (H" @ I")|0)"[u). (25)

The second step includes the correlation between the reg-
ister with [0)” and the one with |u) that is achieved by us-
ing a ¢—U? gate. Owing to Eq. (23) the register contain-
ing |u) could be considered unchanged and even though
the phase ¢ is determined by it, it could be perceived that
the transformation is performed on the first register
alone. Thus we find that
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1.

Eﬂn 0>

1.,
/—an}36|0>

0) Sa@se™]o)

2
P
a'[0) _/ /_. L4;e0)
T %&;62i6|0> 2t

0}

Fig. 8. Experimental setup transforming the operator &' into
1(@f+alei’+aje®+ale®®) [any one photon state could be pro-
duced by just a BSs setup (Ref. 26)]. For one photon inserted into
the optical system the state given by Eq. (32), corresponding to

s=4, is produced (using a balanced BS and relevant PS).

liho) = RE|i) = (R @ I™)|y), (26)
where
1 0 0
0 e 0
R}= 0 &M o | @
0 0 0 e(2"—1)i9

The final step of the algorithm includes an inverse FT on
the first register alone:

|Yout) = FT, o) = (FT;," @ I™) [y (28)
The output of the whole algorithm is given by

[our) = (FT,' @ I™)(R @ I™)(H™ ® I'™)|0"|u) = P|0)"|u).
(29)
Notice that even though it seems |u) does not explicitly

contribute to the algorithm, the phase 6 is determined by
it. Thus for the case where n,m=1:

1+ 1-e 0 0
1-¢  1+e 0

Pi=l o 0 14e? 1-ev| B0
0 0 1-¢  1+¢

In the following examples we show measurements of
the phase shift introduced by a linear optical system. Al-
though other methods for measuring phase shifts will be
more effective and simpler, the present method of mea-
suring phase shifts is introduced as a simple example for
phase estimation by photons that can lead to order find-
ing as will be analyzed in the next section. This method
should therefore be important as it is an essential compo-
nent in prime factorization.

Let us assume that we have a linear optical system
that leads to a phase shift # that can be expressed as
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b by 05 0,
=27 —+—+—+ - +—|, (31)
2 4

where 0; € {0, 1}. For very large values of n Eq. (31) can be
used as a good approximation for 6 but for the simplicity
of the calculation we assume that the expression of Eq.
(31) is exact. Our first aim is to show how 6 can be mea-
sured by the DFT.

We assume that a one-photon state of order s, given by

s-1

T2 & exp(ij0)[0). (32)
Jj=0

can be produced. This state can be introduced by inserting
the one-photon state (47|0)) in an optical system com-
posed of BS—PS components. In states given by Eq. (32)
the rail associated with the photon (the j port) is corre-
lated to its phase exp(ij6).>? Figure 8 describes the experi-
mental setup for producing the state given by Eq. (32) for
s=4 (n=2).

Using the methods described in Section 2 we can find
the phase of the state given by Eq. (32) by using the DFT
experimental scheme of order s where the component j of
the state is inserted into the input port j. The output op-

eratoric vector b is given by multiplying the operatoric

vector @ from the left by the matrix QFT(n) given by Eq.
(5) (where s=2"). Due to the special form of the input
state given by Eqgs. (31) and (32) the DFT of Eq. (32)
would lead to only one component of the operatoric vector

b [assuming n is finite in Eq. (31)] so that the one photon
will be measured only in one output port, and there will
be a one-to-one correspondence between the set of num-
bers 6, €{0,1} describing # and the corresponding output
port. We give, however, a more general procedure for ob-
taining the output for the input state described by Eq.
(32) by the use of the DFT. This procedure is not limited
to the special form of 6 described above.

To find the output of this scheme using the DFT we ex-

press the operatoric vector a using the operatoric vector b
multiplied on the left by the inverse of Eq. (5):

ay b
a; b
. [=QFT )| | (33)
ot s
Qgn_y bon_y

Using Eq. (33) the operators d; of Eq. (32) can be ex-

pressed as linear combinations of the operators I;k (R
=1,2,...,2"-1). For the special cases where the input
states are given by Eqs. (31) and (32) the photon has the
probability to be measured in only one output port j
where there will be a one-to-one correspondence between
the set of numbers 6; € {0,1} describing # and the corre-
sponding output port. We demonstrate this effect for n
=2:
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N ot
af 1 1 1 17/b
ai|l 111 -i -1 i |[&]
ab| 211 -1 1 -1l g
al 1 i -1 -1 8;
33+3;+3;+3§
bl —ibl - b} +ib}
i PPV (34)
b, - b} +b}— b}
b} +ib} + b} — b}

We therefore find that

3
> aled?— E(bg +b] + b} + DY) + (b} - ib] - b} + ibl)e'”
j=0

+(by - b} + b} - by)e*? + (b +ib] + b} - ibh)e".
(35)
For the special cases of Fig. 8 where s=4 we obtain
b} for 6=0 (6,=0;6,=0)
—Ea‘ b0 bj for 6=m/2  (6,=1;6,=0)
b} for 6= (6,=0;6,=1)
bl for 0=3m/2  (61=1;6,=1)
(36)

One should notice that because of the use of operatoric
vectors rather than the vectors of the computational basis
states the above formalism is more general but reduces to
the conventional one for a one-photon state. Instead of us-
ing a one-photon state as given by Eq. (32) we can use the
n-photon state given by

1 <1 (@] exp(ijo)"

$77 =0 \n!

For example, if instead of inserting the one-photon state
into the experimental scheme of Fig. 8 we insert an
n-photon number state, we produce the state

13 (a*)” exp(ijn 6)

2 ———0). (38)

232 \n'

Repeating the calculation of Eq. (36) for the special values
of 0 given by Eq. (31) we find that the n photons will be
measured in one output port. Once again we get a one-to-
one correspondence between the set of numbers 6;
€{0,1} describing 6 and the corresponding output port for
the measured photons that is the same as that obtained
for the one-photon case.

Although the above methods can be used for measuring
the phase shift of a linear optical system, the additional
advantages of using this method are for order finding in a
prime factorization scheme, or more generally to obtain
the period of a function f(x) (x=0,1,2,3,...), as will be
analyzed in Section 4. We point out that our analysis has
been limited by the special form of 6 given by Eq. (31). In
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the case where such a relation is not accurate, but still a
good approximation for large values of n, there is a cer-
tain probability that the photon instead of being mea-
sured in the expected port j will be measured in port j
where |j—j| should be very small.

4. IMPLEMENTATION OF ORDER FINDING
BY THE USE OF LINEAR OPTICS

The search for a polynomial algorithm for the prime fac-
torization problem has been going on for several centuries
with no classical results. Shor’s quantum factoring algo-
rithm has solved this problem thus potentially speeding
up such algorithms exponentially. The algorithm for fac-
toring an integer N is based on calculating the period r of
the function F/ (mod N) (j=0,1,2,...) for a randomly se-
lected integer F' between 1 and N such that the greatest
common devisor of F and N equals 1.2223 Once the period
r is known two of the factors of N are obtained by calcu-
lating the great common divisor of N and F"/2+1 (The pro-
cess fails if r is odd or r is even but gives a trivial
solution?*23),

We assume that by using BS-PS components we can
build the one-photon state (where s=2n):

1
) = —22 e0) = —,(aoelfo +aje +aje'l
j=0 VS
+ o+ al efs1)|0), (39)

where the function f; can be related to F/ (mod N) by

F/(mod N)
fi=2m—— (40)

so that by finding the periodicity of e//i we can find the pe-
riod of the function F/ (mod N) or any other periodic func-
tion modulo N.

In the state of Eq. (39) the rail associated with the pho-
ton is correlated to its phase e’i. The state in Eq. (39) can
be prepared by using methods similar to those presented
in Section 3. The system suggested here for period finding
uses correlations between the photon phase and its asso-
ciated rail as opposed to physical systems suggested pre-
viously for this purpose,” where a nonlinear medium was
used to perform c—U operations by facilitating an inter-
action between the photons. One should notice that a
wave function of the one-photon state can be prepared as
represented in Eq. (39) or this equation can be general-
ized to s photons by assuming

s-1 T n
|9 = 552 — 7 exp(if))]0). (41)
ST j=0 (n!)

To measure the per10d1c1ty of f; we operate with the
DFT on the operators a . They are transformed to opera-

tors b} ) as
s-1

i kE exp(2mijk/s)b}. (42)
=0

y —
51/2

Using Eq. (42) the state |) of Eq. (39) is transformed into
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s-1s-1

@'y ==, >, exp(2mijk/s)b}, exp(if)|0). (43)
S j=0 k=0
According to Shor’s algorithm adapted to the state of
Eq. (43), we can find the period of i by measuring the
output port of the photons. The periodicity of the function
e'fi can be related to the periodicity of the output ports in
which the photons are measured.
We demonstrate this effect by using the explicit expres-
sion of |¢) for s=8:

8ly/) = (biefo + i+ e g -+ 4 eifT]
+ l;;[eifo +e@if1 4 Q2@7)ify o ... 4 gT2TB)iT)

+ l;;[eifo + 2@ | ACTNfy o ..y 14T

+Bs[eif0+e7(2ﬂ/8)if1+el4(27r/8)if2+ ce 4 @202 0y

(44)

An example that is expressed in a way similar to Eq. (44)
has been described and analyzed by Berman et al.®® We
follow their example described for entangled atomic
states but adapt the formalism to the present photon
states. Assuming in this example [Ref. 33, Eq. 45] that the
function f; has the period T'=2, i.e., fo=fo=f4=f6, and f;
=f3=f5=f7, then the function |¢') can be written as

8ly) = (bi[4e™o + 4] + bi[eo(1 + '™ + &' + €172

+ eifl(eiv'r/4 + e3i7r/4 + e5i’n’/4 +e7i71/4)]

+bi[efo(1+e™+1 +e'm)

+ ezfl(em’/Z + 63177/2 + eL7T/2 +eSl7T/2)]

+ I;;[elfﬂ(l + eSiﬁ/Q + eiﬂ'+ ei‘n’/Z)
+ eifl(e7i77/4 +e5iﬂ'/4 + e3i77/4 +ei77/4)]|0>' (45)

The complex amplitudes of Bieif 0 that are given in the
brackets have the phases 0, #/2, 7, and 37/2. Conse-
quently, these amplitudes cancel each other. The complex

amplitudes corresponding to éieif 1 have the phases 7/4,
3m/4, 57/4, and 7Tw/4, which also cancel each other. Fol-
lowing in a straightforward way we find that the complex
amplitudes corresponding to 5;, 5;, Bg, Z;Z, and l;; also
vanish. However, those of l;g and l;z do not, and we find

'y = E(bg[elfo +e1] 4+ bi[e'0 + e'7e1])]0). (46)

Using the above analysis we find that owing to the pe-
riodicity of the function the photon will be measured only
in the output ports 0 and 4. The probabilities for the one
photon to be measured in the output ports 0 and 4 are
easily seen from Eq. (46) to be
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leffo+ 12 1+ cos(fy—f1)

4 - 2 ’

lefo— &% 1 - cos(fo-f1)
4 - 2 '

(47)

According to Shor’s algorithm the photon will be mea-
sured in the output ports given by k=m(D/T) with m
=0,1,..., T-1 where D is the number of output ports, and
T is the periodicity of the function e’i. In the present
simple example D=8 and T'=2 so that £=0,4. Vice versa,
from the knowledge of £=0,4 and D=8, one finds the pe-
riodicity 7'=2.

Our aim in analyzing the above specific example and in
the above general analysis is to show a general method by
which period finding can be realized in experimental lin-
ear optics. One should take into account that we have not
changed the principles on which Shor’s algorithm is based
so that when we try to apply this specific experimental
method to more general cases of order finding we should
use general methods that have been developed in Shor’s
alg01"ithm,22’23’26 and we refer to the literature for this
purpose. One should also take into account that order
finding is only one component in Shor’s prime factoriza-
tion algorithm.

5. SUMMARY AND DISCUSSION

We have shown that the DFT of any n qubits can be real-
ized in a linear optics system with a lower amount of
BS—PS components than needed in the general case. The
lower number of BS—PS components is the same as the
one calculated by Térmé et al.’® The difference between
our work and theirs is that we give a specific algorithm to
find the linear optical circuit by following the Cooley—
Tukey algorithm and by using BS—PS optical components.
An explicit evaluation of this general method for 1, 2, and
3 optical qubits has been described and analyzed in Sec-
tion 2.

To implement quantum computation one needs to use
interference and entanglement processes. While it is rela-
tively easy to obtain the interference effects, the entangle-
ment processes needed in quantum computation are diffi-
cult to achieve. The present work is based on the idea that
by using BS—-PS components in an optical system photon
states can be produced in which the photons’ associated
rails (e.g., the input or output port) are correlated with
their phase. We use such states for obtaining phase esti-
mation and order finding.

In Section 3 it is shown how these states can be related
to the phases of any linear optical system. Period finding
is shown in Section 4 and is related to the measurement
of these photon states. We believe that there is an advan-
tage in the present approach since BS—PS optical compo-
nents have been used extensively in quantum optics, and
we do not need to use nonlinear media based quantum
gates.
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