JET00004 ACM (Typeset by SPi, Manila, Philippines) 1o0f19 February 2, 2011 23:35

Redundant Residue Number System Code for Fault-Tolerant
Hybrid Memories

NOR ZAIDI HARON, Delft University of Technology and Universiti Teknikal Malaysia Melaka
SAID HAMDIQUI, Delft University of Technology

Hybrid memories are envisioned as one of the alternatives to existing semiconductor memories. Although
offering enormous data storage capacity, low power consumption, and reduced fabrication complexity (at
least for the memory cell array), such memories are subject to a high degree of intermittent and transient
faults leading to reliability issues. This article examines the use of Conventional Redundant Residue Num-
ber System (C-RRNS) error correction code, which has been extensively used in digital signal processing and
communication, to detect and correct intermittent and transient cluster faults in hybrid memories. It intro-
duces a modified version of C-RRNS, referred to as 6M-RRNS, to realize the aims at lower area overhead
and performance penalty. The experimental results show that 6M-RRNS realizes a competitive error correc-
tion capability, provides larger data storage capacity, and offers higher decoding performance as compared
to C-RRNS and Reed-Solomon (RS) codes. For instance, for 64-bit hybrid memories at 10% fault rate, 6M-
RRNS has 98.95% error correction capability, which is 0.35% better than RS and 0.40% less than C-RRNS.
Moreover, when considering 1Thit memory, 6M-RRNS offers 4.35% more data storage capacity than RS and
11.41% more than C-RRNS. Additionally, it decodes up to 5.25 times faster than C-RRNS.

Categories and Subject Descriptors: B.8.1 [Performance and Reliability]|: Reliability, Testing, and Fault-
Tolerance

General Terms: Reliability

Additional Key Words and Phrases: Hybrid memories, nanowire, residue number system, fault-tolerance,
error correction codes

ACM Reference Format:

Haron, N. Z. and Hamdioui, S. 2011. Redundant residue number system code for fault-tolerant hybrid
memories. ACM J. Emerg. Technol. Comput. Syst. 7, 1, Article 4 (January 2011), 19 pages.

DOI = 10.1145/1899390.1899394. http://doi.acm.org/10.1145/1899390.1899394.

1. INTRODUCTION

Hybrid memories, the emerging memory architecture that combines CMOS and non-
CMOS devices in a single chip, are envisioned as one of the alternatives to existing
semiconductor memories. These memories use non-CMOS devices such as nanowire,
carbon nanotubes, molecules, and so on, instead of transistors and/or capacitors to

This article is an extended version of the paper “Residue-Based Code for Reliable Hybrid Memories,” pre-
sented at the IEEE/ACM International Symposium on Nanoscale Architecture, 2009.

Authors’ addresses: N. Z. Haron (corresponding author) and S. Hamdioui, Computer Engineering Labora-
tory, Faculty of Electrical Engineering, Mathematics, and Computer Science, Delft University of Technology,
Mekelweg 4, 2628 CD, Delft, The Netherlands.

N. Z. Haron is on leave from the faculty of Electronics and Computer Engineering, Universiti Teknikal
Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal, 76100, Melaka, Malaysia.

Permission to make digital or hard copies part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is permit-
ted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of
this work in other works requires prior specific permission and/or a fee. Permissions may be requested from
the Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

© 2011 ACM 1550-4832/2011/01-ART4 $10.00

DOI 10.1145/1899390.1899394 http://doi.acm.org/10.1145/1899390.1899394

ACM Journal on Emerging Technologies in Computing Systems, Vol. 7, No. 1, Article 4, Publication date: January 2011.

JET00004 ACM (Typeset by SPi, Manila, Philippines) 2 of 19 February 2, 2011 23:35

4:2 N. Z. Haron and S. Hamdioui

structure the memory cell array. Examples are molecular-based memories [Bullis;
CALMEC; Kiigeler et al. 2009; Luyken and Hofmann 2003; Reed et al. 2007; Strukov
and Likharev 2004; Waiser and Aono 2007; Zettacore], carbon nanotube-based mem-
ories [DeHon et al. 2005; Kish and Ajayan 2005; Rispal and Schwalke 2008], and so
on. On the other hand, these memories still employ scaled CMOS devices to form
the peripheral circuits such as the encoder, the decoder, the interconnects, and so on.
Such an architecture realizes an enormous capacity of data storage (up to 1Terabit
per cm?), consumes low power and requires modest fabrication complexity (at least for
the memory cell array) [Strukov and Likharev 2004; Strukov 2006; Likharev 2008].
The tiny size of the CMOS and non-CMOS devices as well as the higher density of the
memory cell array cause a major challenge in producing reliable hybrid memories. As
reported in Mishra and Goldstein [2003], the defect rate of 10% (about six orders of
magnitude higher than existing technology) is expected due to the imperfection of the
manufacturing process. Moreover, a high degree of intermittent and transient faults
is anticipated to occur, which can originate from either process variabilities or opera-
tional disturbances [Lincoln 2009; Orailoglu 2007]. Furthermore, it is highly probable
that these faults will impact adjacent cells in the memory cell array and transistors in
the peripheral circuits [Orailoglu 2007] causing cluster faults.

Considerable research work has applied fault tolerance techniques to deal with
the high degree of faults in hybrid memories [Ghosh and Lincoln 2008; Jeffery and
Figueiredo 2006; Naeimi and DeHon 2009; Strukov and Likharev 2004, 2007; Sun and
Zhang 2007]. The similarity among these efforts is the use of error correction codes
(ECCs). ECCs possess concurrent error correction capability at lower cost as com-
pared to the other fault tolerance techniques. For example, Hamming code is used by
Strukov and Likharev [2004] and Jeffery and Figueiredo [2006]; however, this ECC
can only correct small number of faults. Bose-Chaudhuri-Hocquenghem (BCH) code
is used by Strukov and Likharev [2007], Sun and Zhang [2007], and Biswas et al.
[2007]; nevertheless, it imposes higher computational complexity and targets ran-
dom faults. Low Parity Density-Check (LDPC) code is used by Naeimi and DeHon
[2009] and Ghosh and Lincoln [2008]; although this ECC provides a better error cor-
rection capability than Hamming, it is worse than BCH. Above all, these ECCs target
either single or multiple random faults, but not cluster faults; something one has to
care about in hybrid memories.

Redundant Residue Number System (RRNS) code, derived from Residue Number
System (RNS), has been extensively used in high speed arithmetic operation appli-
cations (e.g., digital signal processing, cryptography, communication, etc.) [Sun and
Krishna 1992; Szabo and Tanaka 1967; Yang and Hanzo 2001]. This code inherits the
advantages of RNS such as parallelism, modularity, and unweighted number system
representation resulting in fast and fault tolerance properties. RRNS is suitable to cor-
rect cluster faults and has similar error correction capability to that of Reed-Solomon
code. Therefore, RRNS could be used to improve the reliability of hybrid memories.
However, conventional RRNS code employed in the existing applications is subject to
high area overhead and performance penalty. Consequently, if the code is applied to
hybrid memories directly without any modification and adaptation, it will reduce the
data storage capacity and degrade the memory performance.

This article presents the concept of RRNS code as a fault tolerance technique to
improve the reliability of hybrid memories at lower cost. The conventional RRNS
is modified by devising the moduli set, which then produces a new version of RRNS
code referred to as Six-Moduli RRNS (6M-RRNS). To the best of the authors’ knowl-
edge, this article is the first to adapt RRNS code to memory systems. Our simulation
and analysis on 16, 32, and 64-bit memories show that 6M-RRNS code is able to pro-
vide sufficient reliability improvement at minimal impact on area. The preliminary

ACM Journal on Emerging Technologies in Computing Systems, Vol. 7, No. 1, Article 4, Publication date: January 2011.

JET00004 ACM (Typeset by SPi, Manila, Philippines) 3 of 19 February 2, 2011 23:35

Number System Code for Fault-Tolerant Hybrid Memories 4:3

work of using C-RRNS and 6M-RRNS codes for hybrid memories was reported by the
authors [Haron and Hamdioui 2009]. The main contributions of this article are the
following.

— The introduction and the application of Redundant Residue Number System code to
correct cluster intermittent and transient faults in hybrid memory systems;

— the modification and the adaptation of conventional RRNS (C-RRNS) in order to
achieve cluster fault correction at lower cost. For this, a modified version of C-
RRNS, referred to as Six-Moduli RRNS (6M-RRNS) code, is introduced. 6M-RRNS
provides a competitive error correction capability, larger user data capacity, and
faster decoding latency as compared to C-RRNS and Reed-Solomon codes. The hard-
ware implementation of 64-bit 6M-RRNS encoder and decoder structured based on
32nm CMOS technology shows that they only add 0.005% area overhead to lcm?
hybrid memories.

The rest of the article is organized as follows. Section 2 reviews the structure, opera-
tion, potentials, and challenges of hybrid memories. Section 3 defines the fundamental
theory of RRNS code. Section 4 describes the construction of the error correction codes
investigated in this work; this includes the conventional RRNS, Reed-Solomon, and
the proposed 6M-RRNS codes. Section 5 presents the experimental set up, simulation
results, and quantitative analysis. Section 6 gives the hardware implementation of the
encoder and decoder of 6M-RRNS code. Section 7 concludes the article.

2. HYBRID MEMORIES

In this section we briefly review the architecture of one of the hybrid memories, known
as CMOS/Molecular (CMOL) memory [Likharev 2008; Strukov and Likharev 2004,
2007]. CMOL memory provides the utmost data storage capacity, as huge as 1Thit per
cm?. First, we describe the structure and operations of CMOL memory. Thereafter,
we discuss their potentials and challenges. Finally, we explain the architecture of the
memory incorporated with this ECC scheme. More details about CMOL memory are
given in Strukov and Likharev [2004, 2007].

2.1 Structure

Figure 1 shows the structure of CMOL memory, in which a non-CMOS-based mem-
ory cell array is fabricated on top of the CMOS-based peripheral circuits [Strukov and
Likharev 2004]. The non-CMOS-based memory cell array consists of two perpendic-
ular planes of nanowires with reconfigurable two-terminal nanodevices embedded at
each nanowire junction. Nanowires fabricated from semiconductor, metal, or carbon
nanotubes build up a matrix-like local interconnect of the memory cell array. Two-
terminal non-CMOS devices, such as organic molecules, single electron junctions and
phase change materials function as a single memory cell [Likharev 2008]. However,
these non-CMOS-based devices are incapable of performing the logical functions, e.g.,
amplification. Therefore, nanoscale CMOS is required to implement the peripheral cir-
cuits like the encoder, the decoder, and the global interconnect. The non-CMOS-based
and CMOS-based circuits are connected using two sets of cone-type CMOS-to-nano
interface pins. Metals or silicon can be used as the interface pins [Likharev 2008].

2.2 Operations

To write to and read from a specific memory cell, a sufficient voltage is biased from
the CMOS-based peripheral circuits to the non-CMOS-based memory cells through
the interface pins. Biasing a positive voltage larger than the threshold voltage of the
two-terminal nanodevices will write logic 1. Contrarily, supplying a negative voltage

ACM Journal on Emerging Technologies in Computing Systems, Vol. 7, No. 1, Article 4, Publication date: January 2011.

JET00004 ACM (Typeset by SPi, Manila, Philippines) 4 of 19 February 2, 2011 23:35

4:4 N. Z. Haron and S. Hamdioui

Two-terminal nanodevice
el Nanowires

Non-CMOS-based
Memory array

Interface pin

CMOS-based
Peripheral circuit

{

N
N
N
N
N

Short CtN pins Long CtN pins

Fig. 1. Generic structure of hybrid memory.

smaller than the threshold voltage of the two-terminal nanodevices will write logic 0.
Reading is done by applying a voltage slightly smaller than the threshold voltage of the
devices. Note that the bias voltages depend on the type of two-terminal nanodevices
used as the memory cells [Likharev 2008].

2.3 Potentials

As aforementioned, hybrid memories provide enormous data storage at low power and
reduced fabrication complexity. According to Strukov and Likharev [2004], CMOL
hybrid memories can achieve a trillion-bit data storage capacity in a square centimeter
memory chip. This is achievable by the use of two-terminal non-CMOS devices as
the data storage elements. Moreover, as these devices are very tiny, they require a
small number of electrons to represent a digital logic state, resulting in low power
consumption. Because the memory cells are constructed by a regular crossbar-based
non-CMOS circuit structure, the need to use arbitrary features and a high number
of masks as in the existing technology is alleviated. The two-terminal devices can be
fabricated using a self-assembled technique, as they pose only one critical dimension
[Strukov 2006]; this eliminates the use of a complex lithography process.

2.4 Challenges

Reliability is one of the major challenges facing by the fabrication and produc-
tion of hybrid memories [Mishra and Goldstein 2003; Strukov and Likharev 2004].
Inherent variation in design, process, and device properties when stimulated by
nonenvironmental-related sources (e.g., temperature, noise) produces intermittent
faults, which in turn become permanent faults after some time. Moreover, despite
reducing the power consumption, non-CMOS and scaled-CMOS devices lose their re-
sistance to environmental disturbances. Consequently, a small magnitude of energy
originated from, e.g., cosmic particles, electrical noise, temperature variation, and so
on, could disturb the logic state held by such nanodevices. This problem results in
transient faults, which are also known as soft errors.

2.5 ECC Scheme for Hybrid Memories

To tolerate these intermittent and transient faults, and subsequently improve the over-
all reliability of hybrid memories, an ECC scheme is incorporated. Figure 2 exhibits
the block diagram of the ECC circuit considered in this work.

During writing, the d-bit input data is encoded to RRNS codeword b ., where 1<c<n,
and n is an integer. The RRNS codeword is then stored in the memory cell array. Dur-
ing reading, the desired codeword is retrieved from the memory cells and is decoded
before data can be read out. The decoding process will ensure that the read data

ACM Journal on Emerging Technologies in Computing Systems, Vol. 7, No. 1, Article 4, Publication date: January 2011.

JET00004 ACM (Typeset by SPi, Manila, Philippines) 5 of 19 February 2, 2011 23:35

Number System Code for Fault-Tolerant Hybrid Memories 4:5
g Memory cell array
3
§ Block [Block —*°.| Block H Block
a9
Address —4+ « I i i i
£
2 Block H Block -*-*°.| Block || Block
T b b1 by
d ‘Modulo‘ |Modulo| L |Modulo| |Modulo|
Data
RRNS encoder/decoder
Fig. 2. ECC scheme in CMOL hybrid memory.
Dataword Checkword(Parity)

RRNS(n.k) | X1 | ¢ * | X% |[Xke1| © . * | 4

non—-redundant residue redundant residue
Fig. 3. Structure of RRNS code.

will be fault-free, provided that the faults are still within the correction capability of
the RRNS decoder. In this work, the RRNS decoder is assumed to be ideal, where
the faults only occur in the RRNS encoder and memory cell array. One solution to
overcome this limitation is by using hardware redundancy for the decoder [Haron and
Hamdioui 2011].

3. REDUNDANT RESIDUE NUMBER SYSTEMS CODE

In this section we explain the concept of RRNS code including its encoding and decod-
ing procedures. To facilitate the explanation, we give examples for both procedures.

3.1 Theory of RRNS Code

An RRNS codeword is constructed from a set of encoded numbers called residues. A d-
bit input data will be encoded into an n-symbol codeword, which is divided into two sets
of residues (see Figure 3): (1) nonredundant residues x;, consisting of a k-symbol data-
word, and (2) redundant residues x, consisting of an (n—k)-symbol checkword (parity);
1<i<kandk+1 < j<n. The bit length of 2-symbol maybe larger than that of d-bit
input data (¢ > d) in order to provide the residue number system representation of the
d bits. An RRNS codeword can correct up to ¢t = @ symbols.

The residues x; and x; are generated by performing modulo operation on the input
data X to a set of nonredundant moduli m; and redundant moduli m, respectively; X
represents the integer value of d-bit input data. These operations can be mathemati-
cally represented with the following equations [Szabo and Tanaka 1967].

% =X s X=X, - (1

ACM Journal on Emerging Technologies in Computing Systems, Vol. 7, No. 1, Article 4, Publication date: January 2011.

JET00004 ACM (Typeset by SPi, Manila, Philippines) 6 of 19 February 2, 2011 23:35

4:6 N. Z. Haron and S. Hamdioui

The bit length of x; is b; = [|logo(m; —1)+1] bits and that of x; is b;
lloga(m; — 1) + 1] bits. For example, for m; = 8, the bit length of x; is [log2(8 — 1)+ 1] =
3 bits. This is true because for m; = 8, 0 < x; < 7, each of which is represented by 3
bits. Summing b; and b ; will result in the total bit length of the RRNS codeword b..

For an RRNS codeword to be consistently decoded (to prevent a codeword from being
decoded into more than one output data), the nonredundant residues m; must satisfy
three requirements [Sun and Krishna 1992; Szabo and Tanaka 1967].

(1) A pair of any two moduli, say m, and m; with a # b, must be relatively prime
positive integers such that their greatest common divisor ged(m,, mp) = 1;

(2) the integer value of the succeeding modulus is greater than the preceding modulus,
i.e., my <...<my, <Mps1 <...<my; and

(3) the product of nonredundant moduli M; = Hle m;, is sufficient to represent all
numbers in the operating legitimate range of input data M,, = [0, 24 — 1] for d-bit
input data.

In additional to the three requirements, the redundant residues m; are chosen arbi-
trarily such that:

(1) they ensure the desired error correction capability; and
(2) their product M, = [];,; m, is sufficient to represent all the numbers in M,,.

Note that for a memory with d-input data words, both M; and M; have to be larger
that the operating legitimate range M,, = 2¢ — 1.

3.2 RRNS Encoding

RRNS encoding is based on modulo operation of the input data to a moduli set as ex-
plained in Section 3.1. The residues resulting from the modulo operations are obtained
simultaneously; the operations are executed in parallel by the corresponding modulo
circuits. They are then concatenated to create an RRNS codeword before being stored
in memory cells. Alternatively, the redundant residues can be generated from the
nonredundant residues using a scheme known as Base Extension (BEX) [Szabo and
Tanaka 1967]. However, this scheme requires an iterative calculation, which makes
the encoding slower.

Example 1. An 8-bit input data of a memory system will be encoded into an RRNS
codeword based on the moduli set, e.g., {m1, mg, mg, my, ms} = {5,7,8,9, 11}. The first
three moduli are nonredundant moduli m;, and the last two moduli are redundant
moduli m;. This RRNS code has the correction capability of ¢ = % = 1. Note that the
operating legitimate range M, for this RRNS codeword is [0, 28 — 1 = 255]. Therefore,
the RRNS codeword for input data X = 234 is:

xe = {|234]5, 123417, 123413, |234]9, |234]11}
x. = {4,3,2,0,3}.

The total bit length of x. is 17 bits; this is because the first three moduli require three
bits each, while the fourth and the fifth modulus require 4 bits each.

3.3 RRNS Decoding

RRNS decoding starts by validating the read codeword from the memory array. The
codeword is regarded as valid if its decoded value is within the operating legitimate
range M,p; so, no error correction is needed. On the other hand, it is regarded as
invalid if its value is equal to or larger than M,,; hence, a correction phase is needed.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 7, No. 1, Article 4, Publication date: January 2011.

JET00004 ACM (Typeset by SPi, Manila, Philippines) 7 of 19 February 2, 2011 23:35

Number System Code for Fault-Tolerant Hybrid Memories 4:7

During the correction phase, an iterative calculation is executed. In each iteration,
t number of residues will be discarded. Subsequently, the decoding procedure will
calculate the decoded value using the remaining (n — ¢) residues. This exhaustive
calculation will be performed until the valid data is recovered for maximum C7? = t,(nth),
times of iterations, where n is the number of residues and ¢ is the error correction
capability (see Section 3.1). Ideally, whenever the erroneous residues are discarded,
the correct data will be recovered and read out. However, when no data less than M,
is recovered after the maximum iteration, the decoding cannot correct the erroneous
residues in the RRNS codeword. Consequently, an uncorrectable output signal can be
invoked so that the output data can be ignored or can be further processed for a system
equipped with multilevel fault tolerance.

3.4 Decoding Algorithms

Two algorithms can be used in the decoding process, either (1) Chinese Remainder
Theorem (CRT) or (2) Mixed-Radix Conversion (MRC) [Szabo and Tanaka 1967].

CRT is the basic theory to convert the residue number system into binary or decimal.
It is based on the following equation [Szabo and Tanaka 1967].

n
X =D xe x Mo x |M; |,
c=1

, (2

M

where x. are the residues, M = [[_,m, is theoretical RNS legitimate range, M, = mM

are modular multiplicatives, and |M_!|,, are the modular multiplicative inverse of

|M¢|m,, satisfying |[M, x M_ 1., = 1. MRC is based on the following equations [Szabo
and Tanaka 1967].

n—1
X=x1+(v2><m1)+(1)3xm1xm2)+...+(vanmc), 3)
c=1

where x; is the first residue, m, are the moduli, and v, are mixed radix digits
calculated as:

Uc = |(((xc — 1) X glc) - U(c—l)) X g(c_l)c|mg R (4)

where x. = |X|,, and gc_.. are the multiplicative inverses of m_,) with respect to m.
defined as |me—y) X 8c-wlm, =1;2<c<nandl<u<n-1

Example 2. Assume that the fourth residue of the codeword in Example 1 is cor-
rupted during the storing and that resulted in x. = {4, 3, 2, 8, 3}. First, we show the
decoding process using CRT and thereafter MRC.

Before that, parameters such as legitimate ranges, multiplicatives, multiplicative
inverses, and mixed radix digits are required to accomplish the decoding. These para-
meters can be precalculated; for instance, M = [[_;m. = 27720 and M, p = 241 = 255,
The other parameters as given in Table I.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 7, No. 1, Article 4, Publication date: January 2011.

JET00004 ACM (Typeset by SPi, Manila, Philippines) 8 of 19 February 2, 2011 23:35

4:8 N. Z. Haron and S. Hamdioui

Table I. The Appropriate Parameters for CRT and MRC

Parameter for CRT Parameter for MRC
Multiplicatives, M, | Multiplicative Mixed Radix
Moduli, m,. Inverses, M, 1 Digits, v,
5 5544 4 4
7 3960 3 4
8 3465 1 6
9 3080 5 8
11 2520 1 4

Table Il. Calculated Data During Correcting Phase

Iteration, g 1 2 3 4 5
Discarded Residue, x, x1 X9 X3 X4 x5
Recovered Data, Xé, 1466 | 3594 | 2159 | 234 | 2474

Substituting the appropriate parameters from Table I into Equation (2) will result
in decoded data based on CRT:

X = D xe x Mo x |M |,
c=1 M
X = ‘(4 x 5544 x 4) + (3 x 3960 x 3) + (2 x 3465 x 1) + (8 x 3080 x 5)
+(3 x 2520 x 1)‘
27720
X = 12554 > 255 : error is detected since this is larger than the legitimate operating

range.

The same result will be obtained when substituting the appropriate parameters
from Table I into Equation (3). The decoded data based on MRC is:

X = x1+(1)2 xm1)+(z)3 X my X m2)+(v4 X M1 X mgo xm3)+(1)5 X mp X mg X ms X m4)
X =4+Ux5)+6Bxb5xT+B8x5xTx8)+(4x5xT7Tx8x9)
X = 12554 > 255 : error is detected since this is larger than the legitimate operating

range.

The error correction procedure is invoked because the codeword is invalid. A sys-
tematic iterative calculation that discards a residue in each iteration is performed for
a maximum Cf = 5 iterations (see Section 3.3). This exhaustive search produces the
integer values as shown in Table II. It recovers the correct value when x4 is discarded,
i.e, results in X = 234, which is within the legitimate operating range.

4. RRNS CODES FOR HYBRID MEMORIES

In this section we first give an overview of Reed-Solomon and Conventional RRNS
code, which will be experimentally compared in this work. Thereafter, we introduce
the adapted RRNS variant suitable for improving the reliability of hybrid memories at
lower cost.

4.1 Conventional RRNS Code

In this work, the conventional RRNS (C-RRNS) code consists of nine residues, where
there are (1) three restricted nonredundant moduli, and (2) six unrestricted redun-
dant moduli. The restricted nonredundant moduli set is based on {27 — 1, 27, 27 + 1},
where p is a positive integer; this moduli set is adopted to realize simple and fast

ACM Journal on Emerging Technologies in Computing Systems, Vol. 7, No. 1, Article 4, Publication date: January 2011.

JET00004 ACM (Typeset by SPi, Manila, Philippines) 9 of 19 February 2, 2011 23:35

Number System Code for Fault-Tolerant Hybrid Memories 4:9

Table Ill. Moduli and p for C-RRNS and 6M-RRNS Codes

p value
ECC Types Moduli Set 16-bit | 32-bit | 64-bit
C-RRNS 2P — 1s 217, 2P + 1#11#]2#3#]4415416 6 11 22
6M-RRNS 2P 41,2, 20-1 1 2p=2 _1 2p=3 _1 2r-% 41 8 16 32

Table IV. Bit Length of C-RRNS, 6M-RRNS and RS (G F(28)) Codes

Bit length of Codeword
ECC Types 16-bit 32-bit 64-bit
C-RRNS 61 106 205
RS 48 96 192
6M-RRNS 40 88 184

hardware implementation [Barsi and Maestrini 1973; Wang et al. 2003]. Unrestricted
redundant moduli are commonly appended to the nonredundant moduli in order to
provide the fault detection and the correction capability. The restricted nonredundant
moduli are selected in such a way that, besides satisfying the RRNS rules, the prod-
uct of the selected moduli should be as close as possible to the operating legitimate
range to optimize the area overhead and performance penalty. This selection is accom-
plished by choosing the minimum value of p. On the other hand, the number of the
unrestricted redundant moduli q,, where 1< v < 2¢, can be any integer larger than
the nonredundant moduli as long they conform the RRNS rules. In this work, prime
integers larger than those of the restricted nonredundant moduli are chosen to be the
redundant moduli.

For a 16-bit memory word, the integer value for restricted nonredundant residues
{2P — 1, 2P 2P + 1} must be selected such that their product is at least equal to the op-
erating legitimate range M,, = 2!6 — 1. To satisfy this criterion, the minimum value of
p = 6 is chosen (see Table III). This results in nonredundant moduli m; = {63, 64, 65};
note that the theoretical RRNS legitimate range M; = 63 x 64 x 65 = 262080 > M,,,.
The chosen redundant moduli are m; = {67,71,73,79, 83,89}, where their product
is obviously more than M,,. The six-residue checkword is needed to protect the

three-residue dataword, ¢ = 3. The codeword length is 6. = Zle loga(m; — 1)+ 1] +
2 tri1lloge(mj—1) +1] = 61 bits. The first row of Table IV shows the required bit
length for different data lengths encoded into C-RRNS.

4.2 Reed-Solomon Code

Reed-Solomon (RS) code encodes d-bit input data into an n-symbol codeword, which
consists of a k-symbol dataword and an (n — k)-symbol checkword [Lin and Costello
2004]. The symbols in RS code are encoded by b bits each and are represented by
finite field elements (also known as Galois Field). All symbols have the same bit length
depending on the Galois Field elements. RS code can correct up to ¢ faulty symbols in
a codeword by appending a checkword of 2¢ = (n — k) symbols. This code has been
employed in high performance SRAM, flash memories, and compact disks [Neuberger
et al. 2003].

In this work we use Galois Field of degree eight (m = 8); it means that each RS
symbol is represented by eight bits. A d-bit input data is encoded into a %-symbol
dataword. In order to ensure that the %-dataword is correctable if corrupted, a 2 x %—

symbol checkword is appended, resulting in a codeword of 3 x %-symbols. Thus, the
bit length of the RS codeword is three times longer than that of the input data. For
instance, for a 16-bit input data with m = 8, a codeword of % = 2-symbol dataword and

ACM Journal on Emerging Technologies in Computing Systems, Vol. 7, No. 1, Article 4, Publication date: January 2011.

JET00004 ACM (Typeset by SPi, Manila, Philippines) 10 of 19 February 2, 2011 23:35

4:10 N. Z. Haron and S. Hamdioui

2 x 8 = 4-symbol checkword is needed to correct the 2-symbol dataword. The required
bit length for different data lengths encoded into RS code is shown in Table IV.

4.3 Modified RRNS Code

As shown in Table IV, the bit length of C-RRNS is longer than that of RS for all con-
sidered data lengths. Yet, C-RRNS code has better correction capability than RS (more
detail in Section 5). Therefore, it is beneficial to modify C-RRNS to reduce the length
of a C-RRNS codeword, while retaining its correction capability at a competitive level.
Modified RRNS is introduced to achieve this; it is based on the following strategies
[Haron and Hamdioui 2009].

(1) For non-redundant moduli. We minimize the number of nonredundant moduli as
long as their product is larger than the legitimate operating range. This results in
shorter checkwords, hence shorter codewords.

(2) For redundant moduli. We choose redundant moduli with smaller integer values
than that of the nonredundant moduli; yet the chosen moduli have product larger
than the operating legitimate range. Note that this strategy violates the second
rule of RRNS coding as mentioned in Section 3.1; the succeeding moduli (redun-
dant moduli) become smaller than the preceding (nonredundant moduli). This
violation may cause an inconsistency during decoding, where a single read code-
word might be decoded into more than one (ambiguous) output data. Maximum
likelihood decoding is introduced to resolve this problem.

(8) Maximum likelihood decoding (MLD). We use this method to distinguish the au-
thentic output data from the ambiguous data. More details on this method will be
given in Section 4.4.

The modified version of C-RRNS is referred to as Six-Moduli RRNS (6M-RRNS).
This code is comprised of six residues, where (1) two are nonredundant moduli and
(2) four are redundant moduli. Based on our modification strategies mentioned in the
preceding, the nonredundant moduli set is {27, 2P + 1}, while the redundant moduli set
is {2P71 —1,2P72 —1,2P~3 — 1,2P~* 1+ 1}, where p is an integer as shown in Table III.
Note that for 6M-RRNS both moduli sets are restricted, while for C-RRNS this is only
the case for the nonredundant moduli. Therefore, this restricted moduli set will result
in a simpler hardware implementation than that of C-RRNS.

For a 16-bit memory word, the smallest p that satisfies the requirement that the
product of nonredundant moduh is larger than M,, = 216 — 1 is p = 8 (see Table III).
This results in m; = {257, 256}, M; = 65792, m; = {127 63, 31,17}, and M; = 4216527.
Although m; consists of smaller 1nteger values than that of my, their product M; is
clearly more than M,, = 216 — 1. In a similar way, p = 16 for a 32-bit and p = 32 for a
64-bit memory word are chosen.

4.4 Maximum Likelihood Decoding

Because we intentionally use the second strategy mentioned in Section 4.3, some of
the read codeword might be decoded into more than one (ambiguous) decoded data.
According to our simulation, less than 10% of the decoded data will suffer from this
ambiguity. To resolve this ambiguity, a maximum likelihood decoding (MLD) scheme,
adopted from Goh and Siddiqi [2008], is employed. The concept behind the scheme is
to find the closest Hamming distance between the residues of the ambiguous decoded
data and the read codeword that causes the ambiguity. First, each ambiguous decoded
data is encoded, resulting in a new codeword. Then, the Hamming distance between
each new codeword and the read codeword (the codeword that produces the ambiguous

ACM Journal on Emerging Technologies in Computing Systems, Vol. 7, No. 1, Article 4, Publication date: January 2011.

JET00004 ACM (Typeset by SPi, Manila, Philippines) 11 of 19 February 2, 2011 23:35

Number System Code for Fault-Tolerant Hybrid Memories 4:11

data) is calculated [Goh and Siddiqi 2008]. Finally, the ambiguous data for the code-
word that has the smallest difference (Hamming distance) is regarded as the authentic
output data. As the moduli set used for 6M-RRNS satisfies the first and third RRNS
requirement, MLD ensures the decoding correctness. The following example clarifies
the MLD scheme.

Example 3. Assume a 16-bit memory word with 6M-RRNS coding; the nonredun-
dant moduli are m; = {257,256} and the redundant moduli are m; = {127, 63, 31, 17}.
The first residue of the codeword x = {221,0, 72, 18,9, 2} (represents X = 9216) is
corrupted during storing and is read as x’ = {0, 0, 72, 18,9, 2}. During decoding, the
erroneous residue is detected and then is corrected. After the maximum iteration
of the correction has been reached, there are two decoded data with value less than
M,, = 21 — 1; X, = 9216 when m; and my are discarded, and X, = 257 when m3 and
mg are discarded. This ambiguity requires MLD to determine the authentic output
data as follows.

First, X| and X/ are each modulo to the moduli set producing x| and x,.

X, = {19216]y57 , 192161956, (9216|197 , 9216]g5 , [9216]5; , [9216],7)
x, = {221,0,72,18,9,2}

xy = {12567|957 , 1257|256 , 1257|197 , 125763, 1257131 , 125717}

x, = {0,1,3,5,9,2}

Then, the resulting residues x| and x/, are compared with the the read codeword x'.
This comparison reveals that x| has Hamming distance d,,;, = 1 (differs in the first
residue) while x;, has d,;, = 3 (differs in second, third, and fourth residues). Therefore,
the authentic output data is X = 9216.

5. EXPERIMENTAL EVALUATION AND ANALYSIS

In this section we evaluate and analyze the performance of the proposed 6M-RRNS
code by comparing it to RS and C-RRNS. We start with the simulation setup. Then
the simulation results will be presented. Thereafter, we present an analysis of five
different aspects including, (1) the codeword length required by the considered codes,
(2) the data storage capacity for a fixed memory size, (3) the decoding latency of RRNS
variants, (4) the ratio of error correction capability for the required codeword length,
and (5) the correction capability when considering all codes have the same codeword
length.

5.1 Simulation Setup

The RRNS variants, RS codes, memories, and fault injection were described using
MATLAB script. All codes were set to the corresponding ¢ to protect the codeword from
faults. For the RRNS decoding process, MRC was implemented because it requires
simple design, and is easier to optimize than CRT. The operating legitimate range M,,
is set up to M,, = 2¢ — 1, where d = 16, 32, 64. For RS code, MATLAB built-in RS
encoding and decoding functions were used [MathWorks]. An appropriate adjustment
for the polynomial generator was done to encode and decode 16, 32, and 64-bit RS
memory words.

Cluster faults were uniformly injected at each memory word (the stored codeword).
The faults were increased from a single bit up to 20 clustered bits per codeword for
16-bit word memory, single bit up to 35 clustered bits per codeword for 32-bit memory
words, and single bit up to 68 bits per codeword for 64-bit memory words. Various fault
rates from 1% to 10% were applied during the experiments.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 7, No. 1, Article 4, Publication date: January 2011.

JET00004 ACM (Typeset by SPi, Manila, Philippines) 12 of 19 February 2, 2011 23:35

4:12 N. Z. Haron and S. Hamdioui
(a) (b) (©)
Corrected Memory Words (%) Corrected Memory Words (%) Corrected Memory Words (%)
10 — 1 — 1 —
995 995 M 93 M
99 99 99
98.5 985 985
98 98 98
—o—C-RRNS —o—C-RRNS —o—C-RRNS
975[| —a— 6M-RRNS 975 | —s—6M-RRNS 9757 | —s— 6M-RRNS
—o—RS ——RS ——RS
o7 97 97
9.5 9.5 9.5
ool ol ol
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
Fault Rate (%) Fault Rate (%) Fault Rate (%)

Fig. 4. Simulation results for different lengths of memory words.

5.2 Simulation Results

Figure 4 shows the simulation results for C-RRNS, 6M-RRNS, and RS codes. Overall,
C-RRNS provides the best error correction capability, followed by 6 M-RRNS, whereas
RS scores the worst. For example, for 16-bit memory at 10% fault rate, C-RRNS code
can correct at least 2% more than the other two codes. However, as the memory word
increases, the difference among all investigated ECCs becomes marginal. For example,
for 64-bit memory at 10% fault rate, the difference between C-RRNS and 6M-RRNS is
only 0.40%.

It is clear from the preceding that the modified version of 6M-RRNS can realize a
competitive error correction capability, especially for large memory word size, which
is expected to be the case for hybrid memories. Moreover, the advantage of 6M-RRNS
as compared to RS and C-RRNS is lower overhead and time performance, as will be
explained in next subsections.

5.3 Analysis

First, consider the generated codeword length (in terms of number of bits) of the con-
sidered codes. Figure 5 shows that 6M-RRNS has the shortest codeword length as
compared to RS and C-RRNS codes. The bit lengths of the ECCs are also given in
Table IV. For example, for a 64-bit memory word 6M-RRNS realizes a codeword that
is 4.17% and 10.24% shorter than that of the RS and C-RRNS codes, respectively. This
implies larger user data storage capacity and faster decoding.

Second, consider the capacity of the user data storage for a fixed memory chip size.
We assume that a memory size of 1Tbit is used to store user data encoded in all of the
considered codes. For this, the capacity (in terms of memory words) is calculated by

dividing 17 = 2%° bits by codeword length B, of the considered ECCs, that is, C = 240

Then the ratio between 6M-RRNS and C-RRNS as well as between 6M-RRNS and RS
is calculated. Considering 16-bit memory words, RS is able to store 1T/48 data words,
C-RRNS 1T/61 data words, and 6M-RRNS 1T/40 data words. Hence, as presented in
Table V, 6M-RRNS is able to store 20.00% and 52.50% more data than RS and C-
RRNS, respectively. The difference in user data capacity for 1T organized into 32-bit
and 64-bit memory words is shown in the third and fourth columns in Table V, respec-
tively. Although the differences decrease as the input data width increases, they are
still significant. Overall, 6M-RRNS offers the biggest data storage when considering a
fixed memory chip size.

Third, consider the decoding time for RRNS codes. Since 6M-RRNS code is able to

!
correct at most two erroneous residues, the code requires a maximum of C§ = 2,“? o =

ACM Journal on Emerging Technologies in Computing Systems, Vol. 7, No. 1, Article 4, Publication date: January 2011.

JET00004 ACM (Typeset by SPi, Manila, Philippines) 13 of 19 February 2, 2011 23:35

Number System Code for Fault-Tolerant Hybrid Memories 4:13

Comparison of Bit Length for RS and RRNS variants
| [l Dataword

Number of bits
250

[Checkword [Codeword

200

150

100

50

6M-RRNS
6M-RRNS
6M-RRNS

16-bit 32-bit 64-bit

Types of ECCs

Fig. 5. Codeword length for each code.

Table V. Difference (%) in User Data Capacity Among the ECCs for 1TBit Memory

6M-RRNS Difference (%) in capacity

Vs. 16-bit 32-bit 64-bit
RS 20.00% 9.09% 4.35%
C-RRNS 52.50% 20.45% 11.41%

15 iterations during the decoding procedure. Moreover, the likelihood decoding step is
required to determine the authentic output of the ambiguous data (see Section 4.4). On
the other hand, C-RRNS code needs a maximum of Cg = #13)! = 84 iterations. This
means that 6M-RRNS variants decode up to 5.25 times faster than C-RRNS. Note that
RS has different decoding steps than RRNS variants [Lin and Costello 2004]; thus, it
is not considered in this case.

Fourth, consider the ratio of error correction capability for the required codeword
length. Although 6M-RRNS requires shorter codewords, Figure 6 shows that this code
realizes better correctable bits per codeword length (in bits). The number of correctable
bits is B; = zzzl B, where t = % is the error correction capability in terms of symbols
and B is the number of bits per symbol s. The ratio is calculated by dividing B; by code-
word length B, i.e., tg = %. For 16-bit input data encoded into 6M-RRNS, the maxi-
mum number of erroneous bits it can correct is 17 out of 40 bits per codeword (42.50%).
RS and C-RRNS can correct only 16/48 = 33.33% and 19/61 = 31.10%, respectively.
Note that the differences decrease as the input data width becomes larger. Overall,
6M-RRNS provides the highest bit-wise error correction capability in this case.

Fifth, consider the correction capability when assuming that all codes have the same
codeword length. Let’s take C-RRNS with codeword length of 61 bits for 16-bit data
as the reference. Given the budget of 61 bits, RS (48 bits) can have one additional
symbol, whereas 6M-RRNS (40 bits) can have two additional residues. This is because

ACM Journal on Emerging Technologies in Computing Systems, Vol. 7, No. 1, Article 4, Publication date: January 2011.

JET00004 ACM (Typeset by SPi, Manila, Philippines) 14 of 19 February 2, 2011 23:35

4:14 N. Z. Haron and S. Hamdioui

Correctable Bits over Codeword Length

| [Codeword [[JCorrectable Bits [E] Correctable Bits (%)
Number of Bits Correctable Bits per Codeword (%)
250 50

200 40

150 L 30

100

50 A

6M-RRNS
6M-RRNS
6M-RRNS

16-bit 32-bit

Types of ECCs

Fig. 6. Error correction capability over codeword length.

RS requires 8 bits for each symbol, while RRNS can use any prime integer moduli
with bit length of 8 bits each. Therefore, RS will consist of a codeword of five symbols,
resulting in a correction capability of ¢ = L7—52J = 2 symbols. For 6M-RRNS, the code

will consist of a checkword of six residues that can correct ¢ = L%j = 3 symbols. This
capability also applies for larger data lengths. Therefore, 6M-RRNS offers the best
error correction in this case.

6. ENCODER AND DECODER IMPLEMENTATION

Having shown that 6M-RRNS possesses advantages over C-RRNS and RS codes, the
question is now what is the cost of implementing the encoder and decoder in terms of
the area and performance penalties. We designed the circuits using Very High Speed
Integrated Circuit Hardware Design Language (VHDL) and synthesized the circuits in
90nm CMOS technology. Moreover, we use the scaling factor from [ITRS] to estimate
the area and time overhead for 32nm CMOS technology. Xilinx ISE and Synopsys
Design Compiler tools are used during the design phase.

6.1 Encoder Implementation

Figure 7(a) shows the block diagram of an RRNS encoder, which consists of d-bit data
at the input side and varied-length n-residue at the output side. This encoder is formed
by n numbers of modulo circuits that run in parallel. Figure 7(b), (c), and (d) illustrate
the functional units of the modulo circuitry embedded inside the encoder. Each figure
represents the circuit that generates the residues based on moduli set in the form of
2P 2P — 1, and 27 + 1.

The circuit that generates the residue based on 2? is comprised of a buffer as shown
in Figure 7(b). The p-bit outputs of buffer BUFF are connected to the corresponding

ACM Journal on Emerging Technologies in Computing Systems, Vol. 7, No. 1, Article 4, Publication date: January 2011.

JET00004 ACM (Typeset by SPi, Manila, Philippines) 15 of 19 February 2, 2011 23:35
Number System Code for Fault-Tolerant Hybrid Memories 4:15
(a) © (d) .
Datain Datain Datain
d % d d f
RRNS BUFF ’ BUFF
Encoder
:’””"'”'} :'”'”””': P P P B
Modulog+ » = {Modioy AT G, % G O
G 7 G3 G2 Gl
b{ b{ ADD ADD
. ADD Sum Sum,
Residue Residue, © ptl
Modulus ~ Sum p+l
+1 Ca
P f P ™ SUB
(b) Modulus Diff
Datain SUB » - 1% pHl Sign
d Sign| |Diff
B : o,
BUFF
o Sel Inl In2 p+2
MUX 2 Sel
Residue 1 p MUX
Residue »

Residue 3

Fig. 7. (a) Block diagram of RRNS encoder (b) functional units of modulo 27 circuit (b) functional units of
modulo 2P — 1 circuit (c¢) functional units of modulo 27 + 1 circuit; for p = 4.

p least significant bits of the input data. The remaining d — p most significant inputs
are left unconnected. Any input data Datain asserted into the buffer will produce its
corresponding Residuel.

The circuit that generates the residue based on 2? — 1 is comprised of a buffer,
an adder, a subtracter, and a multiplexer, as depicted in Figure 7(c). Buffer BUFF
splits the input data Datain into an appropriate number of intermediate data groups
Gg, where g is a positive integer. These are added together producing Sum. This
temporary addition might produce carry bits, which must be added again to the sum.
Subsequently, SUB and MUX circuits will select whether to take Sum as the output
Residue2, or to take the difference Diff = Sum — Modulus as the output Residue2. The
former will be read out if Sum is less than the Modulus; otherwise, the latter will be
selected.

The circuit that generates the residue based on 27 +1 consists of a buffer, two adders,
a subtracter, and a multiplexer, as illustrated in Figure 7(d). Buffer BUFF splits the
input data Datain into an appropriate number of intermediate data groups Gg, where
gis a positive integer. Afterwards, each of the two adders performs the addition among
the intermediate data in odd and even groups, respectively. Thereafter, a subtracter
performs Diff = Sum, — Sum,. Finally, the ADD and MUX circuits execute their
operations to produce the final result: Residue3. If Diff is positive, the number is
taken as Residue3, otherwise it takes Sum = Modulus + Diff. If the latter is selected,
only the p+1 least significant bits are taken as the residue and the p +2-bit is ignored.

Note that the intermediate data for producing the residues based on 2 —1 and 27 +1
from input data is a fundamental element in a modulo operation. Without this data,
an incorrect modulo might be produced. A more complete explanation can be found in
Szabo and Tanaka [1967].

ACM Journal on Emerging Technologies in Computing Systems, Vol. 7, No. 1, Article 4, Publication date: January 2011.

JET00004 ACM (Typeset by SPi, Manila, Philippines) 16 of 19 February 2, 2011 23:35

4:16 N. Z. Haron and S. Hamdioui

(a) b b
: RRNS
Residue 7L, VARG
1 Decoder Dataout

. b :
Residue 7L> S £ A ' Correct
®) | S
Residue | MRW, :
b} b v
5 §
T b i
’b MRD i
Residue, — < MR, 2 - muLT, [MRW2 b
Mullnv;, Modulus1 —~ b
I b i I
5 b MRW;
Residue ; —H MR Modulusl? MULT, o q iib
b 3 [:
: Modulusy —~< > < |7 td
MulInv13 i odulusy ﬁbL> _74» Dataout
Mullnv 5 . . . o o :
. : & |
o o
+i* MRD 1 [t © '
i b @D i 1 Operating T
L2 MRD b ! i Legitimate
: ! iRange 7
' b f o d
! Modulus] —<—>| MULT,
Residuey — %] MR 1° n .
: b n .
Mull: — e b
iMVin . Modulus;, —<—>|
*i b b
Mol oo K Converter |t Checker

Fig. 8. (a) Block diagram of RRNS decoder (b) functional unit of the detection circuit.

6.2 Decoder Implementation

Figure 8(a) illustrates the block diagram units of an RRNS decoder with n-residue
at the input side and d-bit output data as well as a control signal, Correct, at the
output side. The decoder is designed to perform two operations: (1) to convert the
RRNS codeword (represented by a set of residues) into binary output data, and (2) to
check its validity (to determine any occurrence of error). The converter is based on a
mixed-radix conversion scheme as explained in Section 3.4. The checker compares the
binary data converted from an RRNS codeword with a predefined operating legitimate
value. This circuit will invoke a software-based correction procedure if faults have
been detected.

Figure 8(b) depicts the functional units of the converter and checker. The converter
consists of a combination of circuits that produce mixed radix digits MR, (where c is
a positive integer), multipliers, and an adder, whereas the checking circuit is a com-
parator. Generally, the MR, circuit consists of the modulo circuit, similar to that of
the encoder, but with more inputs and components. Each MR, circuit has inputs in-
cluding residues Residue,, mixed radix digits from the previous state MRD_1), and
multiplicative inverses Mullnv_y., where 2 < ¢ < nand 2 < u < n— 1. For example,
MR has inputs Residue;, Residues, and Mullnvis, whereas MR3 has inputs Residue,
MRDs, Residues, Mullnvys, and Mullnvss. Note that the MR, at the higher level has
more inputs compared to the MR, at the lower level. The output of MR, together with
the predefined moduli Modulus., becomes an input to multiplier MULT,. Similar to
MR,., each multiplier also has inputs that vary depending on the level of the circuit. For

ACM Journal on Emerging Technologies in Computing Systems, Vol. 7, No. 1, Article 4, Publication date: January 2011.

Number System Code for Fault-Tolerant Hybrid Memories

JET00004 ACM (Typeset by SPi, Manila, Philippines) 17 of 19 February 2, 2011

Table VI. Synthesis Results for 90nm CMOS Technology

Data width | Circuits | Area Overhead (um?) | Time Overhead(ns)
Encoder 1988.38 10.67

16-bit Decoder 3999.34 42.81
Overall 5987.72 53.48
Encoder 4338.03 15.81

32-bit Decoder 11216.22 67.62
Overall 15554.25 83.43
Encoder 10696.90 33.71

64-bit Decoder 31876.19 118.43
Overall 42573.09 152.14

Table VII. Estimated Results for 32nm CMOS Technology

Data width | Circuits | Area Overhead (um?) | Time Overhead(ns)
Encoder 248.54 2.13

16-bit Decoder 499.92 8.56
Overall 748.47 10.70
Encoder 542.25 3.16

32-bit Decoder 1402.03 13.52
Overall 1944.28 16.68
Encoder 1337.11 6.74

64-bit Decoder 3984.52 23.68
Overall 5321.63 29.97

23:35

4:17

example, MULT; has only two inputs: MRDy; and Modulusi; whereas MULT5 has
three inputs: MRD3, Modulus, and Moduluss. The outputs of the multipliers MRW,
are added, producing the binary output data. This binary data (the sum) is compared
to the legitimate operating range to ensure its validity. The binary data is valid if it is
less than the operating legitimate range and can be read out of the memory; otherwise
it is invalid and is ignored. The control signal Correct, indicates the validity of the
binary data where it is reset if the binary data is valid and set when invalid. When
the Correct signal sets, a software-based correction procedure will be activated. Note
that the MRW, is equal to Residuer; thus, no additional circuit is needed except wires
to connect Residue; to the adder.

6.3 Implementation Results

Table VI shows the synthesis results for the area occupied by the proposed 6M-RRNS
encoder and decoder (measured in square micrometers), and their critical combina-
tional path delay (measured in nanoseconds) synthesized in 90nm CMOS technology.
Moreover, we estimate our design for 32nm technology. According to the International
Technology Roadmap for Semiconductors, the scaling factors for silicon area and com-
binational datapath delay between 90nm and 32nm CMOS technology are approxi-
mately 8 and 5, respectively [ITRS].

Table VII summarizes the estimated area overhead and time penalty of the 6M-
RRNS encoder and decoder for 32nm technology. For example, the area overhead of the
encoder and decoder occupies much less than 1% of the total 1cm? CMOL memory chip
[Strukov and Likharev 2007]. For example, for 64-bit memory with estimated 32nm
technology, the encoder and decoder area is 5321.63um?, which is 0.005% of the 1cm?
area of a CMOL memory chip. In general, for 4 x 64-bit the encoder and decoder adds
h x5.32 x 1075 overhead to 1cm? hybrid memories, where 4 is an integer. For example,
for 128-bit the area overhead for the encoder and decoder can be estimated roughly as
12 x 5.32 x 107% = 1.06 x 10~*cm?. However, high time penalty is the price that has

to be paid because of the implementation of the 6M-RRNS encoder and decoder. To

ACM Journal on Emerging Technologies in Computing Systems, Vol. 7, No. 1, Article 4, Publication date: January 2011.

JET00004 ACM (Typeset by SPi, Manila, Philippines) 18 of 19 February 2, 2011 23:35

4:18 N. Z. Haron and S. Hamdioui

overcome this limitation, design optimizations, for example by using multiple access
ports or by parallelizing the MRC-based RRNS decoding, can be implemented.

Theoretically, these area overhead and time penalties are still better than C-RRNS
because both ECCs are based on a similar encoding and decoding algorithm. As men-
tioned in Section 4.1, C-RRNS uses unrestricted moduli to generate the checkword.
This has been proven to incur larger cost as compared to that of restricted moduli
[Barsi and Maestrini 1973; Wang et al. 2003], which is used by 6M-RRNS for both
parts. However, further experimentation is needed to evaluate the difference in area
between these two RRNS variants.

7. CONCLUSION

In this article we presented the concept of Redundant Residue Number Systems
(RRNS) code to improve the reliability of hybrid memories. After giving the funda-
mental concept of RRNS code, we introduced a modified RRNS code to tolerate a high
degree of cluster faults. The modified version, referred to as 6M-RRNS, consists of
six residues, whereas conventional RRNS (C-RRNS) code comprises of nine residues.
Our experimental results and quantitative analysis show that 6M-RRNS code provides
competitive error correction capability as compared to C-RRNS and Reed-Solomon
(RS) codes. Furthermore, it offers shorter codeword bit length, allowing for more data
storage as compared to the other two codes. Moreover, 6M-RRNS decodes faster than
C-RRNS due to the smaller number of residues. It is worth mentioning that the de-
coder is assumed to be fault-free where the faults only impact the encoder and memory
cell array.

Future work will investigate new fault tolerance techniques to tolerate intermittent
and transient faults that impact not only the memory cell array but also the other
components of hybrid memories, i.e., CMOS-to-nano interface pins and peripheral cir-
cuits. To achieve these aims, techniques like interleaving and hardware redundancy,
together with error correction code, will be explored.

REFERENCES

BARSI, F. AND MAESTRINI, P. 1973. Error correcting properties of redundant residue number systems.
IEEE Trans. Comput. 22, 3, 307-315.

Biswas, S., METODI, T. S., CHONG, F. T., AND KASTNER, R. 2007. A pageable, defect-tolerant nanoscale
memory system. In Proceedings of IEEE International Symposium on Nanoscale Architecture. 85-92.

BuLLis, K. Ultradense molecular memory: Researchers develop a large-scale array of nanoscale memory
circuits. http://www.technologyreview.com/nanotech/18100/.

CALMEC. Molecular electronic technology. http:/www.calmec.com/.

DEHON, A., GOLDSTEIN, S. C., KUEKES, P., AND LINCOLN, P. 2005. Nonphotolithographic nanoscale
memory density prospects. IEEE Trans. Nanotechnol. 4, 2, 215-228.

GHOSH, S. AND LINCOLN, P. D. 2008. Dynamic low-density parity check codes for fault-tolerant nanoscale
memory. http://www.csl.sri.com/users/shalini/ldpc.pdf.

GOH, V. T. AND SI1DDIQI, M. U. 2008. Multiple error detection and correction based on redundant residue
number systems. IEEE Trans. Comm. 56, 3, 325—330.

HARON, N. Z. AND HAMDIOUI, S. 2009. Residue-based code for reliable hybrid memories. In Proceedings of
IEEE International Symposium on Nanoscale Architectures. 27-32.

HARON, N. Z. AND HAMDIOUI, S. 2011. Cost-efficient fault-tolerant decoder for hybrid nanoelectronic mem-
ories. In Proceedings of Design, Automation and Test in Europe Conference (DATE). To appear.

ITRS. The International Technology Roadmap for Semiconductors.
http://www.itrs.net/links/2009itrs/home2009.htm.

JEFFERY, C. AND FIGUEIREDO, R. J. O. 2006. Hierarchical fault tolerance for nanoscale memories. IEEE
Trans. Nanotechnol. 5, 4, 407-414.

KisH, L. B. AND AJAYAN, P. M. 2005. Terrabyte flash memory with carbon nanotubes. Appl. Phys.
Lett. 86, 9, 1-2.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 7, No. 1, Article 4, Publication date: January 2011.

JET00004 ACM (Typeset by SPi, Manila, Philippines) 19 of 19 February 2, 2011 23:35

Number System Code for Fault-Tolerant Hybrid Memories 4:19

KUGELER, C., MEIER, M., ROSEZIN, R., GILLES, S., AND WASER, R. 2009. High density 3D memory archi-
tecture based on the resistive switching effect. JJ. Solid-State Electron. 53, 12, 1287-1292.

LIKHAREV, K. K. 2008. Hybrid CMOS/nanoelectronic circuits: Opportunities and challenges. J. Nanoelec-
tron. Optoelectron. 3, 3, 203—230.

LIN, S. AND COSTELLO, D. J. 2004. Error Control Coding: Fundamentals and Applications. Prentice-Hall,
Upper Saddle River, Nd.

LINCOLN, P. 2009. Challenges in scalable fault tolerance. In Proceedings of IEEE/ACM International
Symposium on Nanoscale Architectures. 13—14.

LUYKEN, R. J. AND HOFMANN, F. 2003. Concept for hybrid CMOS-molecular non-volatile memories.
J. Nanosci. Nanotechnol. 14, 2, 273-276.

MATHWORKS. Reed-Solomon decoder simulation. http://www.mathworks.com/matlabcentral.

MISHRA, M. AND GOLDSTEIN, S. C. 2003. Defect tolerance at the end of the roadmap. In Proceedings of
International Test Conference. IEEE Computer Society, 1201-1210.

NAEIMI, H. AND DEHON, A. 2009. Fault secure encoder and decoder for nanomemory applications. IEEE
Trans. VLSI Syst. 17, 4, 473—-486.

NEUBERGER, G., LIMA, F. D., CARRO, L., AND RIES, R. 2003. A multiple bit upset tolerant SRAM memory.
ACM Trans. Design Autom. Electron. Syst. 8, 4, 577-595.

ORAILOGLU, A. 2007. Nanoelectronic architectures: Reliable computation on defective devices. In Digest of
Workshop on Dependable and Secure Nanocomputing.

REED, M. A., CHEN, J., RAWLETT, A. M., PRICE, D. W., AND TOUR, J. M. 2007. Molecular random access
memory cell. Appl. Phys. Lett. 78, 23, 3735-37317.

RISPAL, L. AND SCHWALKE, U. 2008. Large-scale in situ fabrication of voltage-programmable dual-layer
high-kappa dielectric carbon nanotube memory devices with high on/off ratio. IEEE Electron Device
Lett. 29, 412, 1349-1352.

STRUKOV, D. B. 2006. Digital architectures for hybrid CMOS/nanodevice circuits. Ph.D. thesis, Stony Brook
University, NY.

STRUKOV, D. B. AND LIKHAREV, K. K. 2004. Prospects for terabit-scale nanoelectronic memories.
J. Nanosci. Nanotechnol. 16, 1, 137-148.

STRUKOV, D. B. AND LIKHAREV, K. K. 2007. Defect-tolerant architectures for nanoelectronics crossbar
memories. J. Nanosci. Nanotechnol. 7, 151-167.

SUN, F. AND ZHANG, T. 2007. Defect and transient fault-tolerant system design for hybrid
CMOS/manodevice digital memories. IEEE Trans. Nanotechnol. 6, 3, 341-351.

SUN, J. D. AND KRISHNA, H. 1992. A coding theory approach to error control in redundant residue number
systems - Part II: Multiple error detection and correction. IEEE Trans. Circuits Syst. 39, 1, 18-34.

SZABO, N. AND TANAKA, R. 1967. Residue Arithmetic and its Application to Computer Technology.
MC-Graw-Hill, New York.

WAISER, R. AND AONO, M. 2007. Nanoionics-based resistive switching memories. Nature Materials 6, 11,
833-840.

WANG, W., SWAMY, M. N. S., AHMAD, M. O., AND WANG, Y. 2003. A study of the residue-to-binary convert-
ers for the three-moduli sets. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 50, 2, 235-243.

YANG, L.-L. AND HANZO, L. 2001. Redundant residue number system based error correction codes. In
Proceedings of the 54th Vehicular Technology Conference. Vol. 3. 1472—-1476.

ZETTACORE. Zettacore Memory. http://www.zettacore.com/.

Received March 2010; revised August 2010; accepted October 2010

ACM Journal on Emerging Technologies in Computing Systems, Vol. 7, No. 1, Article 4, Publication date: January 2011.

