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INTEGRABILITY THEOREMS FOR FOURIER-JACOBI TRANSFORMS
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(Communicated by A. Kufner)

Abstract. In this paper, we prove the Hardy-Littlewood-Paley inequality for the generalized
Fourier transform on Chébli-Trimeche hypergroups and we study in the particular case of the
Jacobi hypergroup the integrability of this transform on Besov-type spaces.

1. Introduction

We consider the Chébli-Triméche hypergroup (R4 ,%(A)) associated with the func-
tion A which depends on a real parameter o > —% (see next section). We prove
the Hardy-Littlewood-Paley inequality for the generalized Fourier transform % (f)
of a function f in LP(Ry,A(x)dx), 1 < p <2. Next, inspired by the definition of
usual Besov spaces and Besov-Dunkl spaces (see [2, 5]), we define for 1 < p < 2,
1 < g <+ and y > 0, the Besov-type spaces for Chébli-Trimeéche hypergroup de-
noted by A} as the subspace of functions f € L (R, A(x)dx) satisfying

teo oy p(f)(x)\9dx )
A (7)6)/ ) 7 <+ lfq <+
and
[0)
sup 7/4,,7({)(36) <Aoo if g = Hoo,
X€J0,+e0] X

where @y ,(f)(x) = ||T(f) — fllap is the modulus of continuity of first order of f
with 7, the generalized translation operators, x € R (see next section). We establish
in the particular case of Jacobi hypergroup further results concerning integrability of
the generalized Fourier transform % (f) of a function f when f belongs to a suit-
able Besov-type spaces. Analogous results have been obtained for the theory of Dunkl
operators in [1, 3, 4].

The contents of this paper are as follows.
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In section 2, we collect some results about harmonic analysis on Chébli-Trimeche
hypergroups.

In section 3, we prove the Hardy-Littlewood-Paley inequality for the generalized
Fourier transform on Chébli-Trimeche hypergroups and we study in the particular case
of the Jacobi hypergroup the integrability of this transform on Besov-type spaces.

Along this paper we use ¢ to denote a suitable positive constant which is not
necessarily the same in each occurrence. Furthermore, we denote by

o C,.(R) the space of even continuous functions on R, with compact support.

e  2.(R) the space of even C*-functions on R with compact support.

2. Preliminaries

In this section, we recall some notations and results about harmonic analysis on
Chébli-Trimeche hypergroups and we refer for more details to the articles [6, 9, 11, 12].

Let A be the Chébli-Trimeche function defined on R and satisfying the following
conditions.

i) A(x) =x2**!B(x), with o > —%, and B an even C*-function on R such that
B(x) > 1 forall x e R, .

ii) A is increasing.
A A(x)

iii) n is decreasing on |0, 4o and Jim e

=2p >0, where p is a constant.

iv) There exists a constant 1) > 0 such that for all x € [x(, 4o, xo > 0, we have

Al(x)  [2p+e ™F(x) ,ifp>0
Alx) | 4 e ME@) L ifp =0,

where F' is a C” -function bounded together with its derivatives.

We consider the Chébli-Triméche hypergroup (R4 ,%(A)) associated with the func-
tion A. We note that it is commutative with neutral element 0 and the identity mapping
is the involution. The Haar measure m on (R, x(A)) is absolutely continuous with
respect to the Lebesgue measure and can be choosen to have the Lebesgue density A.

Let A be the differential operator on ]0, 4| given by

_d? Ax)d

A=—— —.
dx*  A(x) dx

The solution @, , A € C, of the differential equation

{ Au(x) = — (A% +p?)u(x)
u(0) =1, L£u(0) =0,

is multiplicative on (R4 ,*(A)) in the sense that

VxyeRy [ 0(0d(6:58)(0) = 91 (3920,
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where §, is the point mass at x and 8, * 6, is a probability measure which is absolutely
continuous with respect to the measure m and satisfies

supp Oy * 8y = [|[x — y|,x+ ).
We list some known properties of the characters ¢, of the hypergroups.

i) For each A € C, the function x — @, (x) is an even C*-function on R and for
each x € R, the function A — ¢, (x) is an entire function on C.

ii) Forevery A € C, the function ¢, admits the integral representation

"X
000 = | K(x.y)cos(aydy, V>0,
0
where K(x,.) is a positive even C*-function on | — x,x[ with support in [—x,x].

REMARK 2.1. If A(x) = 2% (sinhx)?**+!(coshx)?P*!, with a > B > 1, o #
—% and p=a+ B+ 1, (Ry,*(A)) is called the Jacobi hypergroup. In this case, we
have for all x e R, and A € C,

92(x) = oF) (%(p—iMé(p+m>,a+1;—sinh2x),

where ,F; is the Gauss hypergeometric function (see [9]). The function ¢, is the
Jacobi function and it satisfies for all A € R and ¢ > 0

1= @a ()| > e min{1, (21)*}, 2.1
where ¢ is constant which depends only on o and 3 (see [7, 8]).

For every p € [1,+20|, we denote by L% (R, ) the space L”(Ry,A(x)dx) and by

LE(Ry) the space LP (R, ﬁ) where |¢(4)|? is an even continuous function on

R, satisfying the estimates: There exist positive constants k, ki, k» such that
i) If p =0 and o > 0 then
kAP < Je(1)] 72 < kAP, 2 €C (2.2)
ii) If p >0 and o > —3 then
ki AP < Je(M)] 72 S ko AP%TY, A eC, |A] >k, (2.3)

and

kAP <le(A)] 2 <kafA]?, A €C, [A| <k (2.4)
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We use ||.|a,, and [|.||c, as a shorthand respectively of H.||L5;(R+) and |||z, )-

For f € L}‘ (Ry) the generalized Fourier transform of f is given by

F(f)(A) = /R F0)0p (A () dx.

The generalized Fourier transform satisfies the following properties.

i) For f €L} (R,), we have
[-F (Fllese < 1 flla (2.5)

ii) For f in L}(IR}) such that .#(f) belongs to L{(R.), we have the following
inversion formula for the transform %

~ dA
10 = [ FNR0 0 g @
iii) (Plancherel formula) For all f € Z,(R), we have

_ dA
JL 1rerad= [ 1Z(0P 2.6

The transform .% can be uniquely extended to an isometric isomorphism from
L%(Ry) onto L2(R+).

For 1 < p <2, we denote by p’ the conjugate of p. From (2.5), (2.6) and the
Marcinkiewicz interpolation theorem (see [10]), we obtain for f € Lf(Ry)

17 (Pllepr < €llflap- 2.7)

For x € Ry and f € C, .(R), the generalized x-translate of f is defined by
WeRe n(N0) = [ @+ 8)0).
+

and we have 7,(f)(0) = f(x).
The generalized translation operators 7T, x € R, satisfy the following properties.

i) Forall x,y € Ry and 4 € C, we have the product formula
T(@) () = @ () @n (v)-

ii) For f € 2,(R) and x € R, the function y — 7,(f)(y) belongs to Z,(R) and
we have

VAER,, Z(nf)A) = g ()F(HQA). 2.8)

iii) Let f € Ly(Ry), p € [1,4+e]. For all x € Ry, the function 7,(f) belongs to
LE(Ry), p € [1,+0], and we have

I (Nllap < fllap-
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3. Generalized Fourier transform

Throughout this section, k refers to the constant obtained in (2.3) and (2.4) from
the estimates of |¢(1)|~2.

In the following lemma, we prove the Hardy-Littlewood-Paley inequality for the
Fourier transform.

LEMMA 3.1. For f € L(Ry), 1< p <2, one has

dx
P2 g p < P 3.1
[ G AFN@I iy << Ik, G.)
where
i) g(x)=x***tV if p =0 and o0 > 0.
.. P forx > k . 1
i) g(x) = {x3 forx <k. if p>0 and o> —5 where k refers to

the constant obtained from the estimates of |e(x)| 2.

Proof. For f € LI (R;), 1 < p <2, we consider the operator

L(f)(x) = g(x) Z (f)(x), x € Ry.

For every f € L(R.), we have from (2.6)

2 dx %: .
(o 100 i) =150

hence L is an operator of strong-type (2,2) between the spaces (Ry,A(x)dx) and
dx
(Re Gemewar)

i) Assume p =0, o > 0 and g(x) = x***1) . For 4 €]0,+oo[, f € L}(Ry) and
using (2.2) and (2.5), we can write

c2 = |Ifllaz,

/ dx _ / dx
(xR LN )>2) (8(0)2e()? Jixery: L) ()>2) ¥+ D ]e(x)]?

o0 200+1
<c 1 x—dx
= (1) @) Ao+1)
1A 1

—

Al
<l

It yields that L is of weak-type (1, 1) between the spaces under consideration.
By the Marcinkiewicz interpolation theorem (see [10]), we can assert that L is

an operator of strong-type (p,p), 1 < p < 2 between the spaces (Ri,A(x)dx) and
dx
R G ear)-
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‘We conclude that

dx dx
LA —=57m5 = / 8P Z (£) ()P
/R+ (g@)>le®)>  Jry le(x)[?
<clflz, .
which proves the result.
2(o+1) f k
.. 1 _ X or x > .
ii) Suppose now p >0, & > —5 and g(x) {x3 for x < k. where k is the

constant obtained in (2.3) and (2.4) from the estimates of |¢(1)|™2. Let A €]0,+oo]
and f € L},(RJr), by (2.3), (2.4) and (2.5), we have

/ dx
(xR LA ()12} (8(x))2[e(x)]?
dx
y e
{xeR+:g(x)>W} (g(x)) |c(x)\
dx

o
trerzss ) 2O G e

+/ P (X)L
(e g (> A} Y (g (0)2]e(x) ]2

a1
Foo x2 oo 2o+l
< C/ a3 X0k (x);dx”/ o oy Xkt () gy 4
SErve (Tffar)
+oo +o0
<cfl 0 x tdx+c . x 2% Bax < e %
Srirves () 2

Hence L is of weak-type (1, 1) between the spaces (R.,A(x)dx) and
dx
R Gwlemr) o ‘ ,
We conclude by the Marcinkiewicz interpolation theorem that L is of strong-type
(p,p), between the spaces under consideration.

It yields that
dx B 2
/ﬂh \L(f)(X)I”i(g(x))z‘c(x)|2 = /ﬂh lg(x)]” V(f)(X)\”Mx)P

<cllflz, .

thus we obtain the result. [

In the following, we study the integrability of the generalized Fourier transform
in the Jacobi hypergroup case (see Remark 2.1). For 1 < p < 2, we denote by p’ the
conjugate of p.

LEMMA 3.2. Let 1 < p <2 and f € L}(R.). Then there exists a positive con-
stant ¢ such that for & > 0 one has

oo / ) dx Ny .
</0 min{1,(8x)*"} |7 (f)(x)|” W> Scwap(f)(8), if 1<p<2
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and

esssup (min{1,(8x)} |7 (£)(x)]) < cons(H)(8), if p=1.

x>0

Proof. For f € LI (R;), 1< p <2, we have by (2.8)

F (T (f) = ) (%) = (@:(8) = )-F (f) (%),

for 6 >0 and a.e x € R, . Applying (2.7), we get

. B oo . rdx I%
17 (25 (F) = lley = </0 11— @u(8)|”'|.Z () (x)|P |c(x)‘2>
< coup(f)(8).

From (2.1), we obtain our results. Here, when p = 1, we make the usual modifica-
tion. [

REMARK 3.1.

i) In Lemma 3.2, the gauge on the size of the generalized transform in terms of an
integral modulus of continuity of f gives a quantitative form of the Riemann-
Lebesgue lemma:

L wr ) < §),if 1<p<2
(), P06l Gp) " <contn@).if 1<ps
and

esssup |- F (f)(x)| < cwa1(f)(6), if p=1.
x>%

ii) We will use the following estimates deduced from Lemma 3.2 to establish the
integrability of .7 (f) when f belongs to %} for 1 < p < 2:

~

/dx>$

52(/()3x2pf\ﬁ(f)(x)v’ el Scmp,p(f)(8),if 1<p<2 (32

and
ess sup ((&)%y(f)(x)\) <cony(f)(8), if p=1. (3.3)

1
0<x< 5

1
THEOREM 3.1. If f € %, .
e,

ﬂt%’g’la Jor 1 < p <2, then
P’

Z(f) € Le(R+).
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Proof. For f € L (R;), 1 <p<2and § >0, we can write from (2.8) and (3.1)

[ 1= 0@ 1Z G0 P 0y i < @, 0@

then by (2.1) we obtain

1

81 [* PP 601 i < clan (6 G4
From (2.3) and (2.4) we have
3 dt
/tw 0O
S R ey A

<e [F1FDOon O+ [ 17O sm P ),

by Holder’s inequality and (3.4), we have

=
U
-~

NG

<C(/O

le(t)?
t3(p—2)+2p|g(f) )1 X0 (t)[tzdtD b </03 ;2(1)’—2)%[0’](] (t)dt)

L 1
| 7 1
e /0 PV ()07 1y (O at])”
0 1

X ( / 5 R T W) '
0

s¢ (/Oé’2”Iﬂ‘(f)(t>I”(g(t))”2 & |z)'l’
x ( 20'-2)

Sl
~|

e(t)

{ /% -2 dt)7 + (/5%20‘“)(#*2)*2"“1"0 }
0 0

< 82y, (1)(8)( Loy 1)<c(w"’p(f)(5)l+wA”’(f)((S)1)

3_ 2(a+1)
L

N

57 8 g 8)
Integrating with respect to 8 over R, for f € %5 (11 2ot1) %’p ' the double integral is
evaluated by interchanging the order of integration; ’thIS ylelds

dt
le(1)[?

< H-oo.

~+oo
JARELGIGIa
0

This completes the proof. [l
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THEOREM 3.2. Let y>0, 1< p<?2 andfeﬂya, then

i) Forp#1 and 0<y< (aH) , one has % (f) € LY (Ry) provided that

(a+1)

ii) For p#1 and y > , one has

P (f) € Le(R+).
iii) For p=1 and y> sup{3,2(o.+ 1)}, one has

F(f) € Le(Ry).

Proof. Let f € By, 1 <p<2.

(a+l) 2(a+l1)
i) Suppose that p# 1 and 0 < y < . Let 7 (s 1)6)_1) <s< p', wedefine
the function
|7 (f , 1>k
/ ( )I2

By Holder’s inequality, (2.3) and (3.2) we have

dx 5 T dx -
a‘* p 2p P / P
<([1ev o) U, wop)
¢ dx 1**
<ct? (@a,p(f) / \C |2

<C1(27Y)-8</ 2a+ldx> p <Cl(2 7)s+2(a+1)(177‘,).
k

Then we get

td‘ de_t—s/
L IZ O g = [

=1 Pg(t )+2s/ 2o (x)dx

s T sy
< C<t—y5+2(a+1)(1—17)+/ N Ps+2(a+1)(1-2) 1dx>
k

—ys+2(a+1)(1—ﬁ) T 1)’

<clr

X ) and

it yields that .7 (f) € L*(Jk, +o=|, |()‘2) Since L ([0, 4], l()‘z)CL‘([O,k],‘c‘i)P

F(f) € L' ([0,k], =), we deduce that .Z(f) is in LS(R.).

\C(
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ii) Assume now y > Aot por p # 1, by proceeding in the same manner as the
proof of i) with s = 1, we obtain the desired result.

iii) For p =1 and y > sup{3,2(ar+ 1)}, by Holder’s inequality, (2.3), (2.4) and
(3.3), we have for t > 0

IL _ dx P /ll dx
/0 |</(f)()c)|x‘c(x)|2 < (ess sup x2|Jk(f)(x)|>/() X e

0<)c<ll

o 12 1 dx 1 dx
<ct (/0 ;X[O,k](x)W"'/O ;X]k,-&-oo[(x)‘c(x”z)

< Ctyf2[t72+t7(2a+l)} <C[t(y73)fl+ty72(a+l)fl].

Integrating with respect to ¢ over (0,1) and applying Fubini’s theorem we obtain

~+oo dx 1 1
P _ax (=3)—1 / 7—2(a+1)—1 oo
/1 PNl \c</0 t dit [ dz) <+

Since L*([0,1], =2 5) c L'([0,1], =), then .Z(f) € LL(R,). O

le(x)[* le(x)[*

REMARK 3.2. For y > sup{3,2(ct+ 1)}, we can assert from Theorem 3.2, iii)
that z%l,f; is an example of space where we can apply the inversion formula.
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