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We study in depth the class of games with opacity conditiohiciv are two-player games with
imperfect information in which one of the players only hagperfect information, and where the
winning condition relies on the information he has along piey. Those games are relevant for
security aspects of computing systems: a plagpaquewhenever the player who has imperfect
information never “knows” for sure that the current positie one of the distinguished “secret”
positions. We study the problems of deciding the existeriaewinning strategy for each player,
and we call them thepacity-violate problenand theopacity-guarantee problenfocusing on the
player with perfect information is new in the field of gamethwimperfect-information because when
considering classical winning conditions it amounts toview the underlying perfect-information
game. We establish the EXPTIME-completeness of both abweationed problems, showing that
our winning condition brings a gap of complexity for the ptawith perfect information, and we
exhibit the relevanbpacity-verify problemwhich noticeably generalizes approaches considered in
the literature for opacity analysis in discrete-eventayst. In the case of blindfold games, this
problem relates to the two initial ones, yielding the detieany of blindfold games with opacity
condition and the PSPACE-completeness of the three prablem

1 Introduction

We described in[14] a class of two-player games with immrifgformation that we callegames with
opacity condition In these games, the players are Robert (for “robber”) ancl@dfor “guardian”).
Robert has imperfect information as opposed to Gerald wikgkdect information. This asymmetric
setting is very relevant for the verification of open systeand all the more for security aspects as it
captures the intuitive picture of an attacker having onlhadigl information against a system. The game
model we consider relies on the classical imperfect-infiiiom arenas, as defined éng. [16,[1], but

it is equipped with a subset of positions that denote confidieimformation and that we caliecrets
We focus on the opportunity for Robert to discover some $ebyeintroducing the property afpacity.

a play isopaqueif, at each step of the (infinite) play, the set of positionattare considered possible
by Robert does not consist of secrets only. In games withiggpeandition, the opacity property is the
winning condition for Gerald. Informally, Robert tries tor€e the game to reach some point when he
knows for sure that the current position is a secret, wheBeaald tries to keep Robert under uncertainty.
Note that this winning condition can be seen as a particylistemic temporal logic statemeht [10] on an
imperfect information arena seen as an epistemic tempadém this ETL formula is5—KgrgperSecret
However, to our knowledge the complexity of deciding thestdice of winning strategies for such
winning conditions has never been studied in depth.

Our claim that games with opacity condition are natural ashe@ate models for practical applica-
tions is all the more sustained by very recent contributiminthe literature[[1]7, 8]. These results mainly
arise from the analysis of discrete-event systems andttiedry of control, and our games embed some
problems studied in this domain, such as the verificationpaicdy. Our abstract setting provided by
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the game-theoretical paradigm enables us to focus on &dsssgects of the topic, such as synthesizing
strategies, and to circumvent the complexity of the prolslem

Not surprisingly, games with opacity condition are not deteed [14]. We therefore introduced two
dual problems: thepacity-violate problenand theopacity-guarantee problenthat consist of deciding
the existence of a winning strategy, respectively for Roaed for Gerald. The opacity-violate problem
generalizes the strategy problem in reachability gamel imiperfect information[[16], and so does
the opacity-guarantee problem, but putting the emphasizth® player who has perfect information
and has the complementary safety objective. The latteoisut knowledge, never been done, for the
following reason. In two-player games with imperfect imf@tion, when considering the existence of
winning strategies for a player, one can equivalently aersihat the opponent has perfect information
(see [16]). Thus, when dealing with omega-regular winniogditions in arenas where the imperfect
information is asymmetric, focusing on the player with petfinformation would amount to solve the
underlying perfect-information game. Our case is différewhen considering Gerald’s point of view,
we could indeed equivalently consider that Robert play$ wirfect information too, but we cannot
give up the imperfect-information setting because the defimof the winning condition itself relies on
Robert’s information along the play.

Additionally to the two aforementioned problems, we coasitheopacity-verify problenas an inter-
mediate problem: the question here is to decide whetherameegvith opacity condition, all strategies of
Gerald are winning. The choice of considering this appéremeird problem is well motivated. Firstly,
it is equivalent both to the opacity-guarantee problem anith¢ complementary of the opacity-violate
problem for blindfold games; an immediate consequenceddldterminacy of blindfold games with
opacity condition. And secondly, it enables us to embed ibp&sues in discrete-event systems with a
strong language-theoretic feature, addressed earligeiliterature([1/7, 8].

In this contribution, we consider the three problems of dgagolate, opacity-guarantee and opacity-
verify, keeping in mind that our main attention turns to thacity-guarantee problem. It is not hard to
establish the EXPTIME-completeness of the opacity-vefabblem, from a power-set construction in-
spired by [[16] that amounts to solving a reachability pdrfeformation game, and from the fact that it
generalizes imperfect-information games with reachigbdondition, known to be EXPTIME-complete
[16]. Regarding the opacity-guarantee problem, we relyroealier power-set construction to reduce
this problem to a perfect-information garmrie [14], yieldingkEETIME membership. The EXPTIME-
hardness result for this problem, where the main playerdl@ghas perfect information, was unknown
until now and relies on a reduction from the empty input stdcceptance problem for linearly-bounded
alternating Turing machines. The key point is a pioneer émgpof configurations by information sets.
Concerning the opacity-verify problem, we prove its PSPA®Epleteness, which for the lower bound
relies on a reduction similar to the onelin [6] from the undadity problem for nondeterministic automata
[11]. Interestingly, the opacity-verify problem relatémttwo other problems for the particular case of
blindfold gamesin such a way that those games are determined. We also shoi¢hblindfold setting
embraces the language-theoretic approaches for opaeitysein discrete-event systems|[[17, 8].

The paper is organized as follows. In Secfidon 2, we define gamith opacity condition. In Sec-
tion[3, we present the opacity-guarantee problem and thatgpaolate problem, and we establish their
EXPTIME complexity. We first recall the power-set constioes from [14] yielding the upper bounds,
then we show the matching lower bounds. In Sectibn 4, we denshe opacity-verify problem for
blindfold games. In this setting, we establish the deteatyrand the PSPACE completeness of the three
opacity problems. In Sectidd 5, we relate the opacity-yepifoblem to the language opacity verifica-
tion of [17,(8]. In Section B, we discuss complexity aspedtproblems regarding Gerald’s winning
strategies. We conclude in Sectldn 7 by giving some ideasioowrent and future work.
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2 Games with opacity condition

A game with opacity conditioover the alphabeX and the set of observatiomsis an imperfect infor-
mation game structurd = (V,A,obs act vo, S) whereV is a finite set ofpositions A:V x = — 2V\0
is atransition function obs :V — I is anobservation functionand act I — 2%\ assigns to each ob-
servation a non-empty set of available actions, so thatadlaiactions are identical for observationally
equivalent positions. Finallyy is the initial position, and the additional eleme&it V in the structure
Ais afinite set okecret positions

In a gameA = (V,A,obs act v, S), the players are Gerald and Robert. A play is an infinite secpie
of rounds, and in each round- 1, Robert chooses an actiane actobgvi_1)), Gerald chooses the new
positionv; € A(vi_1,a; ), and Robert observes dbg). A playin Ais an infinite sequence = vpaiVvs ... €
Vo(ZV)® that results from an interaction of Robert and Gerald in gaisie.

We now extend obs to plays by letting dlagaiviasvs...) := voaryrapys. .. with y = obgv;) for
eachi > 1. The imperfect information setting leads Robert to plytiabserve a play as ob$p). Note
that since the initial position is a part of the descriptidith@ arena, it is known by Robert.

For every natural numbdre N and playp, we denote by € vo(ZV )X thek-th prefix of p, defined
by pX := vpayvi . .. akVi, with the convention that® = vo. We denote byt an arbitrary prefix op.

Since the information revealed to Robert is based on obtenga a strategy of Robert iA is
a mapping of the forma : vo(ZI)* — Z such that for any play prefip* ending in observatiory,
a(obgp¥)) € actly). On the contrary Gerald has perfect information on how tlay plrogresses, so
a strategy of Gerald i\ is a mapping of the forn : vo(ZV)*Z — V such that for any play prefipk
ending in positiorv, for all ain actobgv)), B(pka) € A(v,a).

Given strategiesr and of Robert and of Gerald respectively, we say that a play voaiv; ... is
induced bya if Yk > 1, a, = a(obgpk1)), andp is induced byg if Yk > 1, v = B(p* ay). We also
notea 3 the only play induced by and byp.

In the following, an observatioy might be interpreted as the set of positions it denotes, lyame
obs (y).

Let us fix a playp = voarviaoVs . ... Note that everk-th prefix of p characterizes a uniqueforma-
tion set p¥) C V consisting of the set of positions that Robert considersiptesin the game aftek
rounds. Formally, information sets can be defined indulstige follows.

Definition 1 For every playp = Voajviaovs. .., we let I(p0) := {vo} and I(p**1) := A(1(pX),ak 1) N
obgVict1), for ke N.
We now define the opacity property:

Definition 2 For a given set of secret positions=SV/, a playp satisfieghe opacity property fo§, or is
S-opaqueif:
vke N, I(p" ¢S

Informally, the opacity condition means that Robert neveows with certainty that the current
position is a secret, because there is always one of theiggmsibe considers possible that is not a
secret. In ggame with opacity conditigrthe opacity property is the winning condition for Gerale,
S-opaque plays are winning for Gerald, and the other ones em@ng for Robert.

Remark 1 The definition of the arena and of the opacity condition aighsly different from the ones

in [14] : originally Robert’s aim was to reach a singleton arfnation set. We introduce here the set of
secret positions and define the winning condition accollgibgcause it makes these games closer to the
intuition behind opacity. Anyway the results establishedld] still hold in this setting, and adapting
the proofs is straightforward.
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3 Opacity-violate and opacity-guarantee problems

It is well known that perfect-information games are detedi [13], and that imperfect-information
games are not determined in general. We recall that a gadetésminedf each position is winning for
one of the two players.

We proved the following result in [14]:

Theorem 1 Games with opacity condition are not determined in general.

This result leads to introduce two dual problems. We remiradla (resp.) stands for a strategy of
Robert (resp. Gerald). We first consider Robert’s point efwi

Definition 3 Given a game with opacity condition-A(V,A, obs act vy, S), theopacity-violate problem
is to decide whether the following property holds:

Jda,VB, o B is not S-opaque
We now consider Gerald's dual point of view.

Definition 4 Given a game with opacity condition-A(V, A, obs act vp, S), theopacity-guarantee prob-
lemis to decide whether the following property holds:

B,Va, a B is S-opaque

Remark 2 Itis important to comment on Definitidh 4 regarding the unbad quantification over Robert’s

strategies. As defined, this quantification ranges over wbsien based strategies only. The opacity-
guarantee problem would however be equivalent if this gtieation ranged over the wider set of perfect
information strategies, as already argumented by Relf6] [lalong a play, Robert’s possible behaviors
are not restricted by observation-based strategies.

In the rest of this section we prove the following result:
Theorem 2 The opacity-violate and opacity-guarantee problems ar@EKIE-complete.

In the following, we adopt the classic convention that tlze ©if a game is the size of its arena,
the number of positions.

3.1 Power-set constructions for upper bounds

We recall the power-set constructions(ofi[14] that lead tovedently solve perfect information games.

We first address the opacity-violate problem. Since we dengihe point of view of the player
with imperfect information, this problem is close to prabke usually studied in games with imperfect
information. This is why we can easily rely on previous worktbe topic to study its complexity. We
remind the construction from [14], which is strongly ingalrfrom the one described by Reif n [16] :

Let A= (V,A,obsactvy,S) be a game with opacity condition. We define a reachabilityfeoer
information game&, where the players are Roberta and SuperGerEdiﬂeposition of A is eitherl
wherel is a reachable information set /- it is a position of Roberta -, gl ,a) wherel is a reachable
information set inA anda € act(l) f-itisa position of SuperGeraldine.

1We use the superlative “Super” here because in general tiréng strategies of SuperGeraldine do not reflect any wimnin
strategy of Gerald i\. She has “more power” than Gerald.
2aci(l) makes sense because an information set is always a subssihgfeaobservation.
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The game is played as follows. It starts in the initial pasitiy := {Vvo} of Roberta. In a positiom,
Roberta chooses € act(l) and moves to positiofl,a). Next, letO be the set of reachable observations
from | by a. SuperGeraldine chooses a next information/sgta) Ny, wherey ranges ove©. In
A a playlo(lo,a1)l1(l1,a2) ... is winning for Roberta if it reaches a position of the forrwith | C S
otherwise it is winning for SuperGeraldine.

Theorem 3 [14] Robert has a winning strategy in A, if and only if, Rolzeras a winning strategy in
the perfect-information gamé.

Due to nondeterminacy (Theorédr 1), the opacity-guaranteblgm has to be studied on its own.
We remind the power-set constructlon for the opacity-gutae problem described in [14], that leads
to a safety perfect-information gamPe In this game, unlike i, we maintain an extra information
on how Gerald is playing iiA. The players inA are SuperRobeEaand Geraldine. A position i
is either of the form(l,v) wherel is a reachable information set iy andv e | - it is a position of
SuperRoberta -, or of the forifh,v,a) wherel is a reachable information setA v € |, anda € act(l)

- it is a position of Geraldine. The initial position ($vo}, Vo). In position(l,v), SuperRoberta chooses
ac act(l), and moves tdl,v,a). In position(l,v,a), Geraldine chooses € A(v,a) and moves tgl’,V)
wherel’ = A(1,a) nobs(V). In A, a play(lo,Vo)(lo,Vo,a1)(I1,v1) .. . is winning for SuperRoberta if it
reaches a positiofl, v) with | C S, otherwise it is winning for Geraldine.

Theorem 4 [14] Gerald has a winning strategy in A, if and only if, Gerald has a winning strategy in
the perfect-information gamé.

Itis well known that perfect-information reachability gasand perfect-information safety games are
solvable in PTIME. Since the constructionsAandA involve a single exponential blow-up, it follows
from Theorem§&13 arld 4 that the opacity-violate and opacigrantee problems are in EXPTIME.

3.2 Matching lower bounds

We prove here that the opacity-violate and the opacity-auae problems are EXPTIME-hard.

First, EXPTIME-hardness of the opacity-violate problenprisved by a reduction from reachability
imperfect-information games df [16]. Recall thateachability imperfect-information ganie a game
of imperfect informationA = (V,F,A,obs act vp) over andl” with a distinguished set d&rget obser-
vations FC I' that Robert aims at reaching.

Theorem 5 [IL6] Solving reachability imperfect-information game<EXPTIME-complete.

The reduction is straightforward. LaAt= (V,F,A, obs act vp) be a reachability imperfect-information
game ovez andl". We define the game with opacity conditiéh:= (V,A,obs act vy, S) overZ andrl,
whereS=J,cr y. Itis easy to see that solving the reachability imperfeétiimation game\ is equiv-
alent to solving the opacity-violate problem in the gafte a winning strategy for Robert to rea€hin
Alis also a winning strategy for RobertA, and vice versa (remember that the information set is always
a subset of the current observation).

We now show that the opacity-guarantee problem is EXPTIME}y a polynomial-time reduction
from the acceptance problem of the empty input strindif@arly-bounded alternatinguring Machines
(TM) with a binary branching degree, which is EXPTIME-comretel [5]. The key idea is to encode TM
configurations by the information sets.

Swe use the superlative “Super” as, contrary to what Robentiédado in the gam&, SuperRoberta can take advantage of
the extra information.
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In the rest of this section, we fix such a TM maching = (B,Q = Qy U Q3 U {Qacc, Orej }, 0o, 5),
whereB is the input alphabet); (resp.Qy) is the set of existential (resp. universal) statgss Q is the
initial state,Oacc ¢ QvU Q3 is the (terminal) accepting statgej ¢ QyU Qs is the (terminal) rejecting state,
andd : (QuUQ3) xB— (QxBx {+1,—-1}) x (Qx Bx {+1,—1}) is the transition function. In each
non-terminal step (i.e., the current state iQiylU Q3), .# overwrites the tape cell being scanned, and the
tape head moves one position to the lefilj or right (+-1). Letn be the size of# and[n| = {1,...,n}.

We assume that > 1.

Since.# is linearly bounded, we can assume th#t uses exactlyn tape cells when started on
the emptyinput stringe. Hence, a configuration (o# over €) is a wordC = wy (g,b)w, € B*- (Q x
B) - B* of length exactlyn denoting that the tape contentvig bw,, the current state ig, and the tape
head is at positiofw; | + 1. The initial configuratiorCiy; is given by(go, ) "1, where.. is the blank
symbol. Moreover, without loss of generality, we assume thiaen started oiCi,i;, no matter what
are the universal and existential choice#, alwayshalts by reaching a terminal configuratidpy i.e.
such that the associated state, writtg8), is in {Gacc, drej} (this assumption is standard, see [5]). For a
non-terminal configuratio€ = wy (g,b)w; (i.e. such thagj € Q3 UQy), we denote bysucg (C) (resp.
sucg(C)) the successor & obtained by choosing the left (resp. the right) tripléii, b). An accepting
computation tre@f .# overce is a finite treeT whose nodes are labeled by configurations and such that
the root is labeled b€, the leaves are labeled by accepting configuratonise. (C) = Qacc, €ach
internal nodex is labeled by a non-terminal configurati@pand: (1) ifC is existential (i.e.q(C) € Q3),
thenx has exactly one child whose label is one of the two succesg@sand (2) ifC is universal (i.e.,
q(C) € Qy), thenx has exactly two children corresponding to the two successag (C) andsucg(C)
of C. We construct a game with opacity conditién, such that Gerald has a winning strategyAipy
if, and only if, there is an accepting computation tree 4f over € (Theoren 6). Hence, EXPTIME-
hardness of the opacity-guarantee problem follows.

In the gameA 4, the tape content can be retrieved from the current infdomatet (of sizen), and
the remaining information about the current configuratsavailable in each position of the information
set. A step of the machine is simulated by two rounds of theegamthe first round, depending on
whether the current state is universal or existential, Rokienulates the universal choice of the next
configuration or Gerald simulates the existential choiogl, the second round simulates the updating of
the configuration of the machine.

Here, we describe the construction of the gailne = (V,A,obsact vp, S).

1. V = {vo,safe,safe,safenoice} U (([N] x B) x ([n] x Q x B) x {L, R, choice}).
2. obs V — T = {y, Yenoice L, Yr} IS defined by

%) if v=v
b I n ifve{gafq}u(([n]xB)x([n]xQx B) x {L})
obsv) = YR if ve {safe} U (([n] x B) x ([n] x Qx B) x {R})

ychoice Othel’WISE
3. act: —» ~={V.,Vr,3} UBis defined by
> ify=w
aCl(V) = {VL,VR,H} if Y = Ychoice
B otherwise.

4. S=([n] x B) x ([n] x {qrej} x B) x {choice.
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We delay the formal definition d& : V x = — 2V\0 after informally describing the running of the game.
A configurationC is encoded by amformation set {(C) of the form

{((17 bl)?(ivq(c)vbi)> f)> '7((”7 bn)>(i7q(C)7bi)> f)}

wheref € {L,R choice}, i is the position of the tape cell &f being scanned, and for eachlj < n, b;

is the content of thg-th cell. For eachf € {L,R choicg, I;(C) is called thef-codeof C, and during a
play, the current information set is of the folg{C) for some reachable configurati@of the machine,
unless Robert happened to have made stev&tingmove which does not simulate the dynamicsAst
We capture this deviation by making Robert lose: technic#iiie play enters one of treafepositions
safg,safe, orsafengicethat do not belong to the s8iof secrets; then, once a safe position is reached,
only other safe positions can be reached, yielding Geraldig whatever Robert does in the future.
Note that for eacH € {L,R}, I1(C) does not violate the opacity condition f8r andlcneice(C) Violates
the opacity condition fo&if, and only if, C is rejecting (i.eq(C) = grj). For allge Q;UQy andb € B,
we denote by (g,b) (resp. dr(qg, b)) the left (resp. right) triple ind(q,b). The behavior ofA , is as
follows:

First round From the initial position/y, whatever Robert and Gerald choose, the information sheat t
end of the first round i&noice(Cinit ), thechoicecode of the initial configuration.

The current information set isHoice(C) for some terminal configuration :CIf C is rejecting, then
lchoice(C) € Sand Gerald loses. Otherwidgnoice(C) € Sand independently of the move of Robert,
the play reaches a safe positisaf g for somedir € {L,R} and Gerald wins.

As we shall see, there remain only two cases, which in turnilsita a complete step o#.

The current information set igrbice(C) for some non-terminal configuration:C
Let v = ((k,bx),(i,q(C),b;),choice be the current position (corresponding to some position in
lchoice(C)). From obgv), Robert can only choose actions{ia, v, Vr}. There are again two cases.

C is existential (note that this information is containectie position v) MovesYV, andVg of
Robert are deviating and the play reaches one of the safégnessafe or safe, thus
Gerald wins. If instead Robert's movedsthe following movedir € {L,R} of Gerald aims
at simulating the existential choice o in the configuration configuratio@. The reached
position is then/ = ((k,by), (i,9(C), by), dir).

C is universal The moved of Robert is deviating and the following move of Gerald caadlenly
to safe or safe, which makes him win. Instead Robert's movg, € {V,Vr} simulates
the universal choice of# in the configuratiorC. Next, Gerald’s move is unique and leads
to the positionv = ((k, bx), (i,q(C),by),dir).

Whatever the type of the configurati@was, by letting the observation classes split positions
with different values oflir (see the definition of obs above), the information set aftemhove of
Gerald becomek; (C), unless Robert’s move was deviating.

The current information set igi (C) with dir € {L,R}, for some non-terminal configuratiort C
Let the current position be= ((k,by), (i,9(C),b;),dir) € I (C), and let
A4ir (4(C), by) = (Aair, bair, Bair ). The valuej =i+ Byir represents the position of the cell being
scanned in the next configuratisncg (C); note that the valug is easily computable from the
current positiorv. In order however to complete the step of the machine andathréhe informa-
tion setlchoice(SucGir (C)), the value obj must be provided by the game. Therefore, webletbe
the only non-deviating move of Robert from positiog 14 (C), among the possible moveskn
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From positionv = ((k,by), (i,q(C),b;),dir), the above behavior is implemented as follows. het
be the action chosen by Robert.klf {i, j}, tape cellk is unchanged by the step of the machine,
hence the only possible move of Gerald lead§(koby), (], dair, b), choice. If k=i, tape celli is
overwritten, hence the move of Gerald is unique and lead§ toy; ), (j,dgir, b),choice. Finally,

if k= j, there are two cases. if= bj, then Gerald can only move t¢j,b;), (j,qdir,bj),choice
which updates the data for the next configurasang, (C), otherwise the movie (# b;) of Robert

is deviating (and the play reaches a safe position).

We can now formally define the movesA,, by lettingA : V x = — 2V\0 be:

Casev = vp:
A(v,a) = {((h,-),(1,00,-),choicg | h € [n[}

Casev = safengice
A(v,a) = {safey; | dir € {L,R}}

Casev = safe, wheredir € {L,R}:
A(v,a) = {saf@noice}

Casev = ((h,b),(i,q,b"),choice:

{((h,b), (i,q,b'),dir) | dir € {L,R}} ifa=3Jandqe Qs
A _J {((h,b),(i,q,b'),L)} if a=V_andge Qy
M8 =93 {((hb).(.qb).R)} if a= Vg andq e Qy
{safey | dir € {L,R}} otherwise

Casev = ((h,b), (i,q,b'),dir), wheredir € {L,R}, q ¢ {Gre;, dacc}, anddir (0, 0) = (qdir , b, Buir):

{((h,b), (i + B4ir , Qair , @), choice } if ae Bandh ¢ {i,i + Bir }
Ava) — {((h,bgir), (i + 6uir, dair, @), choice}  if ac Bandh=
’ {((h,b), (i + B4yir , Yair , ), choice } if a=bandh =i+ 6
{safenoice} otherwise

Casev = ((h,b),(i,q,b'),dir), wheredir € {L,R} andq € {qrej, Gacc}:
A(v,a) = {((h.b), (i,q,b’),choice}
This achieves the construction of the gafg which satisfies the following result:

Theorem 6 [2] There is an accepting computation tree.gf over ¢ if, and only if, there is a winning
strategy of Gerald in the game A

4 Blindfold games with opacity condition

We recall that a game with imperfect informatiorbindfold if all positions have the same observation.

Lemma 7 Let A= (V,A,obs act vp) be a blindfold game with imperfect information oeandl” = {y}.
For every play prefop" = voagvi ... anVn, 1(p") = A({wo},a1...an).
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The proof is trivial, by applying the definition of the infoation set.
In blindfold games Robert cannot base the choice of hiseEim anything because he sees nothing
of what Gerald does. So a strategy for Robert is just an iefggguence of actions. More formally:

Lemma 8 Let A= (V,A,obs act vp) be a blindfold game with imperfect information oeandl” = {y},
let o be a strategy for Robert, then there existazmg... € ¢ such that for all strategieg and 3’ for
Gerald,obga 3) = obga ') = voazyazy. ..

In the rest of this section we prove the following two theosem
Theorem 9 Blindfold games with opacity condition are determined.

Theorem 10 For blindfold games with opacity condition, the opacityagantee problem and the opacity-
violate problem ard®SPACEcomplete.

Both theorems are proved by considering a third problem: otecity-verify problemwhich ad-
dresses the strong ability for Gerald to win the game. We defiis problem and establish its PSPACE-
completeness in the general setting of games with opacitditon and also in the particular case of
blindfold games (Theorem 1L1). We finally compare it to theaifyaviolate and opacity-guarantee prob-
lems for blindfold games (Theoreml14).

Definition 5 Given a game with opacity condition-A (V,A, obs act vy, S), the opacity-verify problem
is to decide whether the following property holds:

VB,Ya, a B is S-opaque (@H)

If Property [1) holds, any strategy/ of Gerald is a winning-strategy. Otherwise, there existiag in the
game that is noS-opaque.

Theorem 11 The opacity-verify problem BSPACEcomplete, even for blindfold games.

For the PSPACE membership, we design an algorithm that elegitiether there exists a losing play
for Gerald, which is clearly equivalent to deciding whettiegre exists a strategy of Gerald that is not
winning. The algorithm runs in NPSPACE, hence in PSPACE,[b8]nondeterministically choosing
the moves for Robert and Gerald, and by updating the cumémtnnation set of Robert at each round.
Since information sets are subsets of the set of positibtisglie aren positions, we nee®(n) space to
run this algorithm. The PSPACE-hardness of the opacitiiyveroblem results from a reduction from
the universality problem for a complete nondeterministiitdi automaton (NFA), known to be PSPACE-
complete[[19]. This reduction was initially inspired by it is in fact a variant of the one inl[6].

We recall that a NFAZ = (Q,Z,A,Qp, Q) is a nondeterministic finite automaton with sta@s
alphabetz, transition relatiom\ : Q x = — 29 and sets of (respectively) initial and accepting st&gs
andQs. A NFA o7 is complete if for every statgand letter, A(q,a) # 0. Thelanguage? (<) C Z* of
4/ is the set of wordsv € Z* such thai\(Qp, w) N Qs # 0. The universality problem is to decide whether
o/ accepts all possible finite wordse £ (/) = X*.

Given a complete NFAZ = (Q,%,A,Qo,Q¢), define the blindfold game with opacity condition
A, = (QU{qo},A',obsact qp,S) overZ andl = {y}, with qo ¢ Q, as follows:

S=Q\(Qt U{do}) acly)=3  VYqeQuU{qo},obgq) =y

Qo if g=do

Vac Z,N(g,a) =
@2 {A(q,a) otherwise
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Since, firstly,qo is not reachable after the first move, second¥y(q,a) = A(qg,a) for q # qo and
finally, &' (go,a) = Qo for all a, we obtain from lemmal7 the following corollary :

Corollary 12 For each play prefix in A of the formp" =qoa; ... a,gn (N> 1), 1(p") = A(Qp, 82. .. an).

One may note that the aim of the initial positignis to initialise Robert’s information set Qg at
the end of the first round.

Proposition 13 The NFA« is universal if, and only if, in A, every strategy of Gerald is winning.

Proof We start with the right-left implication. Assume that evestyategy is winning for Gerald. Take
one strategy3, and take a wordv € 2*. Consider a play in which Robert’s first moves form the
sequence of actioraw, for somea in 2, and Gerald follows strateg§. This is possible because the
underlying automaton is complete. Beipdnduced by the winning stratedy, it is Sopaque, hence in
particularl (p**™) ¢ S. By Corollary[I2 we obtain A(Qo,w) ¢ S, which implies that there exists a
positionq in A(Qp,w) that is inQs, hencess acceptsw. <7 is universal.
For the other implication, suppose that is universal. Le{3 be a strategy of Gerald, and letbe

a play induced by3. We prove thap is Sopaque. Lene N. If n=0,1(p") ={qo} £ S If n> 0,
there existavin Z* such tha1|( M) = A(Qo,w) (Corollary[12). Since« is universal it accept®, hence

A(Qo,w) NQs # 0. Sol (p") ¢ S and this finishes the proof. []

Theorem 14 In the setting of blindfold games with opacity conditione thpacity-verify problem, the
opacity-guarantee problem and the complementary of theigpsaiolate problem are equivalent.

Proof LetA=(V,A,obsactvy,S) be a blindfold game with opacity condition. It is clear thaigen-
eral,
VB,Va, a B is Sopaque= 3B,Va, a B is Sopaque

We prove the converse in the case of blindfold games. Supgpatéhere exists a winning strate@yfor
Gerald. We prove that any stratefjis also winning.

Let o be a strategy for Robert. Sinéds blindfold, by LemmaB we have that dlss3) = obga 3’),
soforeveryne N, I (aB'") =1(aB") £ S

So we have that the opacity-verify problem is equivalenti®dpacity-guarantee problem in blind-
fold games. We now show that the opacity-verify problem $@ @quivalent to the complementary of the
opacity-violate problem (decide whethesr, 33 s.t. a8 is S-opaque holds).

Once again one implication is trivial :

VB,Va, a B is Sopaque= Va,3B, a B is Sopaque

Now the other way. Suppose that for any strategthere is a strategy for Gerald such thatx
loses. Now take any couple of strategies 3'). We know that there exists a stratefysuch thato 3
is Sopaque. But we also know (Lemrih 8) that @) = obg o B’) because the game is blindfold, so
once again foreverge N, [ (a B™) =1(a B") £ S []

The idea behind this theorem is that in blindfold games withaity condition, the outcome of a play
does not rely on Gerald’s behaviour but only on what Robeysl! Indeed, since he observes nothing
of what Gerald does, Robert’s information set, and so theiwgcondition, are only determined by the
series of actions he chooses. Thus, these games via a peigemstruction can be seen as (reachability)
one-player games: each position is a reachable informa#tn at each step the unique player (Robert)
chooses an actiome act(l), wherel is the current position, and moves to positidfi, a). Therefore, in
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blindfold games with opacity condition, whether Robert haginning strategyi(e a winning sequence
of actions), or Gerald wins whatever he does.

The determinacy of blindfold games with opacity conditidim¢oreni ) is an immediate corollary
of the above Theorem 114. Also Theorem 10 results from Thesliefrand 111.

5 Related work

Opacity has mostly been studied in the framework of diseegnt systems and their theory of control
([17,[8]). It is both interesting and important to know to wieatent the classical problems in this field
can be embedded into our games. We first describe the disorett system setting, next we define the
notion of opacity in this framework. We finally propose a skation from the verification of opacity in
this setting to the opacity-verify problem in games with @pacondition.

First we recall that @ deterministic finite automaton (DFA§ a NFA.&Z = (Q, X, d,do, Q¢) but with
a unique initial statgp and in which the transition relatiodi: Q x = — 29 satisfiegd(q,a)| < 1 for all
stategq and input symbols.

The problem of opacity is defined inl/[8] with regards to a L&Slabelled transition systen,e a
DFA without accepting states) and a confidential predigatver execution traces @, representable
by a regular language’, C >* wherez is the set of events of the transition system. For convesiene
equivalently state it on a DFMé" representing the transition system together with the seceglicate.
The automatomfé" is simply the synchronized product &f with some complete DFA accepting.
We denote by (/) C Z* the set of execution traces of an automatgnand by.#(<7) the language
accepted by, so we have tha? («77) = 7 (G) and £ (2) = 7 (G) N.Z,. From now on, for a DFA
</, a stateg andw € .7 («7), 6(q,w) shall denote the only state it contains.

We consider a subset of everig C 2 which denotes the observation capabilities of a potential
attacker of the system, and we R, be theprojectionfunction fromZ* to 3. Two wordsw andw’ are
observationally equivalerif Py, (w) = Ps,(W). We denote byw], = P (P, (w)) the set of words irt*
that are observationally equivalent to the waravith regard toz,.

Definition 6 %, is opaquew.r.t. 7 (G) and Z, if
Ywe 7 (G), WaNZ(G) € Ly

This means that?, is opaque w.r.t..7(G) and Z, if, and only if, whenever an execution trace
of G verifies the confidential predicate there exists another possible execution trace obsenradiijon
equivalent that does not verify.

We take an instance of the opacity verification probl&z@", =(Q,%,9, qg, Qs ), and we describe the

construction of the game with opacity conditiéﬁ such that the following holds.

Theorem 15 Verifying that%,, is opaque w.r.t7 (G) andX, is equivalent to deciding the opacity-verify
problem in 4.

The construction starts fromv? where transitions labelled by events iNZ, are turned intce-
transitions. Then we remove thosetransitions as described in [11] by taking theclosure of the
transition function, and we obtain tlgefree nondeterministic finite automater® = (Q, X5, A%, Qf, Q).

In this automaton, transitions are all labelled by obsde/alsents. One should think of the nonde-
terminism in this automaton as the uncertainty the attalskerconcerning the behaviour of the system.
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More precisely, she does not know when an observable evaiddered whether the system takes “in-
visible” transitions or not, may it be before, after, or bb#fore and after the observable one.
We need the following lemma, which is a mere consequenceeafdhstruction :

Lemma 16
YW € 25,A°(Q5,W) = {5(q5,W) | W € [WlaN 7 (G)}

We can now define the gamdé = (V,A, obs act vo, S) overs’ = {y/} andl’ = {y | x € T} U{y: }:

o V=0Qx2UQ§x{e}U{Vinit }.
AN, /) = {{d.y)lye Zi,q’ €A(ay)} if V= (q’_X)

{(g,e) [ge Qo} if V= Vinit

V(9,X) €V, obg(q,X)) = W, and ob$vinit) = Ve
YWweV, actv) ={/}
S={(af,x) | ar € Qr,x€ ZaU{€e}} and Vo = Vini

Remark 3 Without loss of generality we can assume that in every stafie«f® there exists an eventy
in 25 such thatA®(q,y) is not empty. So in every positigg,x) in V, A((g,X),+/) is not empty, and the
game can always continue.

In this game, Robert is passive. He only observes Gerald,sivholates the systef@. If the game
is in position(q,x), it represents that we are in stajén the systen(G, and that the last visible event
wasx (if x= g, no observable event happened yet). Robert obsegyes the only information he gains
during a play is the sequence of visible events. When Gefalgsphe chooses a visible evgnand a
state reachable frompthroughy in 7€, which can be seen as choosing as many invisible transito@s
as he wishes, plus one visible amongst thgmiVe shall notex,, the only possible strategy for Robert,
which is to always play/.

Vinit IS the initial position, that can never be reached after tiserfiove. Itis used to initialize Robert’s
information set toQg x {€} (these are the only reachable positions frgm, and they have the same
observationy;). This represents the set of state&Githat are reachable before any observable transition
is taken.

We start the proof of Theorem 115 by establishing this cetgrama.

Lemma 17 Let p™ = vinit v/(Qo, €)v/(01,X1) ... v/(Gn, Xn) be a prefix of a play, with > 0. Then
{q] (G,%) € 1(p™1)} = A%(Qg, X1 ... %) and for all (q,x) in 1 (p™1), X = X.

Proof The latter fact is obvious, from the definition of observatio Considering the former fact, we
prove it by induction om.

n=1: 1(p") =A{Vint },v) N e = {(do, ) | qo € Q5}, so{q| (q,&) € 1(pH)} = Qf = 4%(Qf, €)
n+1:

{a] (@xne1) €1(P™2)} = {q] (A Xnr1) € AI(P™), /) NOb(Gns1,Xn41)) }
{a](a,%1) €A (™), )}
{a]3(d, %) € 1(p"*1),q € A(d , Xn11) }
{a| 39 € A%(Qf.X1...Xn),q € A% (0, Xns1) }
= A%(Q§: X1 %nt1)
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We move on to the proof of Theordml15. Suppose that evenegir@ is winning for Gerald. We
prove that%y, is opaque w.r.t7 (G) andX,. Take a wordw in .7 (G). There exists a prefix of a play
P = Vinit v/ (o, €)+/(01,X1) - - - v/(Gn, Xn) SUCh that; ... X, = Ps,(W). So there exists a strate@ysuch
thata /B = p™L. With lemmalLy an@16 we have thed | (g, %,) € 1(p™1)} = {8(a5,w) |we
[X1...X]aN 7 (G)}. SinceB is winning, {q | (9,%) € I (p"1)} Z Qs, so there exists/ in [X;...Xn]aN
7 (G) = WaN .7 (G) such thatd(q$,w) ¢ Qs. This implies thafw]aN 7 (G) £ -Z.

Now suppose that?, is opaque w.r.t7(G) and takef a strategy for Gerald irAg, we prove
that 8 is winning. Letpg = a ;B be the only possible play induced iy Take a prefixpE+1 =

Vinit v/(Go, €)1/ (01,%1) - - - v/(On, Xn) Of this play. By Lemma 17 and 16 agaifq | (q,%,) € I(pE*l)} =
{8(dS,w) |[WE [X1...%]aN -7 (G)}. Since an information set is never empty, there exists[x; . . . XJaN
7 (G), and becaus€&, is opaque W.r.t7 (G), [X1 ... Xn]aN .7 (G) € .Zp. So there exist&/ in [X; ... Xp]aN
7 (G) such tha®(q§,w) = q ¢ Qr, hence(g,x,) ¢ Sandl (pg) ¢ S B is winning.

6 Discussion on complexity

Solving safety games with perfect-information is in PTIMIBd solving parity games with perfect infor-
mation is known to be iNPNco-NP[12]. However we have seen that deciding whether Gerald,halso
perfect-information, has a winning strategy in a game withaity condition, is EXPTIME-complete,
even if we let Robert play with perfect-information (in thense that his strategies are based on actual
prefixes of plays instead of their observation). So the gayd®n deciding the existence of a winning
strategy for a player in perfect-information games and feraBl in a game with opacity condition does
not come from the fact that Robert has imperfect informatiart rather from the nature of the winning
condition itself, which is based on the notion of informatiet, and forces Gerald to keep track of what
Robert’s information set along the game is.

Similarly, verifying that a finite-state strategy is wingim a safety perfect-information game can be
done in PTIME, whereas we have shownlih [2] that in games wadtity condition, deciding whether a
finite-state (and even memoryless) strategy of Gerald isiwinis PSPACE-complete in the size of the
arena and the memory of the strategy (we define in a classidhveagize of the memory of a strategy
as the number of states of an I/0 automaton realizing theegirag]). The idea is that one has to check
that the strategy is winning not in all positions, but in allarmation sets. Concerning the size of the
memory needed for Gerald’s strategies, we know that an exyi@h memory is sufficient because if
there is a winning strategy there is a memoryless one in thegset construction. The lower bound for
the needed memory is still an open problem.

7 Conclusion and perspectives

Following [14], we have extended the study of games with paondition. The opacity condition is

an atypical winning condition in imperfect information aes aiming at capturing security aspects of
computer systems. Since games with opacity condition drdetermined in general, two dual problems
need being considered: the opacity-violate problem andplaeity-guarantee problem, focusing on the
player who has imperfect information and on the player whe perfect information respectively. The

latter problem is usually equivalent to solving the undedyperfect information game, which explains
why it has never been considered; but the fact that our winnondition is based on information sets
makes the problem relevant. For both problems, simple peetconstructions apply to convert such
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games into perfect information ones, that can be solved lynpmial time, hence their upper bound is

EXPTIME. On the contrary, the matching EXPTIME lower bourd the opacity-guarantee problem,

where the main player has perfect information, was unknamtihnow and relies on an elegant reduction
from the empty input string acceptance problem for line@dynded alternating Turing machines. The
key point is to encode configurations by information setse Tdduction and its correctness proof are
very technical, but we could provide an intuitive informaisadription.

Finally, we focused on the particular case of blindfold gam#ich offers specific results such as
determinacy (Theorei 9) and PSPACE-complete complexifiesoren 1D). The main tool to obtain
these results is the opacity-verify problem which addresise question whether any strategy of Gerald
is winning. The fact that blindfold games with opacity cdiati can be seen as one-player games makes
this problem relevant and explains why it is equivalent te tpacity-guarantee problem and to the
complement of the opacity-violate problem in the blindfsktting, as we established. We also proved
that itis PSPACE-complete, by providing a PSPACE algori#imd a reduction from the nondeterministic
finite automata universality problem. The opacity-verifplgiem is all the more interesting to consider
that it naturally demonstrates how the paradigm of opacihdition embraces opacity issues investigated
in the recent literature of Control Theory |17, 8].

Games with opacity condition open a novel field in the thecaktaspects of games with imperfect
information by putting the emphasis on the player who haepemformation. From this point of view,
plethora of questions need being addressed, among whichctmection with language-theoretic is-
sues (the synchronizing/directing word problem [3,[15céhtroller synthesis to enforce the opacity of
a language [8]), their logical foundations, and their allfponic aspects.
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