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SUMMARY

The dynamics of protein complexes are crucial for
their function yet are challenging to study. Here, we
present a nanoelectrospray (nESI) mass spectrome-
try (MS) approach capable of simultaneously provid-
ing structural and dynamical information for protein
complexes. We investigate the properties of two
small heat shock proteins (sHSPs) and find that these
proteins exist as dodecamers composed of dimeric
building blocks. Moreover, we show that these pro-
teins exchange dimers on the timescale of minutes,
with the rate of exchange being strongly temperature
dependent. Because these proteins are expressed in
the same cellular compartment, we anticipate that
this dynamical behavior is crucial to their function
in vivo. Furthermore, we propose that the approach
used here is applicable to a range of nonequilibrium
systems and is capable of providing both structural
and dynamical information necessary for functional
genomics.

INTRODUCTION

Understanding the function of proteins requires information

about three of their basic properties: structure, interactions, and

dynamics. MS presents an established approach toward the

study of the first two facets. Primary structural details, regarding

sequence and posttranslational modifications, are the focus of

numerous MS-based proteomics studies (Aebersold and Mann,

2003). Furthermore, given that the vast majority of proteins

perform their cellular roles in the form of higher-order assemblies

(Sali et al., 2003) and that aspects of their quaternary structure

can be maintained in the gas phase (Ruotolo and Robinson,

2006), the application of MS to the direct study of protein com-

plexes is an extremely exciting avenue of research (Benesch

et al., 2007; Heck and van den Heuvel, 2004; Sharon and Robin-

son, 2007). Structural genomics, however, remains largely the

domain of X-ray crystallography, nuclear magnetic resonance,

and electron microscopy (Sali et al., 2003). Though these ap-

proaches have the ability to provide high-resolution structural

information, the time required to collect data hampers their appli-

cation to the study of the dynamic properties of protein com-

plexes. In contrast, because the speed of analysis is rapid, MS

is well suited to the study of nonequilibrium states (Bothner
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et al., 2000; Fabris, 2005; Lee et al., 1989; van den Heuvel et al.,

2005) and, therefore, presents an attractive technology for

monitoring the reactions of noncovalent protein complexes in

real time.

One of the earliest studies that reported the ability of electro-

spray (ESI) to preserve noncovalent interactions upon injection

into a mass spectrometer followed the time course of an enzy-

matic reaction as it proceeded in the ESI capillary (Ganem

et al., 1991). The application of such an online MS monitoring ap-

proach, adapted by using nESI (Fligge et al., 1999), has in the last

few years been extended to studying the dynamics of multimeric

proteins (Aquilina et al., 2005; Sobott et al., 2002). An alternative

strategy is to perform such time-resolved experiments in an off-

line mode, whereby a reaction mixture is sampled repeatedly,

rather than continuously. Such an approach has previously been

used in several studies, including monitoring the assembly (Fän-

drich et al., 2000; Stockley et al., 2007) and dynamics (Keetch

et al., 2005) of protein complexes. In these cases, the dead

time (i.e., the time between mixing of components and detection)

is�1 min. Early time points have become accessible using an ESI

capillary mixer (Wilson and Konermann, 2003), but until this tech-

nology can be transferred to an nESI platform, the applicability to

the study of macromolecular assemblies is limited (Benesch

et al., 2007). Continuous monitoring of a reaction mixture by

means of nESI suffers from the difficulty of maintaining a stable

flow over the duration of the experiment; in addition, prolonged

electrospraying can induce electrochemical changes in the solu-

tion within the capillary, which may interfere with the reaction

kinetics (van Berkel et al., 1997). Repeated manual sampling of

a reaction can also prove problematic because there is a limit to

the number of time points obtainable, as dictated by the experi-

mentalist’s capacity, and the capillary-to-capillary irreproducibil-

ity can lead to impairment in data quality (Keetch et al., 2003).

Here, we present an automated nESI method for rapid re-

peated monitoring of the dynamics of protein complexes in real

time. This approach obviates many of the difficulties associated

with the real-time monitoring of reactions by MS, as described

above, and is capable of providing reproducible data for a wide

range of dynamic species. We describe in detail the develop-

ment of the method and demonstrate the advantages of the

technology by application to the quantitative monitoring of the

kinetics of an enzymatic digestion reaction. We subsequently ex-

amine the dynamics of two previously uncharacterized sHSPs—

HSP18.1 and HSP17.6 from Arabidopsis thaliana. The sHSPs

are a widely diversified family of molecular chaperones that are

thought to prevent irreversible protein aggregation by holding

destabilized substrates soluble for subsequent refolding by
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ATP-dependent chaperones (Haslbeck et al., 2005; Narberhaus,

2002; van Montfort et al., 2002). The importance of these pro-

teins is evidenced by their being found in almost all organisms,

and they have been implicated in a range of disease states, in-

cluding cataract, cancer, myopathies, motor neuropathies, and

neurodegeneration (Horwitz, 2003; Sun and MacRae, 2005;

Welsh and Gaestel, 1998). We find HSP18.1 and HSP17.6 to

be composed of 12 noncovalently bound subunits, an oligomeric

form found in other cytosolic class-I plant sHSPs (Siddique et al.,

2008). Moreover, when these proteins are incubated together,

we find that they exchange dimeric units on the timescale of

mintues and that this reaction is faster at higher temperatures.

We conclude, therefore, that these dodecameric proteins are

composed of dimeric building blocks and are highly dynamic.

Because these two proteins and other close relatives are ex-

pressed at high levels in the same cellular compartment in vivo

during heat shock (Siddique et al., 2008), it appears that the

sHSPs form a diverse and dynamic chaperone network to enable

cellular tolerance of stress conditions. Furthermore, we believe

that the approach described here is generalized and conse-

quently holds much promise for allowing the mining of both the

dynamical and structural information necessary for understand-

ing protein function.

RESULTS

Automated Real-Time nESI-MS
We have previously described the application of a robotic chip-

based nESI platform (van Pelt et al., 2002) to the study of protein

complexes (Keetch et al., 2003). In brief, this platform functions

by aspirating sample from a specified well on a multiwell plate

with a disposable pipette tip and delivering it to a nESI emitter.

An electric potential and slight back pressure of gas are then ap-

plied to initiate and maintain electrospray. After sample infusion,

the tip is discarded, and the process can be repeated (van Pelt

et al., 2002). The platform can also perform various handling pro-

cedures, including the mixing of reactants and control of their

temperature. A major advantage of this system is the improved

reproducibility between different nESI emitters (Keetch et al.,

2003). To adapt this system for our purposes, we first calibrated

and characterized the various stages of the robotic process (see

Figure S1 in the Supplemental Data available with this article

online). Subsequently, we delineated a generalized reaction

scheme for automated real-time reaction monitoring with this

platform (Figure S2). Sample-containing solution is deposited

into a sample well in the robot. If desired, one or more reagents

are then automatically added to this initial solution, before the ro-

bot delivers an aliquot or preset volume to the mass spectrometer

for a certain time. After this time has elapsed, the sampling cycle

may be repeated as often as desired. The minimum time between

sampling events is �32 s, but this can be extended by inputting

a waiting time. The nESI conditions (set on the robot) and MS con-

ditions (set on the mass spectrometer) can be varied for each sep-

arate delivery. A useful extension is the ability to monitor several

reaction mixtures in tandem. These could be the same reaction

in several different wells, so as to generate improved statistics,

or different reactions altogether, to improve overall duty cycle.

There are numerous reactions that proteins undergo in the cell.

Among the most important of these involve enzymes and their
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substrates, and we therefore chose such a system to character-

ize our method. The enzyme, Trypsin, and substrate, Cyto-

chrome C (CytC), were incubated together, and three aliquots

were deposited onto the sample plate of the robot, which was

programmed to sample each well repeatedly over a 5 hr period

(Figure 1A). The total-ion chromatogram displays ‘‘blocks’’ of sig-

nal, each corresponding to a separate infusion. These blocks are

grouped in threes, as a result of the sequential sampling of the

wells. A high degree of consistency was found in the intensity

of signal within each group, evidencing the high level of reproduc-

ibility between emitters on the nESI chip. The total ion current,

however, increases over the course of the reaction, suggesting

that more species are observed as the reaction progresses.

Mass spectra obtained at the beginning, middle, and end of the

time course are shown in the inset of Figure 1A. At the first time

point, only three major peaks, corresponding to the 5+, 6+, and

7+ charge states of intact CytC, are observed. After 300 min,

these peaks are no longer observed: instead, the spectrum is

dominated by peaks at lower m/z corresponding to tryptic pep-

tides, the most intense of which were identified as CytC80-86,

CytC28-38, and CytC14-22 (Table S1). At intermediate times, how-

ever, both these reactant and product species can be observed

simultaneously. Moreover, a species corresponding to a 9.5 kDa

fragment (CytC1-79) that is not observed in either the initial or final

spectrum can be identified, demonstrating how this real-time ap-

proach can be used to detect transient intermediates that would

not be identified in studies performed at equilibrium.

To get a quantitative description of the reaction, we plotted the

relative intensities of the most intense peaks corresponding to

reactants, intermediates, and products in single MS scans as a

function of time (Figure 1B). The very small deviation between

measurements demonstrates the excellent reproducibility af-

forded by this approach. Exponential decay of the intact CytC

is observed, with a concomitant sigmoidal increase of the tryptic

peptide products. The intermediate ions show an initial increase,

followed by gradual decay as they are themselves digested. From

these data, a rate constant of 7.6 3 10�3 ± 0.6 3 10�3 min�1 was

extracted, which is consistent with previously reported time-

scales (Stone et al., 2001) and current models of enzymatic di-

gestion (Srividhya and Schnell, 2006). Because the rate of many

biological reactions is temperature dependent, we tested the

thermo-control capabilities of the platform by performing the

same experiment at a range of temperatures up to 50�C (Fig-

ure 1C). At elevated temperatures, the reaction proceeded much

more rapidly: at 37�C, 45�C, and 50�C, the reaction was complete

in �84, �48, and �23 min, with rate constants of 2.5 3 10�2

min�1, 5.7 3 10�2 min�1, and 1.6 3 10�1 min�1, respectively.

Even at the highest temperature, monitoring transient intermedi-

ates was still possible (Figure S3). This increase in rate of diges-

tion with temperature is a result of more molecules overcoming

the activation energy barrier. Furthermore, by assessing the tem-

perature dependence of the rate constants, we extracted an

activation energy of 88.8 kJmol�1 (Figure 1C, inset).

To investigate the difference between the repeated sampling

used above and a continuous sampling approach, we set the

robot to perform both these monitoring approaches on a CytC

digest reaction in 33% methanol (Figure 1D). This solution

condition induces a molten-globule form of CytC (Bychkova

et al., 1996), which is particularly susceptible to acid-induced
5, 246–253, March 2008 ª2008 Elsevier Ltd All rights reserved 247
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Figure 1. Automated nESI Monitoring of the Tryptic Digestion of CytC

(A) Total-ion chromatogram of CytC digestion monitored in triplicate over the course of 300 min. Data in the inset are spectra obtained at the beginning (blue),

middle (red), and end (green) of the time course. At the beginning, the predominant species corresponds to full-length CytC (blue circles), and at the end numerous

peptides are observed, the most prominent being CytC80-86, CytC28-38, and CytC14-22 (green squares). Halfway through the reaction, an intermediate fragment,

CytC1-79 (red triangles), can also be detected.

(B) Plotting the relative abundances of these peptides allows the quantitative monitoring of the digestion reaction. Error bars correspond to three standard

deviations from the mean. The amount of CytC decreases exponentially, enabling the determination of first-order rate constants.

(C) Monitoring this reaction, specifically the disappearance of intact CytC, at different temperatures—24�C (orange), 37�C (dark orange), 45�C (red), and 50�C

(dark red) —demonstrates how the reaction velocity increases at higher temperatures. From the Arrhenius plot (inset), the activation energy and pre-exponential

factor can be determined.

(D) In protein-destabilizing solution conditions, a different reaction profile for the disappearance of intact CytC is determined when the solution is sampled

continuously versus repeatedly. This result likely is due to pH effects in the emitter associated with prolonged electrospraying and highlights the benefits of

the repeated sampling method advanced here.
denaturation (Konermann and Douglas, 1997; Konermann et al.,

2001). When this digestion reaction was monitored continuously

(i.e., as an uninterrupted infusion through a single nanospray

emitter), it reached completion within 30 min. However, with re-

peated sampling (i.e., multiple short infusions through a new

nozzle every time), the rate of reaction was much slower, such

that �85% of the protein remained undigested after the 30 min,

and the reaction took an order of magnitude longer to reach

completion (Figure 1D). In the case of continuous sampling, we

attribute these differences to prolonged electrospraying causing

a decrease in pH in the aqueous solution within the emitter (van

Berkel et al., 1997), which results in a further destabilization of

the CytC (Konermann and Douglas, 1997; Konermann et al.,

2001). The resulting increase in frequency and magnitude of local

protein unfolding events consequently leads to an increased

susceptibility to digestion. This result therefore shows that,
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depending on solution conditions, continuous sampling may

be unreliable. In contrast, repeated sampling is not affected by

electrochemical changes that might arise from prolonged elec-

trospraying. As such, the automated nESI platform we have de-

scribed and characterized here provides a means for producing

reliable and reproducible kinetic data. Furthermore, because

using nESI is essentially a prerequisite for the routine analysis

of macromolecular assemblies by means of MS (Benesch et al.,

2007), this system has the considerable advantage of being

applicable to the study of such species.

Dynamic Subunit Exchange of the sHSPs
Several members of the sHSPs family have been shown to be

very dynamic, in that oligomers are capable of freely exchanging

subunits (Haslbeck et al., 2005; Narberhaus, 2002; van Montfort

et al., 2002). Moreover, as is the case for the mammalian
td All rights reserved
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Figure 2. nESI-MS Analysis of Arabidopsis thaliana HSP17.6 and HSP18.1

(A) Mass spectra of both HSP17.6 (lower panel, red) and HSP18.1 (upper panel, blue) display dominant charge state series around 6900 m/z, corresponding to

dodecamers. Some signal is observed around 2000 m/z, corresponding to solution-phase monomers.

(B) The mass spectrum of an equilibrated mixture of these proteins (upper panel) is significantly different from the overlay of the individual HSP17.6 (red) and

HSP18.1 (blue) (lower panel), suggesting that a subunit exchange reaction has occurred.

(C) Comparison of the experimental data for the 31+ charge state after equilibration (middle panel) with simulation of theoretical spectra assuming complete and

unconstrained exchange (upper panel), and complete exclusive exchange of dimeric units (lower panel) suggests that the exchanging unit is a dimer and allows

assignment of the peaks. The colored key refers to the number of subunits of HSP17.6:HSP18.1 comprising the different dodecamers.
a-crystallins, this exchange can also occur between closely re-

lated protein oligomers, and it is the resulting hetero-complexes

that are the functional entities in vivo (Horwitz, 2003). In Arabi-

dopsis thaliana, 19 genes encode sHSPs, with several members

being localized in the same cellular compartments (Siddique

et al., 2008). Here, we apply our automated nESI MS approach

to two cytosolic class I sHSPs from Arabidopsis thaliana—

HSP17.6 and HSP18.1. nESI mass spectra of these proteins dis-

play principal charge state series centered around 6900 m/z,

corresponding to masses of 210,258 Da and 216,301Da for

HSP17.6 and HSP18.1, respectively (Figure 2A). Additional

peaks around 2200 m/z are also observed in both cases. These

peaks correspond to charge states of monomeric species, and

their low charge state suggests that they arise from a solution-

phase equilibrium with the oligomers (Benesch et al., 2003).

Comparison with the spectra of the proteins under denaturing

conditions reveals that both are composed of 12 noncovalently

bound subunits.

Incubating the two proteins at an equimolar ratio at room tem-

perature for 2 hr before analysis resulted in the spectrum shown

in the upper panel of Figure 2B. The lower panel shows the over-

laid spectra of the individual proteins. The equilibrated mixture,

however, gave a very different spectrum, suggesting the occur-

rence of a subunit exchange reaction. To assist with the assign-

ment of the peaks arising from this heterogenous ensemble, we
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simulated spectra for the 31+ charge state of the different candi-

date heterododecamers. The composite peaks that would be

expected for unrestricted exchange of monomeric subunits to

an equilibrium position given by a binomial distribution of equi-

molar components (top panel), and with the added constraint

that the exchange units were dimers (lower panel), are shown

in Figure 2C (see Experimental Procedures). These simulations

are compared with an expansion of the 31+ region of the exper-

imental data (middle panel). Clearly, the profile of the peaks

observed is not fitted by monomeric exchange but is very well

represented by dimeric exchange. Differences between the

relative intensities of the different peaks in the modeled and

experimental data likely arise from a fractionally greater propor-

tion of HSP18.1 than HSP17.6 in the reacting solution. Overall,

however, the persistence of dimeric exchange shows that the

dimer interfaces are not compromised on the timescale of the

experiment.

To monitor the kinetics of this subunit exchange reaction, we

used our automated nESI approach. Figure 3A shows the evolu-

tion of the spectra obtained over a 60 min time course at 24�C, for

the 31+ charge state (Figure 2C). At the first time point (2 min), the

dominant peaks correspond to the homododecamers 12:0 and

0:12 (expressed as the number of subunits of HSP17.6:HSP18.1).

Some signal arising from the 10:2 and 2:10 heterododecamers is

also observed. After 6 min, the signal corresponding to these
5, 246–253, March 2008 ª2008 Elsevier Ltd All rights reserved 249
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Figure 3. Real-Time Monitoring of Subunit Exchange of HSP17.6

and HSP18.1

(A) Monitoring of the 31+ charge state range (see Figure 2) at 24�C shows the

evolution of the different sHSP dodecamers. Only species containing even

numbers of the two components are observed. Labeling as in Figure 2C.

(B) The homododecamers decay exponentially and faster at 30�C (white circles)

than at 24�C (black circles). From the first part of the reaction, first-order rate

constants can be obtained (inset). Plotting the relative abundance of the heter-

ododecamers 10:2 (purple triangles), 8:4 (blue diamonds), and 6:6 (green

squares) shows that the exchange reaction occurs via sequential incorporation

of dimeric units.
250 Chemistry & Biology 15, 246–253, March 2008 ª2008 Elsevier L
heterododecamers has increased, and 8:4 and 4:8 are also

clearly observed. After 20 min, almost no homododecamers are

observed, and a significant population of 6:6 is observed. At

the end of the time course, the signal has converged so that the

most prevalent species is 6:6, reflecting the equimolar mixture

of reactant sHSPs.

The intensity of the peaks corresponding to 12:0 and 0:12 are

plotted as a function of time in the upper panel of Figure 3B. The

abundance of the homododecamers follows an exponential

decay function for approximately the first 15 min of the reaction,

well represented by first-order kinetics. By plotting the natural

logarithm of this decay, we get a first-order rate constant of

0.16 min�1 (inset). When we repeated the experiment at 30�C,

the reaction reached completion after �20 min, with a rate con-

stant of 0.40 min�1. The lower panel of Figure 3B shows the

relative abundance of the different heterododecamers formed.

The plots corresponding to 10:2 and 8:4 both go through max-

ima, at approximately 8 min and 22 min, respectively, whereas

that for 6:6 rises steadily to a maximum. At 30�C, the reaction

profile is unchanged except in its time frame. Overall, these

observations are consistent with a reaction wherein individual

dimeric units are incorporated in a sequential fashion and disso-

ciation of the oligomers is rate determining (Sobott et al., 2002).

As such, this rapid experiment has provided details as to oligo-

mer stoichiometry (dodecamers), structural composition (robust

dimeric building blocks), and dynamics (rapid sequential dimeric

exchange).

DISCUSSION

Here, we have described a robust and versatile automated nESI

approach for studying the dynamics of protein complexes, al-

lowing the quantitative monitoring of their reactions, which occur

on the timescale of minutes. The reproducibility due to the chip-

based nESI, as well as the ability to perform measurements in

multiplicate, results in a precision of measurement not readily at-

tainable by conventional nESI approaches. In the first instance,

we demonstrated the applicability of this platform for monitoring

enzyme kinetics, by monitoring digestion of CytC by Trypsin.

Rate constants were determined, and, moreover, a proteolysis

intermediate, CytC1-79, was observed. This result raises the in-

triguing possibility of determining the relative susceptibility of

different cleavage sites to digestion, thereby gleaning informa-

tion as to the accessibility and flexibility of certain polypeptide

regions. Such a real-time approach amounts to an extension of

the limited proteolysis approach (Hubbard, 1998) and holds

exciting potential for probing both structure and conformational

dynamics of proteins and their complexes.

Subsequently, we applied this reaction-monitoring strategy to

the subunit exchange of two previously uncharacterized and

closely related sHSPs from Arabidopsis thaliana. nESI-MS analy-

sis revealed these proteins to be dodecameric, and their subunit

exchange reaction was successfully monitored at both 24�C and

30�C, even in the latter case when the reaction was complete

within a few minutes. The apparent adherence to first-order kinet-

ics suggests that dissociation of the oligomers is the rate-limiting

step in the exchange reaction, a feature also observed in other

members of this protein family (Bova et al., 1997). Furthermore, a

rate constant at 24�C of 0.16 min�1 is very similar to that observed
td All rights reserved
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for a different pair of dodecameric plant sHSPs (Sobott et al.,

2002) and highlights the remarkably dynamic nature of members

of this protein family. Moreover, the extremely high resolution of

separation afforded by MS allowed the monitoring of the relative

populations of the heterododecamers formed. We therefore de-

termined that subunit exchange is achieved by the sequential in-

corporation of dimeric units of one sHSP into a dodecamer of the

other. This dynamical observation allows us to draw the structural

conclusion that the protein dodecamers must be composed of di-

meric units. Such dimeric ‘‘building blocks’’ have been suggested

as being a common feature of sHSPs (Haslbeck et al., 2005; van

Montfort et al., 2002), but, interestingly, there is a marked con-

trast with previous subunit exchange data for two other dodeca-

meric plant sHSPs, Pisum sativum HSP18.1 and Triticum aesti-

vum HSP16.9, where heterododecamers composed of an odd

number of each of the components (e.g., [HSP18.1]9[HSP16.9]3)

were also observed (Sobott et al., 2002). This difference implies

variability in the interfaces between subunits across even these

evolutionarily closely related sHSPs. Because the subunit inter-

faces are thought to be at least partly responsible for the sub-

strate binding function of these proteins (Haslbeck et al., 2005;

van Montfort et al., 2002), this suggests that adaptation has

occurred in these interfacial areas of the sequence to regulate

substrate specificity.

This ability to elucidate information as to oligomeric organiza-

tion via real-time nESI subunit exchange monitoring is very at-

tractive. Other strategies have been used in combination with

nESI to achieve this goal—notably, gas phase dissociation (Ben-

esch et al., 2006; Benesch and Robinson, 2006) and destabiliza-

tion in solution through either temperature regulation (Benesch

et al., 2003) or the addition of perturbants (Hernández et al.,

2006). A major advantage of our approach is that it involves

the monitoring of the protein complexes in their native state,

with the proviso of an MS-compatible buffer. As such, potentially

nonspecific interactions are avoided. Furthermore, the subunit

exchange is nondissociative, in the sense that intact oligomers,

rather than suboligomeric species in solution, are being moni-

tored. Suboligomeric units may be elucidated, therefore, inde-

pendent of their stability outside the intact oligomer. This advan-

tage is exemplified in the results shown in Figure 2A, which reveal

only dodecameric and monomeric forms of the sHSPs. The pres-

ence of dimeric substructure is revealed only upon performing

the subunit exchange experiment.

Other methods have been used for the study of subunit ex-

change reactions, including fluorescence resonance energy

transfer (Bova et al., 1997), native gel electrophoresis (van den

Oetelaar et al., 1990), and affinity chromatography (Schneider

et al., 2001). These methods have the disadvantages of requiring

the use of a potentially invasive tag, providing an ‘‘average’’ of the

whole reaction mixture, or resulting in a poor resolution of sepa-

ration, or a combination thereof. In contrast, the high-resolution

separation afforded by an MS approach allows the relative quan-

titation of the different species within heterogenous ensembles

(Aquilina et al., 2003). We have demonstrated here that it is the

real-time monitoring of these populations that allows the elucida-

tion of dynamical and structural details. Furthermore, monitoring

the exchange of a protein complex with its isotopically labeled

but isostructural equivalent obviates the need for a tag (Keetch

et al., 2005) and represents a completely generalized strategy
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for future investigations. As such, the approach described here

provides an exciting, robust, and universal method for the study

of the subunit exchange reactions and nonequilibrium states of

protein complexes in general.

SIGNIFICANCE

The sHSPs are a family of molecular chaperones found in

almost all organisms studied to date. Detailed structural

studies on these proteins are comparatively scarce because

of the frequently polydisperse and dynamic character of

these proteins (Haslbeck et al., 2005; Horwitz, 2003; Narber-

haus, 2002; van Montfort et al., 2002). In fact, it appears that

this dynamic nature, particularly their ability to exchange

subunits and form hetero-oligomeric species, may itself be

crucial to their function in vivo (Haslbeck et al., 2005; Hor-

witz, 2003; Narberhaus, 2002; van Montfort et al., 2002).

Here, we have developed a robust and universal nESI-MS

approach for monitoring the reactions of protein complexes

in real time and have applied it to the subunit exchange of

two sHSPs from Arabidopsis thaliana. By quantifying the rel-

ative populations of the different homo- and hetero-oligo-

meric species as the reaction proceeds, this report

represents the first detailed study, to our knowledge, of

a subunit exchange reaction between two species that are

found in the same cellular compartment in vivo.

Through the simultaneous determination of both struc-

tural and dynamical properties of these proteins, showing

them to be highly dynamic dodecamers with dimeric sub-

structure, this study also demonstrates the versatility of

nESI-MS. Functional genomics is concerned with combining

structural and dynamical information so as to understand

the roles and mechanisms of action of proteins and their

noncovalently bound complexes in the cell. Most estab-

lished structural genomics approaches, however, are not

well suited to studying the dynamics of protein complexes,

because they are performed at equilibrium or on quenched

states. In contrast, nESI-MS has not only become an estab-

lished structural genomics approach (Robinson et al., 2007)

but also, as we have shown here, is capable of providing

complementary dynamical insights crucial to understanding

protein function by generating a large amount of information

in real time.

EXPERIMENTAL PROCEDURES

Automated nESI- MS

All mass spectral measurements were performed using a Nanomate HD nESI

system (Advion BioSciences Ltd., Ithaca, NY) (van Pelt et al., 2002). Mass

spectra were recorded on either an LCT or Q-ToF II mass spectrometer

(both from Waters, UK). Spectra were calibrated externally using 33 mg/ml

cesium iodide. Data were acquired and processed with MassLynx software

(Waters, UK) and are shown with no background subtraction.

Enzyme-Substrate Reaction

Fifty microliters of 100 mM horse-heart CytC (Sigma C-2506), in water, was

combined with 50 ml of 200 mM ammonium bicarbonate and 6.25 ml of

0.5 mg/ml sequence-grade modified Trypsin (Promega V5113), giving a final

enzyme:substrate ratio of �1:38.

Mass spectra were obtained on the Q-ToF II in positive ion mode, with

sample cone, 180 V; extractor cone, 10 V; ion transfer stage pressure,
5, 246–253, March 2008 ª2008 Elsevier Ltd All rights reserved 251
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6.5 3 10�3 mbar; quadrupole analyzer pressure, 5.5 3 10�3 mbar, and Tof

analyzer pressure, 4.7 3 10�7 mbar. nESI was achieved with a spray voltage

of 1.65 kV and a head pressure of 0.4 psi (28 mbar) set on the Nanomate.

To extract kinetic information, each single 5 s acquisition time point was an-

alyzed without smoothing. Relative abundances were assessed from the peak

heights of the species being monitored (Table S1). Line-fitting was achieved

using SigmaPlot 2001 (SPSS Science, Chicago, IL), and error bars represent

three standard deviations from the mean.

Subunit Exchange Reaction

HSP18.1 and HSP17.6 were expressed in Escherichia coli and were purified as

described elsewhere (Basha et al., 2006). Samples were buffer exchanged into

200 mM ammonium acetate by using a Superdex 200HR10/30 column (GE

Healthcare). To monitor the subunit exchange kinetics in real time, the proteins

were combined at a molar ratio of 1:1, to give a final protein concentration of

10 mM (monomer) for each component, according to UV absorbance at

280 nm.

Mass spectra were obtained on the LCT in positive ion mode, with sample

cone, 150 V (individual components) or 200 V (subunit exchange experiment);

extractor cone, 5 V; ion transfer stage pressure, 7.93 mbar; and ToF analyzer

pressure, 1.1 3 10�6 mbar. nESI was achieved with a spray voltage of 1.8 kV

and a head pressure of 0.55 psi (38 mbar) set on the Nanomate. The reaction

mixture was sampled 34 times over the course of the 1 hr experiment, with

each 1 ml aliquot being electrosprayed for 1 min.

Simulated spectra were constructed using SigmaPlot 2001, as described

elsewhere (Sobott et al., 2002). Theoretical intensities of the different dodeca-

mers were calculated on the basis of a binomial distribution of the components

HSP18.1 and HSP17.6 at a ratio of 1:1, assuming an equal preference for each

composition (Figure 2, top panel). A second simulation was performed with the

restriction that the exchanging units were homodimers (Figure 2, lower panel).

Kinetics were monitored by signal-averaging all scans in each separate infu-

sion, and the peak heights of the 31+ charge states of the various dodecamers

were monitored. Data were normalized to the final relative distributions dic-

tated by the binomial distribution, and kinetic parameters were extracted using

SigmaPlot 2001.

SUPPLEMENTAL DATA

Supplemental Data include 3 figures and 1 table and can be found with this

article online at http://www.chembiol.com/cgi/content/full/15/3/246/DC1/.
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