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ABSTRACT

Planning under uncertainty faces a scalability problem when
considering multi-robot teams, as the information space
scales exponentially with the number of robots. To address
this issue, this paper proposes to decentralize multi-agent
Partially Observable Markov Decision Process (POMDPs)
while maintaining cooperation between robots by using
POMDP policy auctions. Auctions provide a flexible way
of coordinating individual policies modeled by POMDPs
and have low communication requirements. Additionally,
communication models in the multi-agent POMDP litera-
ture severely mismatch with real inter-robot communication.
We address this issue by applying a decentralized data fu-
sion method in order to efficiently maintain a joint belief
state among the robots. The paper focuses on a cooper-
ative tracking application, in which several robots have to
jointly track a moving target of interest. The proposed ideas
are illustrated in real multi-robot experiments, showcasing
the flexible and robust coordination that our techniques can
provide.

Categories and Subject Descriptors

I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems

General Terms

Algorithms, Experimentation

Keywords

POMDP Auctions, Decentralized Data Fusion, Cooperative
Tracking

1. INTRODUCTION
In many robotic applications, such as surveillance or res-

cue robotics, the use of multi-robot systems is of great in-
terest [13, 10]. In those applications, a single robot is not
usually able to acquire all the required information and the
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cooperation among multiple robots is essential. However,
real scenarios present uncertain and potentially hazardous
environments in which robots can experience communica-
tion constraints regarding connectivity, bandwidth and de-
lays. Mapping the overall task into robust plans for each
robot is a challenging problem.

In this paper, we propose a scheme for exploiting the
power of decision-theoretic planning methods, while miti-
gating their complexity by lowering the dependence between
individual plans. Robotic teams commonly are capable of
communicating, which we exploit for maintaining a decen-
tralized state estimate. A key point in our approach how-
ever, is that we relax the strict assumptions on the quality
of the communication channel commonly found in the lit-
erature on multi-agent planning under uncertainty [19, 15,
20].

The Partially Observable Markov Decision Process model
(POMDP) provides a sound mathematical framework for
decision-making in uncertain and partially observable envi-
ronments [12], which are commonly faced by robotic teams.
Although there are POMDP solvers able to successfully han-
dle large state spaces currently, POMDPs ultimately face
a scalability problem when considering planning for multi-
agent teams [21]. Popular models like Dec-POMDPs [1] or
ND-POMDPs [16] remain limited to toy problems, and other
models require flawless instantaneous communication [19,
15, 20].

In contrast, we consider fully decentralized solutions, that
is, solutions that only involve local information and local
communications, and which do not depend on the total num-
ber of agents. In particular, this paper proposes an interme-
diate approach that solves independent POMDPs for each
agent but still allows online cooperation during the execu-
tion phase, by distributing the individual policies using auc-
tions. Auction algorithms have been widely used for optimal
multi-robot task allocation [7, 14, 24], and have also been
explored in conjunction with POMDPs [22].

We propose to decompose a multi-agent POMDP by fac-
torizing its goal into several behaviors that can be repre-
sented by single-agent POMDPs. We generalize a central-
ized POMDP auction [22] to auction never-ending tasks (be-
haviors) that can be assigned to different robots at every step
without completion (unlike classic task allocation). In this

24



novel decentralized auction, instead of tasks, policies that
describe a behavior towards a common goal are distributed;
agents can switch between these behaviors dynamically at
each decision step, and the auction is used to determine
continuously which behavior is best for each agent to co-
operatively attain the goal. Since independent single-agent
POMDPs are solved for every single agent, the interdepen-
dence of the model is low and the approach can scale well
with the number of agents.
The second key component is to efficiently maintain a joint

belief state among the robots, which can serve as coordi-
nation signal. Previous work has considered Decentralized
Data Fusion (DDF) for this purpose [8, 4], but the novelty
in this work is to use a DDF approach in conjunction with
POMDP policies. Unlike most work on POMDPs, the belief
update here is separated from the decision-making process
during the execution phase, which allows the agents to es-
timate the state with the DDF algorithm. This decoupling
between both processes increases the robustness and relia-
bility of real-time robotic teams.
We illustrate our method in a multi-robot tracking appli-

cation, in which several robots have to cooperate in order
to track a moving target as accurately as possible. Besides
cooperative tracking, our techniques are suited for a range of
problems such as surveillance [10] or forest fire detection [13]
which call for a cooperative effort of robots coordinating
their individual behaviors. We demonstrate our distributed
POMDP approach in a multi-robot testbed, in a fully de-
centralized setup where each robot runs its own POMDP
policy.
The paper is organized as follows: Section 2 summarizes

POMDP models and describes the decentralized data fusion
algorithms. Section 3 discusses current approaches in the
literature for multi-agent planning under uncertainty; Sec-
tion 4 describes the overall system and the algorithms for
auctioning POMDPs in a decentralized manner; Section 5
presents an application for cooperative tracking with multi-
robot systems; Section 6 provides experimental results; and
Section 7 gives the conclusions and future work.

2. BACKGROUND
We give a short description of the POMDP model for

single-agent and multi-agent planning uncertainty, followed
by a method for maintaining a joint belief by multiple agents.

2.1 POMDP model
A POMDP is defined as a tuple 〈S,A,Z, T,O,R, h, γ〉 [12].

The state space is the finite set of possible states s ∈ S; the
action space, the finite set of possible actions a ∈ A; and the
observation space consists of the finite set of possible obser-
vations z ∈ Z. At every step, an action is taken, an observa-
tion is made and a reward is given. Thus, after performing
an action a, the state transition is modeled by the condi-
tional probability function T (s′, a, s) = p(s′|a, s), and the
posterior observation by the conditional probability function
O(z, a, s′) = p(z|a, s′). The reward obtained at each step is
R(s, a), and the objective is to maximize the total expected
reward earned during h time steps. To ensure that this sum
is finite when h → ∞, rewards are weighted by a discount
factor γ ∈ [0, 1).
Given that it is not directly observable, the actual state

cannot be known by the system. Instead, a probability den-
sity function b(s) over the state space is maintained. This is

called the belief state and, due to the Markov assumption,
it can be updated with a Bayesian filter for every action-
observation pair:

b′(s′) = ηO(z, a, s′)
∑

s∈S

T (s′, a, s)b(s) (1)

where η acts as a normalizing constant such that b′ remains
a probability distribution.

The objective of a POMDP is to find a policy that maps
beliefs into actions in the form π(b) → a, so that the total
expected reward is maximized. This expected reward gath-
ered by following π starting from belief b is called the value
function:

V π(b) = E

[
h∑

t=0

γtr(bt, π(bt))|b0 = b

]
(2)

where r(bt, π(bt)) =
∑

s∈S R(s, π(bt))bt(s). Therefore, the
optimal policy π∗ is the one that maximizes that value func-
tion: π∗(b) = argmax

π
V π(b).

When a set of N agents that share the same reward func-
tion is considered, it is straightforward to extend the previ-
ous framework. In that case, each agent i can execute an
action ai from a finite set Ai and receives an observation zi

from a finite set Zi. The transition function T (s′, aJ , s) is
now defined over the set of joint actions aJ ∈ A1×· · ·×AN ,
and the observation functionO(zJ , aJ , s′) relates the state to
the joint action and the joint observation zJ ∈ Z1×· · ·×ZN .
The common reward signal is now defined over the joint
set of states and actions R : S × A1 × · · · × AN → R.
The goal in this case is to compute an optimal joint policy
π∗ = {π1, · · · , πN} that maximizes the expected discounted
reward.

2.2 Decentralized Data Fusion
In the multi-agent case, maintaining a belief over the state

space according to (1) is not trivial. Given a team with N
agents, a centralized node with access to all the information
would update the belief as follows:

b′cen(s
′) = ηp(zJ |aJ , s′)

∑

s∈S

p(s′|aJ , s)bcen(s) (3)

where aJ = 〈a1, · · · , aN 〉 denotes the joint action and zJ =
〈z1, · · · , zN 〉 the joint measurement. However, if the belief
estimation is decentralized and each agent i uses only its
local information (action ai and observation zi), some com-
munication must be allowed among the agents so that they
can recover this centralized belief locally [19].

The conditional independence assumption of the measure-
ments (given the state at s′) is typical in Bayesian data fu-
sion. This is reasonable when the measurements obtained
by each agent do not depend on the state of the other
agents. Therefore, assuming this particular independence
(p(zJ |aJ , s′) =

∏
i p(z

i|ai, s′)) and assuming that agent ac-
tions are known when predicting, it is possible to combine
locally received beliefs from other agents with the one from
agent i, b′i(s

′), to recover the centralized belief:

b′cen(s
′) ∝ b′i(s

′)
∏

j 6=i

b′j(s
′)

b′ij(s
′)

(4)

Equation 4 fuses the belief in agent i with the one received
from j by multiplying them. The common information pre-
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Figure 1: Classification of multi-agent POMDP approaches
according to interdependence and level of communication
between the agents. “Auctioned POMDPs” refers to the
proposed approach.

viously exchanged by the agents b′ij(s
′) must be removed

not to count it twice. This common information can be
maintained by a separate filter called channel filter. Further
details about the channel filter and the equation above can
be seen in [2].
In previous work we have shown that if the state is dy-

namic, it is possible to obtain locally the same belief as in a
centralized node with access to all the information available,
by including delayed states in the belief [4]. This represents
a common belief signal for all the agents. If only the current
state is considered, some information is lost with respect to
an ideal centralized fusion unless the agents communicate
every time they gather new information [2].

3. MULTI-AGENT PLANNING

UNDER UNCERTAINTY
In the literature a wide variety of decision-theoretic mod-

els exist to deal with multi-agent systems [21], such as Multi-
agent POMDPs [19] and Decentralized POMDPs [1], which
we compare in terms of agent interdependence and commu-
nication assumptions. The level of interdependence between
agents is determined by 1) the amount of information that
an agent needs to know about the other agent and 2) how
coupled the final policies are. We call a system highly in-
terdependent if a change in one of the agents’ model re-
quires re-computing the policies for the others. Many mod-
els from the literature are highly interdependent, for in-
stance Multi-agent POMDPs (MPOMDP), Dec-POMDPs,
and ND-POMDPs [16].
Fig. 1 presents a possible classification of existing mod-

els with respect to their interdependence and the grade of
communication that is assumed for the agents. The simplest
approach is to map the global task as well as possible into
a set of individual tasks, and model these as independent
POMDPs (Fig. 1, bottom left). Thus, each agent can solve
its own POMDP and execute its own policy without any

communication. In this case, the interdependence between
agents is very low, but since each agent ignores the oth-
ers, the level of cooperation or even coordination is low too.
Many interesting multi-agent planning problems cannot be
tackled adequately with such a loosely coupled approach.

On the other hand, MPOMDPs and Dec-POMDPs solve a
single decision-theoretic model for the whole team reasoning
about all the actions and observations of each agent (Fig. 1,
right column). The MPOMDP model assumes perfect com-
munication and each agent has access to joint actions and
observations at every moment, whereas the Dec-POMDP
model assumes no communication at all. Such models al-
low a tight cooperation, but they present a high interdepen-
dence, since any small change in one of the agents entails a
recalculation of the policy for the whole team. Furthermore,
if due to imperfect communication agents do not have access
to other agents’ observations, the behavior of the MPOMDP
model is not defined. The Dec-POMDP model, on the other
hand, does not exploit communication at all, which in many
scenarios could be beneficial to improve team performance.

In between MPOMDPs and Dec-POMDPs there are sev-
eral models in which some communication is assumed [15,
20, 23]. These models try to exploit the fact that agents
actually share information, but just partially and at certain
instants. Furthermore, most of them assume that commu-
nication arrives instantly.

In our work, we aim to exploit the power of decision-
theoretic multi-agent methods, but keeping in mind the pos-
sibilities and constraints posed by multi-robot systems. Of
particular relevance in our context is the fact that communi-
cation between robots is often possible, but the quality of the
communication channel can vary. This precludes centralized
solutions as well as methods requiring communication guar-
antees.

4. DECENTRALIZED AUCTION

WITH POMDPS
As mention in the introduction of this paper, we focus on

decentralized models. In particular, we follow the definition
of a decentralized system given in [17]:
1) There is no central agent required for the operation.
2) There is no common communication facility; that is, infor-
mation cannot be broadcasted to the whole team, and only
local point-to-point communications between neighbors are
considered.
3) The agents do not have a global knowledge about the
team topology: they only know about their local neighbors.

These characteristics make the system scalable as it does
not require a central node and enough bandwidth to trans-
mit all the information to that node. Moreover, the system
is more robust and flexible with respect to loss or inclusion
of new agents (there is no need to know the global topol-
ogy), and with respect to communication issues (a failure
does not compromise the whole system).

The proposed approach builds on two mechanisms for
achieving decentralization: the decentralized data fusion fil-
ter we described in Section 2.2 for sharing information be-
tween agents and a POMDP auction for decentralized be-
havior coordination (Section 4.1). In Fig. 1, in terms of agent
interdependence, our approach can be seen as in between
“independent POMDPs” and MPOMDP/Dec-POMDP. In
terms of communication requirements, our approach does
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not require the high-quality guarantees of the methods that
enhance the Dec-POMDP model with communications.

4.1 Distributed POMDP with Auction
There is a wide range of missions that can be accomplished

by a team of multiple robots. In all these missions there is a
certain objective (e.g., detecting a target or alarm) and a set
of behaviors or roles that the robots can follow to achieve
that objective (e.g., patrol, approach, etc). In the case of a
multi-agent POMDP, this overall objective is encoded into
a reward function. We assume that the problem can be
decomposed into different simultaneous behaviors, each of
which is modeled as a POMDP with its own reward func-
tion. Then, the joint behavior produced by the distributed
POMDPs should be similar to the one desired for the whole
team initially. Such a decomposition is possible in many
robotic applications [13, 10], like surveillance, tracking, for-
est fire detection or robotic soccer, in which cooperation
between robots playing different roles is required.
The global multi-agent objective can be distributed into a

set of simpler reward functions {R1, . . . , RM}. In our case,
each reward function Rk represents a certain single-agent
behavior that can be modeled by a POMDP policy with a
value function V π

k (b) associated. Then, assuming that each
of the robots can execute these policies, the combination
of all of them should lead to a cooperative behavior that
follows the global objective. The problem of determining
which policy should be assigned to each robot at each step
can be modeled as a task allocation problem [22].
In general, a task allocation algorithm attempts to assign

a set of M tasks to a team of N agents minimizing a global
cost. In this case, each robot always has to be assigned a
sole task, which is the POMDP policy to follow. In order
to foster cooperation, different policies must be assigned to
different robots as long as possible. Given that xik = 1 when
policy k is assigned to robot i and 0 otherwise, and cik is
the cost associated with that assignment, the problem can
be formulated as follows:

min
N∑

i=1

(
M∑

k=1

cikxik

)
(5)

subject to

N∑

i=1

xik ≤ 1, ∀k ∈ K

M∑

k=1

xik = 1, ∀i ∈ I

xik ∈ {0, 1}, ∀i ∈ I, ∀k ∈ K
where I = {1, . . . , N} and K = {1, . . . ,M}.
In order to select the best behavior for each robot, we pro-

pose an auction algorithm similar to our previous work [22].
The cost or bid of assigning a policy k to a robot i is
cik = −V π

k (bi). Thus, policies with a greater expected re-
ward are more likely to be selected for each robot, which
helps to maximize the global expected reward for the whole
team. In case N > M , the Hungarian algorithm will leave
robots with no policy assigned. Therefore, the assignment
problem is repeated with these free robots until they all get
a policy assigned. Note that in this special case, some poli-
cies would be assigned to more than one robot at the same
time.

Algorithm 1 Auctioneer Robot i (bi)

1: for all k ∈ K do
2: cik = −V π

k (bi) {; Local bids}
3: Send cik to neighbors.
4: end for
5: Receive bids from neighbors.
6: C = {cik}i,k {; Create cost matrix}
7: {xik}i,k ← Hungarian(C)
8: return Policy selected for robot i.

Algorithm 1 summarizes a decentralized auction approach
in which the assignment problem is solved locally at each
robot with the information available. Each robot i com-
putes its own bids for the behaviors from its local belief bi
and communicates them to other neighboring robots. Then,
with the bids received from other robots, a local solution for
the assignment problem (5) is obtained. This computation
can be performed efficiently in polynomial time using the
Hungarian algorithm [3].

In general, the local cost matrices, and hence the local
solutions for the behavior assignment, should be the same
at each robot as long as the communication is error-free and
the beliefs are common. However, for DDF systems in which
the local beliefs are not synchronized all the time, inconsis-
tencies that lead to suboptimal solutions may be obtained
from time to time. In an inconsistent distributed solution,
due to differences in the local cost matrices, the same policy
is allocated to more than one robot. Therefore, a good syn-
chronization of the local beliefs is desirable to avoid these
situations. On the other hand, the robustness of the system
is high, since information from all the robots is not required
to compute each local solution. In case some communica-
tion links failed, each robot would still get a suboptimal
solution with the available information from their neighbors
(subnetworks arise naturally).

In addition, there is another potential desynchronization
due to the fact that the robots may not have synchronized
execution time, which would lead them to make decisions
at different moments and with different available informa-
tion. Some previous works [5] propose consensus algorithms
over this information in order to guarantee convergence for
decentralized auction approaches even in case of time desyn-
chronization. Nonetheless, the decision-making performance
is still degraded. Moreover, the dynamics of the system pre-
sented here are higher, since each robot is allowed to change
its policy at every step. Therefore, the establishment of a
previous consensus to converge to the same distributed so-
lution is not worthwhile.

4.2 System Overview
Fig. 2 illustrates the system elements per robot. The

whole process is separated into two different modules. Each
robot can execute a certain number of behaviors modeled
as single-agent POMDP controllers. A DDF module is in
charge of computing the belief and feeding the Auction-
eer module, which then chooses the adequate POMDP con-
troller and the associated action. Although most POMDP-
based systems synchronize belief update and decision mak-
ing in the same loop, here the two processes are separated.
In this way some constraints that limit the flexibility and
robustness of the system are avoided. For instance, commu-
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Figure 2: Functional scheme for decision-making and belief
update at each robot.

nication channels and transmission rates are totally inde-
pendent for both modules, which is critical in decentralized
systems under possible communication failures.
The approach is totally decentralized, since the belief esti-

mation as well as the decision-making are carried out with-
out the need for a central entity. On the one hand, the
belief estimation is computed by a DDF algorithm that is
distributed along the multiple robots. On the other hand,
the POMDP controllers act also separately for each robot.
Despite the fact that a multi-agent POMDP for the whole
team is not solved (with its computational benefits), a coop-
erative behavior still arises in two manners. First, thanks to
the information shared by the different DDF modules in or-
der to achieve a fused belief (which then acts as a Markovian
coordination signal for policy execution); and second, by
sharing the bid values for the decentralized auction, which
gives an idea about the behaviors others may be performing.

5. MULTI-ROBOT COOPERATIVE

TRACKING
In order to illustrate the proposed approach, an applica-

tion for tracking a target by means of multiple robots is con-
sidered here. Target tracking is a problem in which reason-
ing about future steps is needed to optimize the search [9].
Besides, cooperative behaviors are particularly helpful when
there are multiple robots involved in the traking. In our
problem there is a moving target and a team of N robots
which are the pursuers. Each robot carries a bearing-only
sensor which determines whether the target is visible or not
within its field of view (FOV). Thus, the objective is to find
the target in the environment and localize it as well as pos-
sible.
The state for each robot is composed of the position of the

target and its own position and heading. The state space
is discretized into a cell grid, and a map of the scenario is
assumed to be known. There are four possible headings for
every robot: north, west, south or east.
At each time step, each robot can choose between four

possible actions: stay, turn right, turn left or go forward.
stay means doing nothing; when turning, the robot changes
its heading 90◦; and when going forward, it moves to the cell

ahead. Nonetheless, noisy transition functions for the states
of the robots are considered. Besides, the target is assumed
to move randomly. Therefore, the transition function for its
position indicates that from one time step to the next, the
target can move to any of its 8-connected cells with the same
probability (only non-obstacle cells are considered in order
to calculate that probability).

In addition, every sensor provides a boolean measurement:
detected or non-detected. These sensors proceed as it follows,
if the target is out of its FOV, the sensor produces a non-
detected measurement. However, when the target is within
its FOV, it can be detected with a probability pD.

The design of the reward function is crucial. Since the
target must be tracked by the team, the more robots have
it within their FOV, the higher reward the system should
be given. Besides, given that the sensors provide bearing
information, it is quite reasonable to reward cross configu-
rations between the robots. Bearing sensors entail mainly
uncertainty in depth, so pointing at the target from different
angles definitely helps to reduce the uncertainty of its esti-
mation. Therefore, a high reward should be given for each
robot that is keeping the target within its FOV, and even
higher if the robot’s orientation differs from the others’.

A multi-agent POMDP might be solved in order to deal
with this problem. However, this solution is far from scal-
able with the number of robots. Actually, even considering
just two robots and a reasonable number of cells for a real
grid (∼ 80), the problem becomes intractable (considering
the solver and the computer indicated in the experimental
section). Hence, the method presented in this paper to dis-
tribute the reward function is used.

The key idea is to distribute the reward function so that
the same desired behavior is obtained for the whole team. In
this case, the robots should track the target from different
directions, so the kind of behaviors to be allocated could
consist of following the target from a specific direction. For
this application, four single-agent behaviors are considered,
one for each possible orientation {north,west, south, east}.
Therefore, the reward function for the policy k (Rk) gives a
high reward to robot i only if the target is within its FOV
and the robot’s heading hi corresponds to the orientation of
behavior k. Since the objective is to track the target, the
robots should try to get closer to the target when possible.
Hence, the high reward is just obtained when the target is
in one of the closest cells. The FOV for each robot and the
corresponding cells with a high reward are represented in
Fig. 3b.

Finally, in order to alleviate the complexity of the be-
lief space, Mixed Observability Markov Decision Processes
(MOMDPs) [18] are considered to find the policies. Hence,
the robots’ states are assumed to be observable within the
POMDP. This is reasonable for this robotic task in which
the sensors onboard allow the robots to assume their own
states observable (at least for a given resolution).

6. EXPERIMENTS
Some experiments were conducted with the real testbed of

the Cooperating Objects Network of Excellence (CONET)
that allows the user to combine simulated robots with four
real robots (Pioneer-3AT) [11]. Fig. 3a shows an illustration
of the testbed. A simulated version of the testbed is also
available in Player/Stage [6].
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(a) Testbed. (b) Occupancy grid.

Figure 3: (a) Picture of the multi-robot testbed. (b) Testbed
occupancy grid (yellow cells are obstacles) and an example
of the FOV for a robot (white cells). All the robots have
the same FOV. Besides, if the target is in one of the cells
with crosses and the heading is adequate, a high reward is
obtained.

6.1 Experimental setup
The map of this testbed was discretized into 2×2-meter

cells and resulted in the occupancy grid of 12×10 dimen-
sions shown in Fig. 3b, where cells representing obstacles
are in yellow. A team of robots was considered in order to
follow a target, represented by another robot. All the pur-
suers presented similar perception capabilities by means of
a sensor with pD = 0.9 and the FOV shown in Fig. 3b. For
each POMDP, the high reward when the target was in one
of the close cells of the FOV was 100, otherwise the reward
was 0. Note that the pursuer observations were obtained by
simulating sensors with the mentioned capabilities on board
the robots, since the development of real detectors is out of
the scope of this paper.
During all the experiments the target followed a path un-

known for the pursuers and with a random component. Fur-
thermore, Player was used to command the robots, which
were able to localize themselves within the map. A path
planning algorithm was used to obtain the path to the high
level goals provided by the POMDP controllers (next cell to
move and robot heading), whereas a local navigation algo-
rithm was used to safely navigate the given path. Each robot
had running onboard an estimation filter implementing the
DDF scheme in Section 2.2 and an auctioneer controller that
executed the algorithm in Section 4.1.
We tested the following three approaches: (i) auctioned

POMDPs with DDF; (ii) auctioned POMDPs without DDF;
(iii) independent POMDPs with DDF. The two first ap-
proaches are based on the auction method proposed in this
paper, but in the second one, neither communication nor
fusion is considered for the DDF modules. In the third ap-
proach, a single and independent POMDP is used for each
robot and communication between the DDF modules is al-
lowed. Moreover, all the policies were obtained by solving
the corresponding MOMDPs with a C++ implementation
of the SARSOP algorithm [18]. The solver ran 1700 sec-
onds for each policy in a computer with an Intel Core 2 Duo
processor @2.47GHz and 2.9GB. For the approaches (i) and
(ii), a different MOMDP is solved for each heading, whereas
for approach (iii), there is a single MOMDP independent of
the heading.

6.2 Experimental results

Error(m) Entropy
Auction+DDF

Robot 0 4.07± 0.16 2.61± 0.05
Robot 1 3.95± 0.15 2.55± 0.05
Robot 2 4.18± 0.16 2.66± 0.05

Independent+DDF
Robot 0 6.86± 0.32 2.80± 0.05
Robot 1 6.70± 0.32 2.70± 0.05
Robot 2 6.75± 0.32 2.68± 0.05

Auction
Robot 0 9.74± 0.29 3.85± 0.03
Robot 1 9.41± 0.34 3.28± 0.06
Robot 2 10.46± 0.40 3.62± 0.04

Table 1: Average results of the experiments with a three-
robot team for three different approaches. The error of the
estimated position of the target with respect to its actual
position and the entropy of the estimated beliefs are shown.

First, some experiments1 were carried out in order to com-
pare our approach with the others mentioned above. Three
of the real Pioneer-3AT were used to track the remaining
one, that played the target’s role. In order to have similar
conditions for each run, the three robots always started at
the same fixed points and the sample times were the same,
10 seconds for the decision-making modules and 3 seconds
for the DDF modules. An experiment of 15 minutes was
performed for each of the three approaches.

Some average results with their standard deviations are
presented in Table 1. At each time step, the target local-
ization is estimated by searching the cell of the belief with
a highest probability. This value is compared to the ac-
tual target position. The entropies of the belief at each
step (

∑
∀cell−pcell log(pcell)) are also averaged and shown.

It can be seen that the approach proposed in this paper
(Auction+DDF) reduces the entropy and the target local-
ization error with respect to the Independent POMDPs ap-
proach, since the cooperation between the members of the
team allows them to surround the target, pointing at it from
different points of view. It can also be noticed that the es-
timation of the target position is worse for the auctioned
approach when no DDF is included. Note that in this case,
the mean errors are bounded by the resolution of the cells
(2 meters). The option of Independent POMDPs without
DDF resulted in very poor performance (and hence is not
included), as the robots do not share any information nor
coordinate their behaviors.

Due to the bearing information encoded in the sensor ob-
servations, a cross configuration among the pursuers allows
them to point at the target from different points of view
and reduce the uncertainty of its estimation. This cross
configuration is fostered by our auctioned approach, as it
can be seen in Fig. 4. This figure compares our approach
to the Independent POMDPs with DDF in terms of angle
configuration between the pursuers. Normalized histograms
of the maximum angle difference between any of the pur-
suers every time the target is within FOV are shown. The
Auction+DDF histogram presents a high peak around 180◦

and a small mode in 90◦ (cross configurations), whereas the
histogram is quite flat for the Independent POMDPs. This

1See video at http://vimeo.com/18898325.
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Figure 4: Normalized histograms of the maximum angle dif-
ferences between the robots when the target is within the
FOV of any of them. At the top Auction+DDF; at the
bottom Independent POMDPs+DDF.

show that the proposed approach is more effective in reach-
ing cross configurations.
Second, to show the scalability of the system, a tracking

experiment with a four-robot team was performed. In this
case, the target was represented by a simulated robot. We
were able to run this experiment for more than 30 minutes
with the algorithms working on board the robots in a dis-
tributed way and using Wi-Fi communications, showing the
robustness of the system. An extract of the trajectories fol-
lowed by the pursuers and the target can be seen in Fig. 5a.
The orientation of the pursuers at the end of the experiment
has also been plotted to show how they surround the target
to reduce the estimation uncertainty. Note that, when the
target turns right, since they know the map, the pursuers
opt for going directly to the other exit of the aisle so they
can find it there.
The cooperation between the members of the team is de-

picted in Fig. 5b, which shows the policies allocated to each
robot during the same time frame (each iteration takes place
every 10 seconds). Due to differences in the local beliefs and
different decision times for the robots, inconsistent solutions
(robots with the same policy) are obtained in some occa-
sions. However, as time passes the robots have built up a
better belief regarding the target’s position, and the assign-
ment stabilizes (after iteration 22 in Fig. 5b).
Finally, some experiments in the simulated testbed were

carried out in order to check how our auction algorithm per-
forms when the robots do not access the same information.
The experiments consisted of three simulated robots, 2 pur-
suers and a target, starting at the same positions in each ex-
periment with sample times as before. However, the commu-
nication latency for the DDF modules was varied throughout
the different simulations (two simulations of 20 minutes for
each latency value). Even though the communication rate
for the auctioneers may also have been varied, the amount of
data transmitted by them (four scalar values, the bids, each
robot) is not significant for the bandwidth when compared
to the belief information and, hence, it can be maintained
(one each 10 seconds). The performance of the distributed
auction algorithm is shown in Fig. 6 by representing the per-
centage of inconsistent assignments. As the communication
rate for the DDFs is increased, the difference between the
beliefs to which the agents have access grows too. Thus, the

Target
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(a) Robot and target trajectories.
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Figure 5: Experiment with a four-robot team. (a) Trajecto-
ries followed by the robots and the target during the experi-
ment. Orientations at the last time step are also shown. (b)
Policies allocated to each robot during the same time frame.
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Figure 6: Evolution of the performance of the distributed
auction under variable transmission rate for the DDFs.

consistency of the assignments becomes more difficult under
worse communications. However, Fig. 6 shows a graceful
degradation with respect to the communication rate.

7. CONCLUSIONS
Planning-under-uncertainty techniques, such as POMDPs,

face a scalability problem when considering teams of robots.
Popular frameworks like Dec-POMDPs scale poorly to many
agents, unless very severe independence assumptions are ap-
plied (e.g., the ND-POMDP model). Furthermore, many of
these models either do not allow agents to exploit inter-
agent communication, or implicitly assume instantaneous
cost-less communication (MPOMDP). We focus on scalable
techniques that do not require such strict communication
guarantees, which are hard to meet in multi-robot domains
with unreliable wireless channels.

This paper presents an approach based on decentralized
data fusion (DDF) and auctioning of independent POMDP-
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based controllers during the execution phase to generate a
cooperative behavior in the team. Our approach is much
more scalable than other multi-agent POMDP approaches,
and allows the robots to exploit imperfect communication
channels, offering a trade-off between optimality and appli-
cability.
We presented as proof of concept results on a cooperative

tracking application by a team of up to 4 robots. The same
application cannot be solved with the current state of the
art in multi-agent POMDP solvers. Besides, our framework
is more general. DDF can be used for policy execution coor-
dination in other multi-robot applications; and applications
that can be achieved through cooperative behaviors can also
be modeled with this framework. For instance, the method
can be used in robotic soccer (allocating the best behav-
iors/roles to the team depending on the current belief); or
in fire fighting applications [13]. In the future, we will inves-
tigate the exact range of multi-robot planning domains for
which our approach is valuable.
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