
New permutation algorithms for causal

discovery using ICA

Patrik O. Hoyer1, Shohei Shimizu1,2, Aapo Hyvärinen1, Yutaka Kano2, and
Antti J. Kerminen1

1 HIIT Basic Research Unit, Dept. of Comp. Science, University of Helsinki, Finland
2 Graduate School of Engineering Science, Osaka University, Japan

http://www.cs.helsinki.fi/group/neuroinf/lingam/

Abstract. Causal discovery is the task of finding plausible causal re-
lationships from statistical data [1, 2]. Such methods rely on various
assumptions about the data generating process to identify it from un-
controlled observations. We have recently proposed a causal discovery
method based on independent component analysis (ICA) called LiNGAM
[3], showing how to completely identify the data generating process under
the assumptions of linearity, non-gaussianity, and no hidden variables. In
this paper, after briefly recapitulating this approach, we focus on the al-
gorithmic problems encountered when the number of variables considered
is large. Thus we extend the applicability of the method to data sets with
tens of variables or more. Experiments confirm the performance of the
proposed algorithms, implemented as part of the latest version of our
freely available Matlab/Octave LiNGAM package.

1 Introduction

Several authors [1, 2] have recently formalized concepts related to causality using
probability distributions defined on directed acyclic graphs. This line of research
emphasizes the importance of understanding the process which generated the
data, rather than only characterizing the joint distribution of the observed vari-
ables. The reasoning is that a causal understanding of the data is essential to be
able to predict the consequences of interventions, such as setting a given variable
to some specified value.

An interesting question within this theoretical framework is: ‘Under what
circumstances and in what way can one determine causal structure on the basis
of observational data alone?’. In many cases it is impossible or too expensive to
perform controlled experiments, and hence methods for discovering likely causal
relations from uncontrolled data would be very valuable.

For continuous-valued data the main approach has been based on assump-
tions of linearity and gaussianity [1, 2]. Those assumptions generally lead only to
a set of possible models equivalent in their conditional correlation structure. We
have recently showed [3] that an assumption of non-gaussianity in fact allows
the full model to be identified using a method based on independent component

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357291121?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

analysis (ICA). However, this new method poses some challenging computa-
tional problems. In this paper we describe and solve these problems, allowing
the application of the method to problems of high dimensionality.

The paper is structured as follows. In Section 2 we briefly describe the basics
of LiNGAM, before focusing on the computational problems in Section 3. The
proposed algorithms are empirically evaluated in Section 4. Conclusions are given
in Section 5.

2 LiNGAM

Assume that we observe data generated from a process with the following prop-
erties:

1. The observed variables xi, i = {1 . . . n} can be arranged in a causal order
k(i), defined to be an ordering of the variables such that no later variable in
the order participates in generating the value of any earlier variable. That
is, the generating process is recursive [4], meaning it can be represented
graphically by a directed acyclic graph (DAG) [2, 1].

2. The value assigned to each variable xi is a linear function of the values
already assigned to the earlier variables, plus a ‘disturbance’ (noise) term ei,
and plus an optional constant term ci, that is

xi =
∑

k(j)<k(i)

bijxj + ei + ci. (1)

3. The disturbances ei are all continuous random variables having non-gaussian

distributions with non-zero variances, and the ei are independent of each
other, i.e. p(e1, . . . , en) =

∏
i pi(ei).

A model with these three properties we call a Linear, Non-Gaussian, Acyclic

Model, abbreviated LiNGAM.
We assume that we observe a large number of data vectors x (containing the

components xi), and each is generated according to the above described process,
with the same causal order k(i), same coefficients bij , same constants ci, and
the disturbances ei sampled independently from the same distributions. Note
that the above assumptions imply that there are no unobserved confounders [2]
(hidden variables). Spirtes et al. [1] call this the causally sufficient case.

To see how we can identify the parameters of the model from the set of data
vectors x, we start by subtracting out the mean of each variable xi, leaving us
with the following system of equations:

x = Bx + e, (2)

where B is a matrix that contains the coefficients bij and that could be permuted
(by simultaneous equal row and column permutations) to strict lower triangular-
ity if one knew a causal ordering k(i) of the variables. (Strict lower triangularity
is here defined as lower triangular with all zeros on the diagonal.) Solving for x

one obtains
x = Ae, (3)

3

where A = (I − B)−1. Again, A could be permuted to lower triangularity (al-
though not strict lower triangularity, actually in this case all diagonal elements
will be non-zero) with an appropriate permutation k(i). Taken together, equa-
tion (3) and the independence and non-gaussianity of the components of e define
the standard linear independent component analysis (ICA) model [5, 6], which
is known to be identifiable.

While ICA is essentially able to estimate A (and W = A−1), there are
two important indeterminacies that ICA cannot solve: First and foremost, the
order of the independent components is in no way defined or fixed. Thus, we
could reorder the independent components and, correspondingly, the columns
of A (and rows of W) and get an equivalent ICA model (the same probability
density for the data). In most applications of ICA, this indeterminacy is of no
significance and can be ignored, but in LiNGAM, we can and we have to find
the correct permutation as described in Section 3 below.

The second indeterminancy of ICA concerns the scaling of the independent
components. In ICA, this is usually handled by assuming all independent com-
ponents to have unit variance, and scaling W and A appropriately. On the other
hand, in LiNGAM (as in structural equation modeling, SEM [4]) we allow the
disturbance variables to have arbitrary (non-zero) variances, but fix their weight
(connection strength) to their corresponding observed variable to unity. This re-
quires us to re-normalize the rows of W so that all the diagonal elements equal
unity, before computing B.

Our LiNGAM discovery algorithm [3] can thus be briefly summarized: First,
use a standard ICA algorithm to obtain an estimate of the demixing matrix W,
permute its rows such that there are no zeros on its diagonal, rescale each row
by dividing by the element on the diagonal, and finally compute B = I − W′,
where W′ denotes the permuted and rescaled W.

To find a causal order k(i) we must subsequently find a second permutation,
to be applied equally both to the rows and columns of B, which yields strict
lower triangularity.

3 Algorithms for solving the permutation problems

3.1 Permuting the rows of W

As pointed out above, because of the permutation indeterminancy of ICA, the
rows of W will be in random order. This means that we do not yet have the
correct correspondence between the disturbance variables ei and the observed
variables xi. The former correspond to the rows of W while the latter correspond
to the columns of W. Thus, our first task is to permute the rows to obtain a cor-
respondence between the rows and columns. If W were estimated exactly, there
would exist one (and only one!) row permutation that would give a matrix with
no zeros on the diagonal, and this permutation gives the correct correspondence
[3]. Furthermore, finding the correct permutation would be trivial.

In practice, however, ICA algorithms applied on finite data sets will yield
estimates which are only approximately zero for those elements which should be

4

exactly zero. Thus, we need to search for the correct permutation by minimizing
a cost function which heavily penalizes small absolute values in the diagonal,

such as
∑

i 1/|W̃ii|, where W̃ denotes the row-permuted W.
An exhaustive search over all possible row-permutations is feasible only in

relatively small dimensions [3]. For larger problems other optimization meth-
ods are needed. Fortunately, it turns out that the optimization problem can be
written in the form of the classical linear assignment problem. To see this set
Cij = 1/|Wij |, in which case the problem can be written as the minimization of

n∑

i=1

Cφ(i),i (4)

where φ denotes the permutation to be optimized over. A great number of al-
gorithms exist for this problem, with the best achieving worst-case complexity
of O(n3) where n is the number of variables, see e.g. [7]. In our current imple-
mentation though, we simply use general-purpose linear programming software
to find the optimum, which is good enough to solve problems involving tens of
variables. Future implementations will use the more efficient algorithms.

3.2 Permuting B to get a causal order

Once we have obtained the correct correspondence between rows and columns of
the ICA decomposition, calculating estimates of the bij is straightforward. First,
we normalize the rows of the permuted matrix to yield W′, and then calculate
B = I−W′ as described in Section 2 [3].

Although we now have initial estimates of all coefficients bij we do not yet
have available a causal ordering k(i) of the variables. Such an ordering (in general
there may exist many if the generating network is not fully connected) is needed
to achieve a directed acyclic graph, thus completing the estimation process.
Essentially, after the ordering we can force half of the coefficients to equal zero
such that the resulting network has no directed cycles.

A causal ordering can be found by permuting both rows and columns (using
the same permutation) of the matrix B (containing the initial estimated connec-
tion strengths) to yield a strictly lower triangular matrix. If the estimates were
exact, this would be a trivial task, using the following algorithm:

Algorithm A: Testing for DAGness, and returning a causal order if true

1. Initialize the permutation p to be an empty list
2. Repeat until B contains no more elements:

(a) Find a row i of B containing all zeros, if not possible return false

(b) Append i to the end of the list p
(c) Remove the i:th row and the i:th column from B

3. Return true and the found permutation p

5

However, since our estimates will not contain exact zeros, we will have to find
a permutation such that setting the upper triangular elements to zero changes
the matrix as little as possible. For instance, we could define our objective to
be to minimize the sum of squares of elements on and above the diagonal, that
is

∑
i≤j B̃2

ij where B̃ = PBPT denotes the permuted B, and P denotes the
permutation matrix representing the sought permutation. In low dimensions,
the optimal permutation can be found by exhaustive search. However, for larger
problems this is obviously infeasible. Since we are not aware of any efficient
method for exactly solving this combinatorial problem, we have taken another
approach to handling the high-dimensional case.

Our approach is based on setting small (absolute) valued elements to zero,
and testing whether the resulting matrix can be permuted to strict lower trian-
gularity. Thus, the algorithm is:

Algorithm B: Finding a permutation of B by iterative pruning and testing

1. Set the n(n + 1)/2 smallest (in absolute value) elements of B to zero
2. Repeat

(a) Test if B can be permuted to strict lower triangularity (using Algorithm A
above). If the answer is yes, stop and return the permuted B

(b) Additionally set the next smallest (in absolute value) element of B to zero

If in the problem, all the true zeros resulted in estimates smaller than all
of the true non-zeros, this algorithm finds the optimal permutation. In general,
however, the result is not optimal in terms of the above proposed objective;
more elements are usually set to zero than would be needed. Fortunately, this
is not a big problem because in sparse networks there are many more zeros in
the coefficients than required by the acyclicity of the model, hence we would
nevertheless like to prune out the small values from the estimated coefficients.
See [3] for some discussion on pruning the estimated coefficients.

4 Experiments

In [3] we empirically verified the basic concept of LiNGAM by generating data
from such models and estimating them using our method. However, because of
the lack of efficient permutation algorithms we were limited to problems with
small numbers of variables (8 variables or less). In the present paper we demon-
strate that the method also works well in high dimensions by employing the
permutation algorithms discussed in Section 3. All experimental code (including
the precise code to produce Figure 1) is included in the LiNGAM code package,
available at:

http://www.cs.helsinki.fi/group/neuroinf/lingam/

6

 2 0 2

 2

0

2

 2 0 2

 2

0

2

 2 0 2

 2

0

2

 2 0 2

 2

0

2

 2 0 2

 2

0

2

 2 0 2

 2

0

2

 2 0 2

 2

0

2

 2 0 2

 2

0

2

 2 0 2

 2

0

2

number of data vectors

generating b ij

e
s
ti
m

a
te

d
 b

ij

10

30

50

100 1000 10000

n
u

m
b

e
r

o
f

v
a

ri
a

b
le

s

Fig. 1. Scatterplots of the estimated bij versus the original (generating) values. The
different plots correspond to different numbers of variables and different numbers of
data vectors. Although for small data sizes the estimation often fails, when there is
sufficient data the estimation works essentially flawlessly, as evidenced by the grouping
of the points along the diagonal.

We repeatedly performed the following experiment:

1. First, we randomly constructed a strictly lower-triangular matrix B. Various
dimensionalities (10, 30, and 50) were used. Both fully connected (no zeros
in the strictly lower triangular part) and sparse networks (many zeros) were
tested. We also randomly selected variances of the disturbance variables and
values for the constants ci.

2. Next, we generated data by independently drawing the disturbance variables
ei from gaussian distributions and subsequently passing them through a
power non-linearity (raising the absolute value to an exponent in the interval
[0.5, 0.8] or [1.2, 2.0], but keeping the original sign) to make them non-
gaussian. Various data set sizes were tested. The ei were then scaled to yield
the desired variances, and the observed data X was generated according to
the assumed recursive process (1).

3. Before feeding the data to the LiNGAM algorithm, we randomly permuted
the rows of the data matrix X to hide the causal order with which the data
was generated. At this point, we also permuted the generating coefficients,
the ci, as well as the variances of the disturbance variables to match the new
order in the data.

4. Finally, we fed the data to our discovery algorithm, and compared the es-
timated parameters to the generating parameters. In particular, we made a

7

x4

x5

-0.78

x1

-0.39

x3

-0.350.54

x6

0.34

x2

0.19 0.51 0.27

0.78

x4

x5

-0.79

x1

-0.39

x3

-0.330.55

x6

0.34

x2

0.17 0.5 0.27

0.77

Fig. 2. Left: example original network. Right: estimated network. Graphs plotted us-
ing the latest version of the LiNGAM package which connects seamlessly to the free
Graphviz software, a sophisticated tool for plotting graphs.

scatterplot of the entries in the estimated matrix B against the correspond-
ing generating coefficients.

Since the number of different possible parameter configurations is limitless,
we feel that the reader is best convinced by personally running the simulations
using various settings. This can be easily done by anyone by downloading our
software and running it using Matlab or the freely available Octave software.
Nevertheless, we here show some representative results.

Figure 1 gives combined scatterplots of the elements of B versus the gen-
erating coefficients. The different plots correspond to different dimensionalities
(numbers of variables) and different data sizes (numbers of data vectors), where
each plot combines the data for a number of different network sparseness lev-
els and non-linearities. Although for very small data sizes the estimation often
fails, when the data size grows the estimation works practically flawlessly, as
evidenced by the grouping of the datapoints onto the main diagonal.

In summary, the experiments verify that the new algorithms are able to
find the appropriate permutations even in high dimensions, and demonstrate
that reliable estimation is possible even when the number of variables is large.
Comparing with the experiments in [3] we note that for larger dimensions we
clearly need more data, but the amounts of data required are still reasonable.

5 Conclusions

Developing methods for causal inference from non-experimental data (data which
does not come from controlled, randomized experiments) is a fundamental prob-
lem with a very large number of potential applications. Although one can never
fully prove the validity of a causal model from observational data alone, such

8

methods are nevertheless crucial in cases where it is impossible or very costly to
perform experiments.

The estimation of linear causal models can be based purely on the covariance
structure of the data [4, 1, 2] but such methods cannot in most cases distinguish
between multiple equally possible causal models that all imply the same condi-
tional correlation structure. We have recently shown [3] that an assumption of
non-gaussianity of the disturbance variables allows the full causal model to be
identified, and provided an algorithm for this estimation. The method is essen-
tially a post-processing method of ICA results.

In this paper we have shown how to solve one of the main remaining problems
with our LiNGAM method, that of finding the appropriate permutations when
the number of variables is large. The proposed algorithms have been implemented
in our freely available software package, and tested in thorough experiments.
The code package has also been extended to include graph plotting capability
(in combination with Graphviz), as Figure 2 demonstrates.

How well real-world causal processes fit our assumptions, in particular that of
linearity, will be crucial to the success or failure of applications of LiNGAM. We
are currently involved in testing the method on real-world data and comparing its
power and usefulness with other causal discovery methods, such as those based
purely on conditional correlation structure. For the most recent developments,
please see the project webpage.

Acknowledgements The authors would like to thank Aristides Gionis, Heikki
Mannila, and Alex Pothen for discussions relating to algorithms for solving the
permutation problems. P.O.H. was supported by the Academy of Finland project
#204826. S.S. was supported by Grant-in-Aid for Scientific Research from the
Ministry of Education, Culture and Sports, Japan. A.H. was supported by the
Academy of Finland through an Academy Research Fellow Position and project
#203344.

References

1. P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction, and Search. MIT
Press, 2000.

2. J. Pearl. Causality: Models, Reasoning, and Inference. Cambridge University Press,
2000.

3. S. Shimizu, A. Hyvärinen, Y. Kano, and P. O. Hoyer. Discovery of non-gaussian
linear causal models using ICA. In Proc. 21st Conference on Uncertainty in Artificial
Intelligence (UAI-2005), pages 526–533, Edinburgh, Scotland, 2005.

4. K. A. Bollen. Structural Equations with Latent Variables. John Wiley & Sons, 1989.
5. P. Comon. Independent component analysis – a new concept? Signal Processing,

36:287–314, 1994.
6. A. Hyvärinen, J. Karhunen, and E. Oja. Independent Component Analysis. Wiley

Interscience, 2001.
7. R. E. Burkard and E. Cela. Linear assignment problems and extensions. In P. M.

Pardalos and D.-Z. Du, editors, Handbook of Combinatorial Optimization - Supple-
ment Volume A, pages 75–149. Kluwer, 1999.

