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Hydrogenic Impurity in Ridge Quantum Wire
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The binding energies as well as wave functions of hydrogenic impurities located in V-groove
GaAs/AlxGa1−xAs quantum wires are calculated for different positions of the impurity inside the wires. The
variational method is used and the carrier ground states are analytically calculated by an effective potential
scheme together with a suitable coordinate transformation that allows the decoupling of the two-dimensional
Schrodinger equation. The results are in good agreement with experimental points and other previous investi-
gations.
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I. INTRODUCTION

In the past few years, there has been an increasing in-
terest in the electronical and optical properties of quantum
wires. As the quantum confinement leads to the enhance-
ment of the density of states at specific energies and increases
the importance of excitonic effects by the modification of
electron-hole Coulomb interaction [1], one-dimensional quan-
tum wire structures have wide potential applications in future
optical devices. Some novel techniques have been successful
in obtaining a certain type of heterostructure known as ridge
quantum wires. These ridge quantum wires have been ob-
tained for a variety of materials such as InGaAs/GaAs [2],
InGaAs/AlGaAs [3], InGaAs/InP [4] and GaAs/AlGaAs [5].
Due to the unusual form of the barrier profile of V-groove
quantum wires, the calculation of hydrogenic impurity states
may become impractical if the method of calculation of the
carrier ground states is also numerically intensive. Several
theoretical approaches have been put forth for the calculation
of the energy levels and wave functions: Pescetelli et al [6]
used a tight-binding method for V-shaped quantum wire, Sa’ar
et al [7] proposed a local-envelope function, and Ammann et
al [8] used a quasi-factorization scheme. In the latter case, the
wave functions were calculated for an adiabatic approxima-
tion of the potential profiles which therefore limits the calcula-
tion to smoothly angled, V-shaped wires. The binding energy
of a hydrogenic impurity in a cylindrical quantum wire has
been calculated as a function of location of the impurity with
respect to the axis of the quantum wire in [9]. The effect of
the shape of a cross-section on the impurity binding energies
for a quantum wire has been investigated in [10]. However, in
general the 2-dimensional Schrödinger equation in the effec-
tive mass approximation has been calculated numerically us-
ing either plane-wave expansion [11-13] or by adapting finite
element methods [14]. In all cases, the methods employed re-
quire considerable numerical effort and impose major restric-
tions for their use in calculating electronic and optical proper-
ties.

Recently, a coordinate transformation method was used to
study the electronic structures around corrugated interfaces
and in V-groove quantum wires. By this method, the nonpla-
nar boundaries become a confining potential and the bound-
ary conditions of electronic wave functions can be satisfied

exactly on the interfaces after the coordinate transformation.
In this paper the method of effective potential [15] is used

and the 2D Schrödinger equation is analytically solved [16].
Then, the variational method is applied and the binding ener-
gies of hydrogenic impurity are calculated. The method pro-
vides energy levels and wave functions that are in good agree-
ment with more complicated calculations.

II. THEORY

In the effective mass approximation within envelope func-
tion formalism, the single particle Hamiltonian in V-grooved
quantum wire can be written:

H(r) =
{

P2/(2m1) y2(x) < y < y1(x)
P2/(2m2)+V0 elsewhere

(1)

where r and P are the electron coordinate and momentum.
m1,m2 and V0 are the carrier band effective mass in the well
material and the barrier material and the carrier-confining po-
tential, respactively. y1(x) and y2(x) describe the upper and
bottom boundaries of ridge quantum wire, Fig. 1. The follow-
ing coordinate transformation transforms the V-shaped bound-
aries into planar ones

x′ = x

y′ =−y−b tan(θ) ln[cosh(x/b)]. (2)

z′ = z

where b is the bend width at the top of the ridge and the an-
gle θ is such that (180◦−2θ) is the actual angle between the
facets of the ridge. The transformed Schrödinger equation be-
comes considerably more complicated as it now contains all
the information about the lateral confinement.

− ~2

2m∗ [
∂2ψ
∂x′2

+(1+ tan2(θ) tanh2(x′/b))
∂2ψ
∂y′2

− ∂
∂y′

(tan(θ) tanh(x′/b)
∂ψ
∂x′

)− ∂
∂x′

(tan(θ) tanh(x′/b)
∂ψ
∂y′

)]

+ V (y′)ψ = Eψ . (3)
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In the transformed coordinates the potential barrier becomes
a function of y′ only, such as:

V (y′) =
{

0 if |y′|< L/2
V0 if |y′|> L/2 (4)

and

E =
∫

ψ∗(r)H(r)ψ(r)dV∫
ψ(r)ψ(r)dV

=
∫

ψ∗(r′)|J(r′)|H(r′)ψ(r′)dV ′
∫

ψ∗(r′)|J(r′)|ψ(r′)dV ′ (5)

where L and J(r′) are the channel width along the y direction
and the Jacobian determinant. In the new coordinate space,
the V-groove quantum wire becomes a quantum well with a
confining potential in the x direction. All mixed terms of the
Eq.(3) is replaced by an effective lateral potential [15]:

Ve f f (x′) = Vx′ tan(θ) tanh2(x′/b), (6)

where Vx′ is an angle-independent barrier factor. This form
of the lateral potential is proportional to the angle between
the facets of the ridge , which allows the decoupling of
the two-dimensional Schrödinger equation into two readily
solved one-dimensional Schrödinger equations. These equa-
tions were analytically solved and the wave functions and en-
ergy levels for the carrier were obtained [16]. For ground
state, the wave functions of carrier are given as:

ψ(x′,y′) = φ(x′)φ(y′)
= sech(x′/b)exp(ky′) y′ <−L/2
= sech(x′/b)cos(qy′) |y′|< L/2
= sech(x′/b)exp(−ky′) L/2 < y (7)

k2 =
2m2

~2 (V0−E), q2 =
2m1E
~2 . (8)

The Hamiltonian for shallow donor impurity states can be
written as

Him(r) =− e2

ε|r− ri|+
{

P2/(2m1) y2(x) < y < y1(x)
P2/(2m2)+V0 elsewhere

(9)
where ε and ri are the dielectric constant and the impurity po-
sition, respectively. The impurity binding energy is calculated
by a traditional variational method, due to no exact solutions
to the impurity states in quantum wire. The following trial
wave function in transformed coordinate is adopted for ground
impurity state in ridge quantum wire:

Ψ(x′,y′) = Aψ(x′,y′)exp(−α
√

(|r′− r′i)) (10)

where ψ(x′,y′) is the ground state wave function without im-
purity, Eq.(7). The α is the variational parameter, and will be
determined by minimizing the expectation value of the Hamil-
tonian E = 〈Ψ|Him|Ψ〉. The impurity binding energy, which
is defined as the difference between the lowest value of the
energy for the system without the impurity and the minimized
value of E, is obtained numerically.

Eb = E0−minα
〈Ψ(x′,y′)|J(r′)|HimΨ(x′,y′)〉
〈Ψ(x′,y′)|J(r′)|Ψ(x′,y′)〉 (11)

all calculations are carried out in transformed coordinates.

III. RESULTS AND DISCUSSION

The impurity states are an important factor to affect
the electric-transportation and optical properties in low-
dimensional semiconductor structures. The binding energies
and wave function are calculated for GaAs/Ga0.7Al0.3As V-
grooved quantum wire. The material parameters used in cal-
culations are: m∗

e = 0.067, dielectric constant ε = 13.18ε0,
the barrier potential V0 = 264meV and the barrier factor
VX = 42.4meV for the conduction band [17]. The angle is
θ = 54.75◦ such that 180◦− 2θ corresponds to the measured
angle between the two facets of the wire[15, 16].
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FIG. 1: A schematic representation of ridge quantum wires. Solid
curves are original coordinates and dashed lines are the transformed
interfaces.
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FIG. 2: Contour plots of the donor binding energy for L = 8nm,
b = 4nm, θ = 54.75◦. The contour plots show curves with the same
binding energy. Dashed lines show the position of the interfaces.

The variational parameter which minimizes the expecta-
tion value of the Hamiltonian of the system was calculated
for different positions of the impurity inside the wire. The
donor binding energies as a function of the impurity position
xi and yi are shown in Fig. 2 for a V-groove quantum wire
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with L = 8nm and b = 4nm. As it is seen, the binding en-
ergy is maximum for a donor located at the center of the V-
groove quantum wire and decreases as the donor position is
moved away from the center. A larger decrease is also ob-
served for donors located in the barrier region. The quantita-
tive and qualitative behaviours of the binding energies are in
close agreement with the calculations of Weber and de Paula
[17] for similar structures.

The wave functions for two impurity positions in the quan-
tum wires are shown in Figs.3-4. For an impurity located at
the center of the wire, the wave function is localized in the
central region Fig. 3, and for impurities located other posi-
tions, the wave functions become strongly deformed Fig. 4.
Penetration of the impurity wave functions into barrier regions
are also seen in Figs.3-4. These figures are also in good agree-
ment with the numerical analysis by Weber [17].
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FIG. 3: Contour plots of the impurity wave function in the V-groove
quantum wire with L = 8nm, b = 4nm and θ = 54.75◦ for two dif-
ferent impurity positions.

The variations of impurity binding energy versus dimen-
sion of the wire are shown in Fig. 5. Where o is the center of
quantum wire and A and B are the cross points of the bottom
and upper V-shaped boundaries with y-axis, Fig. 1. As it is
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FIG. 4: Variations in impurity binding energy versus the dimension
of ridge quantum wires for three different impurity positions.
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FIG. 5: Variations in impurity binding energy as a function of the im-
purity position along the y axis (x = 0) for L = 8.8nm (solid curve).
The dotted line corresponds to the experimental work done by Vouil-
loz et.al.

seen, when the dimension of ridge quantum wire decreases,
the impurity binding energy at three points increases at first,
to a maximum value, and then decreases. These behaviours
are similar to the impurity state in traditional quantum wires
with finite confining potential [18]. This phenomenon is re-
lated to the change of the electron confinement in ridge quan-
tum wires. When the dimension of V-groove quantum wire
decreases, the confinement of electrons is strengthened, and
therefore the impurity binding energy increases. Because the
practical V-groove quantum wires with finite confining poten-
tial are considered here, and when the dimension of V-groove
quantum wires is reduced to a small limited value, most of
the electronic wave functions begin to leak out of the well re-
gion, which results in a maximum impurity binding energy at
a small L value. It is also interesting to note that the impurity
binding energy at the center is larger than that two boundary
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points. The impurity binding energy at the bottom boundary
point is larger than at the upper boundary point, which indi-
cates an asymmetrical distribution of impurity binding energy
along the direction normal to the boundaries. This difference
is different from the impurity state behaviour in traditional
quantum wire structures [10, 18].

In order to understand clearly the asymmetrical distribution
of impurity binding energy in V-groove quantum wires, the
dependence of binding energy on the impurity position along
the y-axis for L = 8.8nm and θ = 54.75◦ is shown in Fig.6,
solid curve. For comparison the experimental work done by
Vouilloz et al [19] for a quantum wire with L = 8.8nm and
different curvatures is also shown in this figure, dashed curve.
As is seen, the calculated results are close to the experimen-
tal value. The asymmetrical distribution of impurity bind-
ing energy along the y direction can be clearly seen, and the
weighted center of the binding energy distribution in the y di-

rection moves to the convex side of quantum wire.

IV. CONCLUSION

We calculated shallow impurity binding energies in V-
groove quantum wires using an effective potential method for
the calculation of the electron and hole ground states. It was
found that the impurity state behaviour in ridge quantum wire
in a sense is similar to that in traditional quantum wires. How-
ever, the distribution of impurity binding energy along the
direction normal to the V-shaped boundaries is asymmetri-
cal, and the impurity position corresponding to the maximum
binding energy deviates from the center, due to the asymmet-
rical confining potential produced by the V-shaped boundaries
in the y direction.
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