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Abstract 
 
This paper is concerned with curved boundary triangular element having one 
curved side and two straight sides. The curved element considered here is the 28-
node (sextic) triangular element. On using the isoparametric coordinate 
transformation, the curved triangle in the global ),( yx  coordinate system is 
mapped into a standard triangle: { }1,1,0/),( ≤+≤≤ ηξηξηξ in the local 
coordinate system ),( ηξ . Under this transformation curved boundary of this 
triangular element is implicitly replaced by sextic arc. The equation of this arc 
involves parameters, which are the coordinates of points on the curved side. This 
paper deduces relations for choosing the parameters in sextic arc in such a way that 
each arc is always a parabola which passes through four points of the original curve, 
thus ensuring a good approximation. The point transformations which are thus 
determined with the above choice of parameters on the curved boundary and also in 
turn the other parameters in the interior of curved triangle will serve as a powerful 
subparametric coordinate transformation for higher order curved triangular 
elements with one curved side and two straight sides. 
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1. Introduction 
 
The finite element method applied to problems involving a enclosed region R2, 
elements with straight sides, usually triangles or quadrilaterals are perfectly 
satisfactory, if the original domain has a polygonal boundary and suitable basis 
functions defined on these elements are easy to construct. However, when the 
problem domain is curved, elements with at least one curved side are desirable. The 
curved element was introduced into structural analysis by Ergatoudis et al. [10] and 
reference to it can be found in [2,6,11,12,13]. Mitchell [1] describes three 
approaches to this problem. One of these involves a transformation of the entire 
domain onto some standard shape and hence is really a global method as opposed 
to the standard finite element approach which is local. The other two methods, the 
isoparametric method and the direct method are local in nature. In the direct 
method, the basis functions are constructed to match the curved boundaries and 
integrations are carried out directly in the original plane. This method has been 
developed with some success by Wachpress [3-5] and Mcleod and Mitchell [14] for 
triangular elements. The main difficulty with this procedure is that the basis 
functions in the triangles adjacent to the curved boundary are, in all but a few 
special cases, no longer polynomials and so the numerical work in these triangles is 
correspondingly more involved. The major disadvantage of these methods lies in 
the fact that the basis functions are usually rational functions making the 
integrations much more difficult. The isoparametric method has advantage of 
simplicity in defining of transformation and in the fact that the basis functions are 
polynomials which make the numerical integration easier. In the isoparametric 
method a triangle with one curved side and two straight sides in global ),( yx  space 
is mapped into a standard triangle i.e. { }1,1,0/),( ≤+≤≤ ηξηξηξ  in the local 
parametric space ),( ηξ . When the isoparametric coordinates are used to deal with 
curved boundaries in the finite element method, the original boundary is implicitly 
replaced by parabolic, cubic arcs. The equations of these arcs involve parameters 
which are the coordinates of points on the curved side. McLeod and Mitchell [15] 
determine equations of parabolic and cubic curves using isoparametric coordinate 
transformations. Further, they also present a simple and systematic procedure to 
choose the parameters of the cubic curves so that the implicit equations of the 
curves always represent the parabola passing through four points of the original 
curves and so is a reasonable approximation to it. The development is put to 
practical use in the recent works of Rathod and Karim [8-9]. In the recent works of 
the Rathod et al. [7], they found equations for point transformation of quartic and 
quintic arcs using isoparametric coordinate transformations and also to choose the 
parameters  in a systematic way so that the implied curves are always a parabola 
passing through four points (quartic and quintic arcs) of the original curves. It is the 
purpose of this paper to find equation for point transformations of sextic arc using 
isoparametric coordinate transformations and also to choose the parameters 
(coordinates of the points on the curved side) in a systematic way so that the implied 
curve  is always a parabola passing through four points (sextic arc) of the original 
curve. 
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2. Point transformations for triangular element with one curved 
boundary 

 
We consider the triangular elements in which one of the sides is curved and the 
other two sides are straight as shown in fig.1. The Lagrange interpolants for the 
field variable u (say) governing the physical problems are: 
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Where 2=n  refers to quadratic, 3=n  refers to cubic, 4=n  refers to quartic, 
5=n  refers to quintic and 6=n  refers to sextic order triangular elements, and 

),()( ηξn
iN  refers to the convential triangular element shape functions of order n  at 

the node i . These can be derived easily [7]. Hence the transformation formulae 
between the physical (Cartesian) and the local (natural) coordinate system are: 
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Now if we use the standard formulae on dividing a line segment in a given ratio 
from the plane analytic geometry to the straight sides 3–1 and 3–2, then the Eq. (2) 
reduces to 
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Where, t  is nodal values of the triangular element and H (n – 3) is the Heaviside 
step function or unit step function and it has the meaning for the present as 
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,10)6( =m  for sextic curved triangular element           (3c) 
and in Appendix-A the coefficients are listed 
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       a)Unmapped sextic triangle     b)mapped sextic triangle 

Fig.1: Mapping of a 28-node sextic curve triangle into right isosceles triangle 
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3. Triangle with one parabolic boundary 
 
The point transformation Eqs. (3a-d) will reduce to two parametric equations of 
the degree 6 in local variate ηξ or  along the curved boundary for which 1=+ηξ . 
We would now like to approximate the curved boundary of the triangle by a 
parabolic arc i.e. by two parametric equations for x  and y  by a quadratic 
polynomial in ηξ or . This is possible only if we neglect the higher order terms in 

Eq. (3a) i.e. the terms
( )

∑
≠
=+
ji
nji

jin
ija ηξ)( . Hence we may assume without loss of 

generality that the point transformation over the curved triangle is given by  
)6(,,)()(),( )(

1132313 ==+−+−+= nyxtAtttttt n ξηηξηξ           (4) 
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)(
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m
a and )(nm  are integral constant which are defined in Eq. (3c). 

 
 
 

4. Explicit form of point transformations and Jacobians 
 
We note that Eq. (4) reduces to a pair of parametric equations for x and y  along 
the curved boundary and they are quadratic polynomials, either in ξ orη . Let us 
assume that the given curved boundary can be approximated by a general conic [9], 
that is, the equation 

0),( 2
0211

2
20011000 =+++++= ypxypxpypxppyxf            (5) 

We have also from Eq. (4) the parametric equation along the curved boundary is of the 
form (say): 

2
210 )()()()1,( ξξξξ trtrtrx ++=− , 2

210 )()()()1,( ξξξξ tststsy ++=−          (6a) 
If we substitute from Eq. (6a) into Eq. (5), then on the curved boundary f has the form: 
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Clearly, Eq. (6b) is a polynomial in ξ, of degree four, since it has to pass through the 
end points of the curved boundary, 1,0=ξ  are definitely two of its roots. The other 
two roots in 0<ξ<1, determine two intermediate points on the curved boundary. Thus, 
we can only determine the curved boundary by a parabolic arc which passes through 
two intermediate points in 0<ξ<1 and two end points at ξ = 0 and ξ = 1. If we have 
more than two intermediate points on the parabolic arc of this curved boundary, 
then they will be all expressible in terms of the two intermediate points which only 
lie on the original curved boundary. We shall now determine the relations among the 
nodal points along the curved boundary, if the curved triangle has more than four nodes 
along the curved boundary. 
 
Lemma: Let the point transformation for the curved triangle with one parabolic 
curved boundary side and two straight sides be expressible as: 

,)()()(),( )(
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then it can be shown that: Sextic case )6( =n  
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Proof: The proof follows from the foregoing analysis of point transformations to 
match the parabolic arc discussed in section 3 of the paper and alternatively it also 
follows from the global to local transformation of coordinates and geometric 
considerations. 
 
 
 

5. Analysis of point transformations 
 
The triangle is spanned by a total of 28 nodes and has 7 nodes respectively along 
the curved side. The global coordinates ( )yx,  and the local coordinates ( )ηξ ,  under 
the subparametric coordinate transformation which map this curved triangle 
fig.1(a) into isosceles right triangles are as shown in fig.1(b) and they are related 
by equations 3(a)-3(d) as derived in the previous section. The parametric equations 
of the curved side in fig.1(a) can be obtained by substituting η = 1 - ξ in Eqs. 3(a) – 
3(d).  This leads to equations of the form: 
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)(  values as listed in 
Appendix-A. In sextic case, the curved side of the triangle is spanned by the 
coordinates )2,8,7,6,5,4,1,( =iti . The point transformation for this case can be 
obtained from Eq. (3a). Hence, on the curved side, we obtain the following 
equation on substituting ξη −= 1 in Eq. (3a):   
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Now, the choice for the location of points )8,7,6,5,4,( =iti to make the above sextic 
curve to reduce to a unique parabola can be achieved by setting: 
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Now, Eq. (12) can be explicitly written as: 
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We can equivalently express the Eq. (13) as: 
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From the Eq. (3d) and Eq. (14), it can be shown that: 
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Now, we have to determine the coordinate points 7654 ,,, tttt and 8t  along the 
curved boundary and also the points in the interior of the triangle viz: 

272625242322212019 ,,,,,,,, ttttttttt  and 28t . We first note here that the equations  
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It is now clear that the use of these 14-linear equations reduces the Eq. (15) to the 
form:  
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The remaining eight linear equations are: 
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Lets us further choose t
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If we now use Eqs. (21) - (22) in (R8) of Eq. (20) then the three Eqs. (R5), (R6) and 
(R8) of Eq. (20) are identical. Hence, we select only one among the Eqs. (R5), (R6) 
and (R8). Thus, we retain Eq. (R6) and (R8). Thus, from the set of Eq. (20), we 
retain the five Eqs. (R1),(R2),(R3),(R4) and (R7) on using Eqs. (21)-(22) to 
determine the five unknowns tttt 25,2426,2327,2219 ,,, βββ   and 28t . We note that t

21,20β can 
be then obtained from Eq. (R6), i.e. Eq. (22). These five equations, thus obtained are: 
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The solution to the above set of Eqs. (23)-(24) is: 
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The complete solution for the sextic curved triangle can be now obtained from Eqs. 
(19), (21) and (25) and this is summarized as in the following: 
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),(

12
1)251845940(

240
1

217,58,42,1324 tttt ttt −+−+−= βββ

),(
12
1)251845940(

240
1

217,58,42,1325 tttt ttt −−−+−= βββ
 

),1102486720(
1080

1
7,58,42,1319

ttttt βββ −++=  

)290896246360(
1080

1
7,58,42,1328

ttttt βββ −+−=           (26) 

We have observed in Eqs. (19)and(21) that the location of 
points )8,7,6,5,4,( =iti can be obtained from the relations: 

),(
6
4

2184 tttt −=− ),(
6
2

2175 tttt −=− )](15)(6)[(
20
1

7584216 ttttttt +++−+= (27) 

These relations lead to the following two solutions, which refer to symmetric 
location of boundary coordinates. 
First solution: Let us ensure that the points 5t  and 7t  to lie on the original curved 
boundary, then the remaining points may lie off the original curved boundary. This 

is done by using equations )(
3
1

2175 tttt −=−  in conjunction with the equation of 

the original curved boundary. Then the remaining points are determined by 
equations: 

),(
6
4

2184 tttt −=− )],(3)(5[
8
1

217584 tttttt +++=+

)](15)(6)[(
20
1

7584216 ttttttt +++−+=             (28) 

Second solution: Let us ensure that the points 4t and 8t  to lie on the original curved 
boundary, then the remaining points may lie off the original curved boundary. This 

is done by using equation )(
3
1

2184 tttt −=−  in conjunction with the equation of 

the original curved boundary. Then the remaining points are determined by 
equations: 

),(
7
2

2175 tttt −=− )],(3)(8[
5
1

217475 tttttt +−+=+   

)](15)(6)[(
20
1

7584216 ttttttt +++−+=             (29) 

Explicit form of the point transformations 
Theorem: The point transformation for the curved triangular element with one curved 
side and two straight sides can be expressed in terms of the four points 

)4,3,2,1,( =iti , ),( yxt =  as: 

ξηηξηξ )])1(([
)1(

)()(),( 12432313 ttnnt
n

ntttttt +−−
−

+−+−+=         (30) 

Where 6=n  for the sextic curved triangular element. 
Proof: This follows from Lemma and the linear relation between the nodal 
coordinates along the curved boundary derived in the previous sections. 
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Explicit form of the Jacobians 
By using the transformation Eq. (30), the Jacobian ),( ηξJ  can be expressed as: 

ξηηξηξ
ηξ

∂
∂

∂
∂

−
∂
∂

∂
∂

=
∂
∂

=
yxyxyxJ

),(
),(),( ,   ηαξααηξ 210),( ++=J      (31) 

Where ))(())(( 313232210 yyxxyyxx −−−−−=α ,
)()()()( )(

1131
)(

11311 xAyyyAxx nn −−−=α , )()()()( )(
1132

)(
11322 yAxxxAyy nn −−−=α ,   

yxtttnnt
n

ntA n ,)],)1(([
)1(

)( 124
)(

11 =+−−
−

=
 

)6( =n         (32)  

 
 

6. Application Example 
 
 

6.1 Determination of points over the curved Triangle 
To determine the application of derived solutions of curved boundary triangular 
elements, we consider a domain consisting of the quarter ellipse defined by: 

1
436

22

=+
yx .The location of points along the curved boundary, which reduce the 

isoparametric transformation to parametric equations of the 
form: 2)(

2
)(

1
)(

0 )()()( ξαξαα tttt nnn ++= is discussed in the previous sections of this 
paper in full detail. Further, the location of the points in the interior of the curved 
triangle which reduce the isoparametric transformations from sextic order to the 
quadratic transformation is: ,)()()(),( )(

1132313 ξηηξηξ tAtttttt n+−+−+= )6( =n  

under the subparametric concept, is also fully described in the previous sections. 
The determination of the points along the curved boundary of the triangle and the 
points located in the interior of the curved triangle is of utmost importance for us 
to proceed with the application of higher order curved triangular elements under 
the subparametric transformation. Hence, we have tabulated these points for the 
sextic order curved triangular element in the Table I a,b,c,d. 
 

6.2 Determination of Arc Length for the Curved Triangle 
Calculating the length of a given curve between two end points is useful in many 
applications. We propose to determine the arc length of the quarter ellipse (as 
triangular element). We have shown that the parametric equations along the curved 
boundary are: 

2)(
2

)(
1

)(
0 )()()()( ξαξααξ xxxx nnn ++= , 2)(

2
)(

1
)(

0 )()()()( ξαξααξ yyyy nnn ++= ,   (33) 
We can find the arc lengths from the above  as: 

 =s arc length= ξ
ξξ

d
d
dy

d
dx

∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛1

0

22

                                                                      (34) 

We have described the parametric equations along the curved boundary of the 
ellipse (under subparametric point transformation) and the computed values 
of the arc length in Table II for the sextic ordered curved triangular element. We  
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note that the theoretical (exact) value of the arc length s  [7] of a quarter ellipse:

 
1

436

22

=+
yx  is =s 6.688222104                                                                           (35)  

We have then compared the theoretical value of s in Eq. (35) with finite element 
approximation of s (expressed as an integral Eq. (34)) by straight forward 
application of numerical integration and subparametric mapping proposed in the 
present paper. These findings are given in Table II. We find very good agreement 
in both of these values. 
 
6.3 Determination of Center of Gravity (Centroid) of Curved Triangular 
Element 
Mass property calculations are one of the earliest engineering applications 
implemented into CAD/CAM systems. One of these properties is the centroid of an 
area bounded by a curve. Let us consider the area A of one quadrant of the 

ellipse: 1
26 2

2

2

2

=+
yx  then the centroid ( )yx , of the area A is given by  

∫∫ ∫∫=
A A

dxdyxdxdyx / , ∫∫ ∫∫=
A A

dxdyydxdyy /              (36) 

We note that the theoretical (exact) values[7]for the ellipse considered here  are   
546479089.2=x , 848826363.0=y , ∫∫ ==

A
x xdxdyI 24 , ∫∫ ==

A
y ydxdyI 8 , 

∫∫ ==
A

dxdyA 424777961.9
                                                     

(37) 

We shall now use the subparametric point transformations and explicit form of 
Jacobian derived in Eqs. (36)-(37) to obtain the above physical quantities: 

6
)(

2
210 ααα +

+=∫∫
A

dxdy               (38a) 

]
24

)(
6

)(
6

)(
2

[
)(

1132313
0

tAttttt
tdxdy

n

A

+
−

+
−

+=∫∫ α

]
120

)(2
24

)(
24

)(2
6

[
)(

1132313
1

tAttttt n

+
−

+
−

++α

]
120

)(2
24

)(2
24

)(
6

[
)(

1132313
2

tAttttt n

+
−

+
−

++α            (38b) 

Where, ),( yxt = and )6( =n  for sextic order curved triangle. We can then obtain the 
required integrals, viz, ∫∫∫∫

AA

ydxdyxdxdy,  from Eq. (38b).We have then compared 

the theoretical values of yx,  and that of the centroid as found in Eq. (37) with 
finite element approximation of yx,  and that of the centroid (as expressed in Eq. 
(36) and Eqs. (38a, b)) by explicit subparametric transformation and Jacobian 
proposed in the present paper. These results are tabulated in Table III, Which 
compare very well with the analytical results in Eq. (37). 
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7. Conclusions 
 
 
This paper concerns the use of isoparametric coordinate transformation to deal 
with the curved boundaries in the finite element method. This involves the 
transformation of each triangle in global/physical coordinate system ( )yx,  with 
one curved side and two straight sides into a standard triangle: 
( ){ }1,1,0/, ≤+≤≤ ηξηξηξ in the local or natural coordinate system ( )ηξ , . 

Isoparametric coordinate transformation for each curved triangle is obtained 
through point transformation of global ( )yx,  coordinates and so the original 
curves are implicitly replaced by sextic curve depending on the degree of 
parametric coordinates. It is shown in this paper to find equation of sextic curve in 
terms of isoparametric coordinate transformations and to choose the coordinate 
points on the curved sides in a systematic way so that the implied curve is always a 
parabola passing through four points of the original curved boundary and so is a 
reasonable approximation to it. We have also shown that the point transformations 
are expressible as 
 

ξηηξηξ }])1{([
)1(

)()(),( 12432313 ttnnt
n

ntttttt +−−
−

+−+−+= , ),( yxt =  

 
( )6=n and the Jacobian required in the evaluation of integrals is also easily 
expressed as ηαξαα 210 ++=J . Finally we have considered an application 

example, which consists of the quarter ellipse:
⎭
⎬
⎫

⎩
⎨
⎧

=+== 1
436

,0,0/),(
22 yxyxyx  

We take this as a curved triangle in the physical coordinate system ),( yx . We 
have demonstrated the use of point transformations to determine the points along 
the curved boundary of the triangle and also the points in the interior of the curved 
triangle. These findings are tabulated in Table I. We have next demonstrated the 
use of point transformation to determine the arc length of the curved boundary 
and this is summarized in Table-II. An additional demonstration which uses the 
point transformation and the Jacobian is considered. We have thus evaluated certain 
integrals, for example, )1,0,,(, ==∫∫ αα yxtdxdyt

A

and found the physical quantities 

like area and centroid of the curved triangular elements. These findings are 
tabulated in table III. We hope that this study gives us the required impetus in the 
use of higher order curved triangular elements under the subparametric coordinate 
transformation. 
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Table I a (First solution) 
Nodal 
points-

i

x -
coordinate 

y -
coordinate 436

22
ii yx

+

4 5.701941016 0.567313672 0.98357596
5 5.123105625 1.041035208 0.99999999
6 4.263493828 1.421164609 1.009854423
7 3.12305625 1.707701875 0.999999999
8 1.701941016 1.421164609 0.98357596
19 1.140388203 0.38012940 0.07224918
20 4.561552813 0.520517604 0.64572809
21 1.561552813 1.520517604 0.64572809
22 2.280776407 0.426925468 0.1900647
23 3.42116461 0.473721536 0.381224337
24 3.842329219 0.947443072 0.634509144
25 2.842329219 1.280776406 0.634509144
26 1.42116461 1.140388203 0.381224337
27 1.280776407 0.760258802 0.1900647 
28 2.561552813 0.853850937 0.364530711

 
Table I b (Second solution) 

Nodal 
points-

i

x -
coordinate 

y -
coordinate 436

22
ii yx

+

4 5.741657387 0.580552462 1
5 5.186651819 1.062217273 1.029336303
6 4.334983296 1.444994432 1.044004454
7 3.186651819 1.72888394 1.029336303
8 1.741657387 1.913885796 1
19 1.148331477 0.382777159 0.073259176
20 4.59332591 0.531108636 0.65659251
21 1.59332591 1.531108637 0.65659251
22 2.296662955 0.432220985 0.193222098
23 3.444994423 0.48166481 0.387666541
24 3.889988864 0.963329621 0.652334694
25 2.889988864 1.296662955 0.652334694
26 1.444994423 1.148331478 0.387666542
27 1.296662955 0.765554318 0.193222098
28 2.5933258198 0.86444197 0.373629958

Note: We wish to note here that the 
third and fourth solutions are found 
impossible to obtain for the application 
example considered here, hence in the 
Table I c and I d we tabulate the fifth 

and sixth solutions as described in (26).  
 

Table I c (Fifth solution) 
Nodal 
points-

i

x -
coordinate 

y -
coordinate 436

22
ii yx

+

4 5.785013542 0.530578125 1.000000000
5 5.256021667 0.9822583331 1.008590185
6 4.413024375 1.355040625 0.999999999
7 3.256021667 1.648925 0.974229444
8 1.785013542 1.863911458 0.957049073
19 1.157002708 0.372782291 0.071926527
20 4.6280101833 0.491129166 0.65525986
21 1.628010833 1.491129166 0.629489305
22 2.314005417 0.41223125 0.191223125
23 3.471008125 0.451680208 0.385667569
24 3.94201625 0.903360416 0.635667569
25 2.94201625 1.23669375 0.622782291
26 1.471008125 1.118346875 0.372782291
27 1.314005417 0.745564583 0.186928032
28 2.628010834 0.8244625 0.361780185

 
Table I d (Sixth solution) 

Nodal 
points-

i

x -
coordinate 

y -
coordinate 436

22
ii yx

+  

4 5.591734375 0.595004513 0.957049073
5 4.946775 1.085340555 0.974229444
6 4.065121875 1.471008125 0.999999999
7 2.946775 1.752007221 1.008590184
8 1.591734375 1.928337847 0.999999999
19 1.118346875 0.385667569 0.071926527
20 4.4733875 0.542670277 0.6294890305
21 1.4733875 1.542670277 0.65525986
22 2.23669375 0.438001805 0.186928032
23 3.3550540625 0.490336041 0.372782291 
24 3.71008125 0.980672082 0.62278229 
25 2.71008125 1.314005416 0.635667568 
26 1.355040625 1.157002708 0.385667569 
27 1.23669375 0.771335138 0.191223124 
28 2.4733875 0.87600361 0.361780184 
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Table II (Arc Length values) 
 
 

Parametric )(),( ξξ yx  of the curved boundary and arc length for the triangle. 
 
 
Triangle order/ 
Discretisation 

on Type 

Location of 
Points (x4, y4) 
on boundary 

curve 

Parametric  of the curved boundary Arc Length s  
 

SexticTriangle  =)(ξx =)(ξy  
First solution 

 
(5.701941016, 
0.567313672) 

11.053975315ξ 
-5.053975315 2ξ

2-0.315341563ξ 
-1.684658437 2ξ

6.656077036 
 

Second solution 
 

(5.741657387, 
0.580552462) 

11.339933186ξ 
-5.339933 186 2ξ

2-0.22002227ξ 
-1.779977729 2ξ

6.700775893 
 

Fifth solution 
 

(5.7850 
13542, 

0 30 812 )

11.65097502ξ 
-5.65097502 2ξ

2-0.579837501ξ 
-1.420162499 2ξ

6.675275273 
 

Sixth solution 
 

(5.591734375, 
0.395004513) 

10.2604875ξ 
-4.2604875 2ξ  

2-0.115967504ξ 
-1.884032496 2ξ  

6.61679063 
 

Exact arc length =s 6.688222104
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Table III 
 
 

Triangle 
order 

Location of Points 
),( 44 yx  

on boundary 
curve 

Explicit form of 
Parametric eqns. 

ξηξ 1110 aax +=
ξηη 1110 bby +=  

Explicit form of 
Jacobian 

ηαξαα 210 ++=J
 

 x (centroid) 

 y  (centroid) 

Sextic 
Curved 
Triangle 
First 
solution 
 
 

=4x 5.70194101 
=4y 0.56731367 

=10a 6 

=11a 5.053975313 
=01b 2 

=11b 1.684658437 

=0α 12 

=1α 10.10795062 
=2α 10.10795062 

A 9.369316875 

xI 23.81079506 

yI 7.936931685 

x  2.541398711 

y  0.84711957 

Second 
solution 
 
 
 
 
 

=4x 5.74165738 
=4y 0.58055246 

=10a 6 

=11a 5.339933186 

=01b 2 

=11b 1.779977729 

=0α 12 

=1α 10.67986637 
=2α 10.67986637 

A 9.559955457 

xI 24.5808585 

yI 8.193619595 

x  2.57123152 

y  0.857077172 

Fifth  
solution 
 
 
 
 
 

=4x 5.78501354 
=4y 0.53057812 

=10a 6 

=11a 5.652097502 

=01b 2 

=11b 1.4201625 

=0α 12 

=1α 8.520975 
=2α 11.304195 

A 9.304195 

xI 23.78014823 

yI 7.773444383 

x  2.555852304 

y  0.835477371 

Sixth 
solution 
 
 
 
 
 

=4x 5.59173437 
=4y 0.59500451 

 
 
 
 

=10a 6 

=11a 4.2604875 

=01b 2 

=11b 1.88432496 

=0α 12 

=1α 11.304195 
=2α 8.520975 

 
 

A 9.304194996 

xI 23.32033314 

yI 7.926716071 

x  2.506432115 

y  0.851950767 

Exact values: =A 424777961.9 , ,24=xI ,8=yI  546479089.2=x , 848826363.0=y  
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APPENDIX-A 
 

=)6(
11a  [-137 t1-137t2 -1350t3 +72 t4 +45t5 +40 t6+45t7 +72 t8 +5400t19 -540t20 -540t21-3600t22 

+1800t23 -360t24-360t25 +1800t26 -3600t27+1350t28], 
=)6(

21a 45[0 t1+15t2 +132t3 -20t4 -11t5 -8 t6 -6 t7 -684t19 +144t20 +12t21+776t22-48t23+80t24+56t25 
-88t26 +296t27 -246t28], 

=)6(
12a 45[15 t1 +0t2 +132t3 -6t5 -8 t6 – 11 t7 -20t8 -684t19 +12t20 +144t21+296t22-8t23+56t24+80t25 

-448t26+776t27 -246t28], 
=)6(

31a 180[0 t1- 9t2 -61t3 +21 t4 +9t5 +4t6 +357tl9 -141t20 - 534t22 +390t23 -54t24-12t25+12t26 -
90t27+108t28], 

=)6(
22a 270[0 t1+0t2 -70t3+11t5 +12t6 +11 t7 +476t19-22t20 -22t21-416t22+148t23- 92t24 -92t25+148t26-

416t27+324t28], 
=)6(

13a  180[-9 t1+0t2-61t3+4t6 +9t7 +21t8 +357t19 -141t21 - 90t22 +12t23 -12t24-54t25+390t26 -
534t27+108t28], 

=)6(
41a 540[0 t1 +3t2 +18t3 -12 t4 -3t5 -108t19 +72t20 +192t22-168t23+12t24+12t27 -18t28],  

=)6(
32a  1080[0 t1+0t2 +21t3 -9t5 -6t6 -162t19 +18t20+198t22 -102t23+60t24 +18t25 -18t26+108t27-

126t28], 
=)6(

23a 1080[0 t1+0t2 +21t3 -6 t6 -9 t7 -162t19 +18t21+ 108t22 -18t23+18t24+60t25-102t26+198t27-
126t28], 

=)6(
14a 540[3t1+0t2+18t3-3t7-12t8 -108t19 +72t21 +12t22+12t25-168t26+192t27 -18t28], 

=)6(
51a 3888[0t1+0t2-t3+t4+5t19 -5t20-10t22+10t23], =)6(

42a 9720[0 t1+0t2-t3+t5+8t19-2t20-12t22+8t23-
4t24-4t27+6t28], 

=)6(
33a 12960[0 t1+0t2-t3+ t6 +9t19-9t22+3t23-3t24-3t25+3t26-9t27+9t28], =)6(

24a 9720[0t1+0t2-t3+t7 
+8t19-2t21-4t22-4t25+8t26-12t27+6t28], 

=)6(
15a 3888[0 t1+ 0t2-t3+t8+5t19-5t21+10t26-10t27] 
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