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Abstract

This paper is concerned with curved boundary triangular element having one
curved side and two straight sides. The curved element considered here is the 28-
node (sextic) triangular element. On using the isoparametric coordinate
transformation, the curved triangle in the global (x,y) coordinate system is

mapped into a standard triangle: {(£,7)/0<&,n<1E+n<1}in the local
coordinate system(&,7n). Under this transformation curved boundary of this

triangular element is implicitly replaced by sextic arc. The equation of this arc
involves parameters, which are the coordinates of points on the curved side. This
paper deduces relations for choosing the parameters in sextic arc in such a way that
each arc is always a parabola which passes through four points of the original curve,
thus ensuring a good approximation. The point transformations which are thus
determined with the above choice of parameters on the curved boundary and also in
turn the other parameters in the interior of curved triangle will serve as a powerful
subparametric coordinate transformation for higher order curved triangular
elements with one curved side and two straight sides.

Keywords: Finite Element Method, Numerical Integration, Triangular Elements,
Point transformations
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1. Introduction

The finite element method applied to problems involving a enclosed region R?,
elements with straight sides, usually triangles or quadrilaterals are perfectly
satisfactory, if the original domain has a polygonal boundary and suitable basis
functions defined on these elements are easy to construct. However, when the
problem domain is curved, elements with at least one curved side are desirable. The
curved element was introduced into structural analysis by Ergatoudis et al. [10] and
reference to it can be found in [2,6,11,12,13]. Mitchell [1] describes three
approaches to this problem. One of these involves a transformation of the entire
domain onto some standard shape and hence is really a global method as opposed
to the standard finite element approach which is local. The other two methods, the
isoparametric method and the direct method are local in nature. In the direct
method, the basis functions are constructed to match the curved boundaries and
integrations are carried out directly in the original plane. This method has been
developed with some success by Wachpress [3-5] and Mcleod and Mitchell [14] for
triangular elements. The main difficulty with this procedure is that the basis
functions in the triangles adjacent to the curved boundary are, in all but a few
special cases, no longer polynomials and so the numerical work in these triangles is
correspondingly more involved. The major disadvantage of these methods lies in
the fact that the basis functions are usually rational functions making the
integrations much more difficult. The isoparametric method has advantage of
simplicity in defining of transformation and in the fact that the basis functions are
polynomials which make the numerical integration easier. In the isoparametric
method a triangle with one curved side and two straight sides in global (x,y) space

is mapped into a standard triangle i.e. {(£,7)/0<&n<1&E+n<1} in the local
parametric space (&£, 7). When the isoparametric coordinates are used to deal with

curved boundaries in the finite element method, the original boundary is implicitly
replaced by parabolic, cubic arcs. The equations of these arcs involve parameters
which are the coordinates of points on the curved side. McLeod and Mitchell [15]
determine equations of parabolic and cubic curves using isoparametric coordinate
transformations. Further, they also present a simple and systematic procedure to
choose the parameters of the cubic curves so that the implicit equations of the
curves always represent the parabola passing through four points of the original
curves and so is a reasonable approximation to it. The development is put to
practical use in the recent works of Rathod and Karim [8-9]. In the recent works of
the Rathod et al. [7], they found equations for point transformation of quartic and
quintic arcs using isoparametric coordinate transformations and also to choose the
parameters in a systematic way so that the implied curves are always a parabola
passing through four points (quartic and quintic arcs) of the original curves. It is the
purpose of this paper to find equation for point transformations of sextic arc using
isoparametric coordinate transformations and also to choose the parameters
(coordinates of the points on the curved side) in a systematic way so that the implied
curve is always a parabola passing through four points (sextic arc) of the original
curve.
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2. Point transformations for triangular element with one curved
boundary

We consider the triangular elements in which one of the sides is curved and the
other two sides are straight as shown in fig.1. The Lagrange interpolants for the

field variable u (say) governing the physical problems are:
(n+1)(n+2)/2

U= YNOEU, (n=23456) (1)

i=1
Where n=2 refers to quadratic, n=3 refers to cubic, n=4 refers to quartic,
n=>5 refers to quintic and n=6 refers to sextic order triangular elements, and
N ™ (&,7) refers to the convential triangular element shape functions of order n at
the node i. These can be derived easily [7]. Hence the transformation formulae

between the physical (Cartesian) and the local (natural) coordinate system are:
(n+1)(n+2)/2

t= Y2 N"(Emt, (t=x,y) )

i=1
Now if we use the standard formulae on dividing a line segment in a given ratio
from the plane analytic geometry to the straight sides 3—-1 and 3-2, then the Eq. (2)
reduces to

m® t(&,n) = m(n)ts + m(n)(tl -t,)¢+ m(n)(tz —t)n+ aff)(t)fﬂ

FH(-3)YaPey!, @<i, j<n-1 n=6), (t=xy) (32)
i+j=n
(i=])

Where, t is nodal values of the triangular element and H (n — 3) is the Heaviside
step function or unit step function and it has the meaning for the present as

H(n—3)={o’ n<3ien=2 (3b)

1, n>3 ie n=345,6

m® =10, for sextic curved triangular element (3c)
and in Appendix-A the coefficients are listed

@0) @2 0.a20) @00.291.a90) @9 0.9 1,29 1. a9 )
(09 ®.28 1,22 ), a2 (1).a2 (1)) (3d)

o

a)Unmapped sextic triangle b)mapped sextic triangle
Fig.1: Mapping of a 28-node sextic curve triangle into right isosceles triangle
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3. Triangle with one parabolic boundary

The point transformation Eqgs. (3a-d) will reduce to two parametric equations of
the degree 6 in local variate £or 7, along the curved boundary for which&+7 =1.
We would now like to approximate the curved boundary of the triangle by a
parabolic arc i.e. by two parametric equations for x and y by a quadratic

polynomial in&or 7. This is possible only if we neglect the higher order terms in

Eq. (3a) ie. the terms > a{"&'n’ . Hence we may assume without loss of

i+j=n
(i=))

generality that the point transformation over the curved triangle is given by

t&m) =t +(t, —t)+(t, —ty)n + Aff)fﬂ, t=x,y (n=6) 4)
0
Where A :%and m™ are integral constant which are defined in Eq. (3c).
m

4. Explicit form of point transformations and Jacobians

We note that Eq. (4) reduces to a pair of parametric equations for xand y along
the curved boundary and they are quadratic polynomials, either in £orz. Let us

assume that the given curved boundary can be approximated by a general conic [9],
that is, the equation

f(X,Y) = Poo + ProX+ Pory + PooX” + PyuXy + Pz y* =0 (5)
We have also from Eq. (4) the parametric equation along the curved boundary is of the
form (say):

X(E1-8) =) + O+, M7, Y(EL-E) =5, (1) +5, ()¢ +5,(1)S (62)
If we substitute from Eq. (6a) into Eq. (5), then on the curved boundary f has the form:

f(évl_é):fo+f1§+f2§2+f3§3+f4§4:0 (6b)

Clearly, Eqg. (6b) is a polynomial in &, of degree four, since it has to pass through the
end points of the curved boundary, &=0,1 are definitely two of its roots. The other

two roots in 0<€<1, determine two intermediate points on the curved boundary. Thus,
we can only determine the curved boundary by a parabolic arc which passes through
two intermediate points in 0<¢<1 and two end points at { = 0 and & = 1. If we have
more than two intermediate points on the parabolic arc of this curved boundary,
then they will be all expressible in terms of the two intermediate points which only
lie on the original curved boundary. We shall now determine the relations among the
nodal points along the curved boundary, if the curved triangle has more than four nodes
along the curved boundary.

Lemma: Let the point transformation for the curved triangle with one parabolic
curved boundary side and two straight sides be expressible as:

t(&n) =t +(t, — )&+ (t, _t3)77+A1(?)(E)§77! (7)
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then it can be shown that: Sextic case (n = 6)
(6) (3-6){(t4 +t8)_(t1+t2)}
Ai(e) 10 — OR (8)
(2.29){(ts +t,) ~ (t, +1,)}

and (, +1) = $15(06 + 1)+ 30 + )], (6 +1) = £[8(G +14) - 30t + 1)

1
g = B(g(h +13) —4(t, +1,) 9)

Proof: The proof follows from the foregoing analysis of point transformations to
match the parabolic arc discussed in section 3 of the paper and alternatively it also
follows from the global to local transformation of coordinates and geometric
considerations.

5. Analysis of point transformations

The triangle is spanned by a total of 28 nodes and has 7 nodes respectively along
the curved side. The global coordinates(x, y) and the local coordinates (£,7) under

the subparametric coordinate transformation which map this curved triangle
fig.1(a) into isosceles right triangles are as shown in fig.1(b) and they are related
by equations 3(a)-3(d) as derived in the previous section. The parametric equations
of the curved side in fig.1(a) can be obtained by substitutingn =1 - & in Egs. 3(a) —
3(d). This leads to equations of the form:

mMt(&,1-¢&) = a(")( )+af”)(t)§+a(”)() .............. +a|§”)('g)§ , (10)
(@"(t), k=0,1 2,...n)can be obtained from a”(t) values as listed in

Appendix-A. In sextic case, the curved side of the triangle is spanned by the
coordinates (t;,i =1,4,5,6,7,8,2) . The point transformation for this case can be

obtained from Eg. (3a). Hence, on the curved side, we obtain the following
equation on substitutingz =1- £ in Eq. (3a):

10t(51- &) = a” (t)+ ay” (O) + @ (067 + e” ()57 + (1) + ag” (1)

+ag” () (12)
Now, the choice for the location of points(t;,i =4,5,6,7,8) to make the above sextic
curve to reduce to a unique parabola can be achieved by setting:

af (t)=0, a{(t) = 0,a5” ()= 0.¢” (t) = 0 (12)
Now, Eqg. (12) can be explicitly written as:

—ay (t)+afy) (t)+ai (t)- 25 (1) + 32 (t) + 2z (t) - 3ag) (t) + 62 (t) + &y (t)L)
—4alY +10aQ(t)=0
-al t)+a?()
(t

+6al) —10a(t

a2 €)+ (2 ()22 1)+ 382 ) 400 1)+ a2 (1) - 328 (0

)=0
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—ai (t)+ag (t)-ag (t)+af () +ad (t) - 2252 (t) + 32 (t) - 4af;) () + 52 (t) = 0
—ag(t)+ay (t)-ad (t)+ a2 (t) -2 (t) = 0 (13)
We can equivalently express the Eq. (13) as:

aly(t)= (a“”() a<6>())+<a<6>() aly (t))
al (t)=- (a(ﬁ)()+a£2’(_)> (a<6>()+a§2’()>+ (@ (t)+af (t)

0820 + (022 ) + (02 + WD) 0) -
(@210~ + 1)~ a0 )+ (E0)-20 ) + 200 ) - )

+2(af? (t)-a (t) =0 (14)
From the Eqg. (3d) and Eq. (14), it can be shown that:
10t(§ 1) =10t, +10(t, —t,)& +10(t —t,)n+al (t)én

+= (5 n+én*)ag (t)+af (t) + (5 n+&n°)(ag (t)+ad (t)
F (G ént 438 0)+a (1)
+%(§2773+§3772 £'n")(a) (t)+a ()

Gt = 28 )@ 1)+ 2 ()

et e 280 0+ a0 0)

+%(—§n2+§2n+252n4—2§4n2 £+ )@ (t)-a (t)

+%(—§f73+§3n+2§2774—2§4 &+ )@ () - a2 (t)

+%(§3f72 =& =&+ &)@ () -af (t) (15)

Now, we have to determine the coordinate points t,,t.,t,,t;andt; along the

curved boundary and also the points in the interior of the triangle viz:
ot bt Ts b, 1s  Tog T, @andt,g . We first note here that the equations

a®t)-a®t)=0, al (t)-a® (t)=0,al (t)-a® (t)=0 and aly(t)-a%(t)=0,
when used in Eq. (14), implies that, a®t)-a®(t)=0 anda®(t)-a® (t)=o.
We then note here that the equations
al®()+aP()=0aM)+a()=0aft)+af()=0, a%(t)+al(t)=0,
alP(t)+al(t)=0 anda®(t)+ al® (t)= 0, when used in Eq. (14) also implies that
a®(t)=0,af(t)= 0. Thus, to determine the 15-unknowns t,,t;,t;,t;, b5, 1o, 1o, Ty,
t,,, bty b, U, T, @andt,g, we have to use the above 14-linear equation:
a®(t)F al® (t)=0,ij e {21,31,41,32,42 51} anda(® (1) = 0,ij e {22,23} (16)
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It is now clear that the use of these 14-linear equations reduces the Eqg. (15) to the
form:

10t(&,77) =10t, +10(t, —t,)& +10(t,—t, )7 + a2 (t)en 17)

Using the six equations: a(® (t)- a(® (t)= o from the above set of Eq. (16), we obtain:
-20a,,(t)-5ai,(t)+132 a} , (;)+ 480 a3, 57 (1) =360 @by 6 (1)+ 24l 5 (t)=152,,(t),

a}l(t)+18al, (1) 282 aly , (1) 888 a5 () + 756 arhy 5 (1) - 84 ), 5 ()= —17 @}, (1),

- 405}1,8 (t)— a5t,7 (§)+ 24 aéO,ZI (Q"‘ 60 0‘;2,27 (t,)_ 56 aés,ze (t,)"' 40‘;4,25 ('E): af,z(t,)’

0o (t)-3as, (t)+ 6l o (1)+30al, 5 ()= 28ak , )+ 14al, 5 ()= 0al, (),

Oas(t)+ as,; (t)- 205 o (t)-8as, » )+ 8ay 45 (1) 4as, 5 ()= 0a,,(t)

6}y (1)+ 0l (t)- 30y o (1)~ 60 @y o (1) + 60 g 5 (1) + Oy s ()= —rf, (1), (18)

Whereat ((t)= (t, -t,) and the solution to the above set of Eq. (18) IS:

48(t)_ 1z(t) a57(t)— 12(t) a, ()= 12(t) CHAg (t)— = 11,2(1),
a5 (1) = 12(t) 34 25 (t) 12(t) (19)

The remalnlng eight linear equatlons are:
2641, +15 8, ~20 8L, —17 B, 16, —1368 ty +156 Bl , + 1072 B, — 536 B 5

+136ﬂ§4’25 -492t,, =0 (R1)
- 246 t, - 17 ﬂfz + 42 ﬂ;yg +18 ﬂst7 +16t, + 1428 t,, — 282 :tho,m —1248 ﬂztzﬂ + 804 ﬁ2t3126
~13233, 55 +432t,, =0 (R2)
12t, + ﬂf)z - 4ﬂ;)8 - ﬂ;7 + 0ty — 72t + 24ﬂ210‘21 + 68ﬂ2[2’27 - 56ﬂ2[3,26 + 4ﬂ2t4)25
~12t,, =0 (R3)
14t, + Oﬂltv2 + Oﬁ;,a - 3,35“7 - 4t, —108 t, 5 + Gﬂztoﬂ + 102 ﬂztzﬂ - 40 ﬂ213‘26 + 26 ﬂzta‘zs
—84t,, =0 (R4)
-2t + Oﬂfvz + Oﬂj’g + ,85t7 + 0ty +16t,, — Zﬂztoﬂ —16,8212127 + 8,5213’26 - 4,854’25
+12t,, =0 (R5)
-10t, - ,Blt,z + 6,8:,8 + Oﬂg)7 + 0t +60t,, — 30 ,82‘0,21 - 60 ﬂztzﬂ + 60 /82[3,25 + 0,854)25
+0t,; =0 (R6)
—70t, + 08, + 0B, +11 85, +12t; + 476ty — 22 B, ,, — 416 S, ,, +148 B 4
—92ﬂ;4’25 +324t,, =0 (R7)
—t;+ 08, +0B8,s +08:, +ty + 9ty + 0830, — 982 20 +3Bsss —3Pass + 9ty =0
(R8) (20)

Where gt - (t, +t,). Now it can be shown that either from Egs. (R5), (R6) and
(R8) on the relation of Eq. (14):a& (t) = —(a® (t) + al¥ (1)) + (2P (1) + a'P (1)) that
the choice for t,is given by:

— (Bl =68l 15 5L) (21)
Lets us further choose g , from Eg. (R6) of Eg. (20) as:
90 Bl n = —30t, — 38, +18 B, +180 t,, —180 B, , +180 B » (22)
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If we now use Egs. (21) - (22) in (R8) of Eqg. (20) then the three Egs. (R5), (R6) and
(R8) of Eq. (20) are identical. Hence, we select only one among the Egs. (R5), (R6)
and (R8). Thus, we retain Eg. (R6) and (R8). Thus, from the set of Eq. (20), we
retain the five Egs. (R1),(R2),(R3),(R4) and (R7) on using Egs. (21)-(22) to
determine the five unknowns tg, 35, »7, Bs 26+ Bos s aNd t,5. We note that /3, ,, can
be then obtained from Eq. (R6), i.e. Eq. (22). These five equations, thus obtained are:
-132 t19 + 95:3;2,27 - 28ﬂ2t3,26 + 7ﬂzt4‘25 - 61 '5t28 =Wy, 72 t19 - 57 ﬂztz‘ﬂ +20 ﬂzts,ze

t
_11ﬂ24,25 +36t28 :WZ’ - 6t19 + Sﬂztz,ﬂ - 2ﬂ2t3,26 + ﬂzlzt,zs - 3tzs = Wy,
- 48t19 + 45:3;2,27 -14 ﬂ2t3‘26 +13ﬂzt4‘25 - 42t28 =Wy,

108 t19 - 93:8;2,27 + 26ﬂ213‘2e - 23ﬁ2t4,25 + 81t28 = W (23)
Where
1 1
w, = g(_212 t, - gﬁlt,z -16 :Bz:‘s +29 ﬂsl7 ), W, = 5(380 t; + 17 ﬂllz + 48 ﬂ;‘s =75 ﬁstj)r
1 1
W, = E(_ZO t, - ﬁlt,z - 4ﬁ;‘8 + 5/3;,7 ) W, = g(_SOts +15 ﬁlt,z - Gﬂi,s + :Bst7 ):
1
Wy = §(47 t, -15 ﬂll,Z - ﬁ;‘a + 6/35[,7) (24)

The solution to the above set of Egs. (23)-(24) is:

ty = % (360 t; — 55 55, +142 Biq +361,),

1

Phn = g5 (1801, — 200 B1, + 752 By - 102 B1,),
1

Plon = 555 (3601, 135 1, + 360 1, — 45 ),
1

Pl = 555 (240t =165 Bl + 480 i, ~ 15 3.,)

t 1 t t t
ﬂz4,2s = %(120 t, - 75 135,7 + 552 ﬂ4,s - 177 ﬂl,Z )}
1
= =510
The complete solution for the sextic curved triangle can be now obtained from Egs.
(19), (21) and (25) and this is summarized as in the following:

(180 t, — 145 B!, + 448 B!, —123 B.,) (25)

4 2
t, -1t :E(tl -t,), -t :E(tl —1,), ty = %(ﬂf‘z - 68,5 +15857),

ty = %(90% —-518),+376 B,, —100 B:,) + %(t1 -t,),
t, = %(9% -518/,+376 B,,—100 B.,)+ %(t1 -1,),
te = 1Bl = Al #8011, - 305+ (L - 1,),

t, = %(Sta - B, +8B,s —3B:,)— %(t1 -t,),

1 1
t,; = E(16t3 - 5ﬁ1t,2 + 32 ,B;,s _11135t,7) + E(t1 _tz)v

1 1
ty = E(]-Gts - 5131‘,2 +32 ﬂ;,s _11ﬁ5t,7) - E(t1 - tz)v
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1 1
o = 5,0 (40t ~59 B, +184 fig — 25 f3,) + - (t —t,),
1 1
t = 5,-(401; — 59 pi, +184 Bio — 2585 ,) - o Lt
1
ty = oo (720t + 6., + 248 Bl —110 B!,),
o = 12— (360 t, — 246 ), +896 AL, — 290 pL) (26)

We have observed in Egs. (19)and(21) that the location of
points (t;,i = 4,5,6,7,8) can be obtained from the relations:

4 2
t, =t =g(t1 -t,). -t =g(t1 ) t, = %[(t1 Ft,) - B(t, +ty) +15(t, +t,)] (27)

These relations lead to the following two solutions, which refer to symmetric
location of boundary coordinates.
First solution: Let us ensure that the points t; and t, to lie on the original curved

boundary, then the remaining points may lie off the original curved boundary. This
is done by using equations t; —t, = %(tl —t,) in conjunction with the equation of

the original curved boundary. Then the remaining points are determined by
equations:

4 1
t, -1, :E(tl —1,), t, +1, =§[5(t5 +1,) +3(t +t,)],

ts = 2_16[(t1 +t2) - 6(t4 +t8) +15(t5 +1 )] (28)

Second solution: Let us ensure that the pointst,and ty to lie on the original curved
boundary, then the remaining points may lie off the original curved boundary. This

is done by using equation t, —t; = 5(t1 —t,) in conjunction with the equation of

the original curved boundary. Then the remaining points are determined by
equations:

2 1
t.-t, = 7(t1 _tz)v L+ =g[8(t4 +t7) _3(t1 +t2)]’

ty = ol +) =6, +4) +15(t +4) (29)

Explicit form of the point transformations
Theorem: The point transformation for the curved triangular element with one curved
side and two straight sides can be expressed in terms of the four points

(t,,1=1234),(t=xy) as:

n
t(&m) =ty +(t, —t;)S + (t,~t)n +m[nt4 —((n-Dt, +1,)¢n (30)
Where n=6 for the sextic curved triangular element.

Proof: This follows from Lemma and the linear relation between the nodal
coordinates along the curved boundary derived in the previous sections.
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Explicit form of the Jacobians
By using the transformation Eg. (30), the Jacobian J (£,7) can be expressed as:

_O%y) Xy XYy -
Y= "o on anae S = e raz (31)

Whereao = (Xl - Xz)(Yz - y3) - (Xz - X3)(y1 - ys)’
o = (Xl - X3)A1(1n)(X) _(yl - ys)Al(f)(X) y Ay = (yz - y3)A1(ln) () _(Xz - Xs)AS) (X) '

Mgy N
AL () = (n-1)

[nt4 - ((n _1)t2 +t1)]’ t=Xxy (n = 6) (32)

6. Application Example

6.1 Determination of points over the curved Triangle
To determine the application of derived solutions of curved boundary triangular

elements, we consider a domain consisting of the quarter ellipse defined by:
2 2

%+y7 =1.The location of points along the curved boundary, which reduce the

isoparametric transformation to parametric equations of the
form:t = a{” (t) + & (t)& + iV ()&% is discussed in the previous sections of this

paper in full detail. Further, the location of the points in the interior of the curved
triangle which reduce the isoparametric transformations from sextic order to the
quadratic transformation is: t(&,7) =t, + (t, —t,)& + (t, —t,)7 + AD (1)én, (n=6)
under the subparametric concept, is also fully described in the previous sections.
The determination of the points along the curved boundary of the triangle and the
points located in the interior of the curved triangle is of utmost importance for us
to proceed with the application of higher order curved triangular elements under
the subparametric transformation. Hence, we have tabulated these points for the
sextic order curved triangular element in the Table I a,b,c,d.

6.2 Determination of Arc Length for the Curved Triangle

Calculating the length of a given curve between two end points is useful in many
applications. We propose to determine the arc length of the quarter ellipse (as
triangular element). We have shown that the parametric equations along the curved
boundary are:

X(&) = ag” () +a” ()& +a” ()&%, y(€) = ag” (V) + o (V)& +af” (v)&*, (33)
We can find the arc lengths from the above as:

s =arc length= _l[\/ (g—zj + (j—g dé (34)

We have described the parametric equations along the curved boundary of the
ellipse (under subparametric point transformation) and the computed values
of the arc length in Table 11 for the sextic ordered curved triangular element. We
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note that the theoretical (exact) value of the arc length s [7] of a quarter ellipse:
2 2

XY 1is s=6.688222104 (35)
36 4

We have then compared the theoretical value of sin Eg. (35) with finite element
approximation of s(expressed as an integral Eq. (34)) by straight forward
application of numerical integration and subparametric mapping proposed in the
present paper. These findings are given in Table Il. We find very good agreement
in both of these values.

6.3 Determination of Center of Gravity (Centroid) of Curved Triangular
Element

Mass property calculations are one of the earliest engineering applications
implemented into CAD/CAM systems. One of these properties is the centroid of an

area bounded by a curve. Let us consider the area A of one quadrant of the
2 2

ellipse: % + % =1 then the centroid (Q&)of the area A is given by
X = ”xdxdy/”dxdy, y= ”ydxdy/”dxdy (36)
A A A A

We note that the theoretical (exact) values[7]for the ellipse considered here are
X = 2.546479089, y = 0.848826363, |, = j j xdxdy=24, 1, = j j ydxdy =8,
A A

A= [[dxdy =9.424777961 (37)
A

We shall now use the subparametric point transformations and explicit form of
Jacobian derived in Egs. (36)-(37) to obtain the above physical quantities:

[[oxdy = % 4 2% 22) (38a)
A 2 6
- - ™
”tdxdy = ao[t—3+ t, ~t) + (t; ~t;) n Ay (D]
A 2 6 6 24
= _ ™
+al[t—3+ 2t -t) (L -t)  2A (1)]
6 24 24 120
- _ "
+a2[t—3+ t-t) 2 -t) 2A, (E)] 80)
6 24 24 120

Where, (t = x, y)and (n = 6) for sextic order curved triangle. We can then obtain the
required integrals, viz, ” xdxdy,” ydxdy from Eg. (38b).We have then compared
A A

the theoretical values of x,y and that of the centroid as found in Eq. (37) with

finite element approximation of x,y and that of the centroid (as expressed in Eqg.
(36) and Egs. (38a, b)) by explicit subparametric transformation and Jacobian
proposed in the present paper. These results are tabulated in Table Ill, Which
compare very well with the analytical results in Eq. (37).
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7. Conclusions

This paper concerns the use of isoparametric coordinate transformation to deal
with the curved boundaries in the finite element method. This involves the
transformation of each triangle in global/physical coordinate system (x, y) with
one curved side and two straight sides into a standard triangle:
{&n)0<En<l,E+n<1}in the local or natural coordinate system(&,7).
Isoparametric coordinate transformation for each curved triangle is obtained
through point transformation of global (x, y) coordinates and so the original
curves are implicitly replaced by sextic curve depending on the degree of
parametric coordinates. It is shown in this paper to find equation of sextic curve in
terms of isoparametric coordinate transformations and to choose the coordinate
points on the curved sides in a systematic way so that the implied curve is always a
parabola passing through four points of the original curved boundary and so is a
reasonable approximation to it. We have also shown that the point transformations
are expressible as

tE ) =ty +( —1,)E + (tz—tg)mﬁ[nu ~{(n-Dt, +t 37, t=x)

(n=6)and the Jacobian required in the evaluation of integrals is also easily
expressed asJ =g, +a,+a,n Finally we have considered an application

2

2
example, which consists of the quarter ellipse: {(x, y)/x=0,y= 0,%+y7 = }

We take this as a curved triangle in the physical coordinate system(X,y). We

have demonstrated the use of point transformations to determine the points along
the curved boundary of the triangle and also the points in the interior of the curved
triangle. These findings are tabulated in Table I. We have next demonstrated the
use of point transformation to determine the arc length of the curved boundary
and this is summarized in Table-1I. An additional demonstration which uses the
point transformation and the Jacobian is considered. We have thus evaluated certain

integrals, for example, ”t“dxdy, (t=x,y,a =0, and found the physical quantities
A

like area and centroid of the curved triangular elements. These findings are
tabulated in table I11. We hope that this study gives us the required impetus in the
use of higher order curved triangular elements under the subparametric coordinate
transformation.
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Table | a (First solution)

369

and sixth solutions as described in (26).

Table I ¢ (Fifth solution)

Nodal X- y- x2 y?
poi_nts- coordinate|coordinate %—’_T
4 | 5701941016 | 0567313672 | 0.98357596
5 | 5123105625 | 1041035208 [0.99999999
6 | 4263493828 | 1421164609 | 1009854423
7 312305625 | 1707701875 |0.999999999
8 | 1701941016 | 1421164609 | 098357596
19 | 1140388203 | 0.38012940 | 007224918
20 | 4561552813 | 0520517604 | 0.64572809
21 | 1561552813 | 1520517604 | 064572809
22 | 2280776407 | 0426925468 | 0.1900647
23 | 342116461 | 0473721536 | 0381224337
24 | 3842329219 | 0947443072 | 0634509144
25 | 2842329219 | 1.280776406 |0.634509144
26 | 142116461 | 1140388203 |0.381224337
27 | 1280776407 | 0.760258802 | 0.1900647
28 | 2561552813 | 0853850937 | 0364530711
Table I b (Second solution)
Nodal X- y- X2 y?
points-|coordinate|coordinate| 36 * 4
4 | 5741657387 | 0580552462 1
5 | 5186651819 | 1062217273 | 1.029336303
6 [ 4334983296 | 1444904432 | 1.044004454
7 | 3186651819 | 172888394 |1.029336303
8 | 1741657387 | 19138857% 1
19 | 1148331477 | 0382777159 | 0.073259176
20 | 459332591 | 0531108636 | 0.65659251
21 | 159332591 | 1531108637 | 0.65659251
22 | 2.296662955 | 0432220985 |0.193222098
23 | 3444994423 | 048166481 |0.387666541
24 | 3889988864 | 0.963329621 |0.652334694
25 | 2889988864 | 1296662955 | 0.652334694
26 | 1444994423 | 1148331478 |0.337666542
27 | 1296662955 | 0.765554318 | 0.193222098
28 25933258198 0.86444197 |0.373629958

Note: We wish to note here that the
third and fourth solutions are found
impossible to obtain for the application
example considered here, hence in the
Table I c and I d we tabulate the fifth

Nodal X- y- x> y?

poi_nts- coordinate|coordinate %—’_T
4 | 5785013542 | 0.530578125 | 1.000000000
5 5.256021667 | 0.9822583331 | 1.008530185
6 | 4413024375 | 1355040625 | 0.999999999
7 3.256021667 | 1648925  |0.974229444
8 1785013542 | 1.863911458 | 0.957049073
19 | 1157002708 | 0.372782291 | 0.071926527
20 46280101833| 0491129166 | 0.65525986
21 | 1628010833 | 1491129166 |0.629489305
22 | 2314005417 | 041223125 |0.191223125
23 | 3471008125 | 0.451680208 |0.385667569
24 | 394201625 | 0903360416 |0.635667569
25 | 294201625 | 123669375 |0622782291
26 | 1471008125 | 1118346875 | 0.372782291
27 | 1314005417 | 0.745564583 |0.186928032
28 | 2628010834 | 08244625 |0.361780185

Table I d (Sixth solution)

Nodal X- y- X2 y?

poi_nts- coordinate|coordinate %—’_T
4 5591734375 | 0595004513 |  0.957049073
5 4946775 | 1085340555 | 0974229444
6 4065121875 | 1471008125 | 0999999999
7 2946775 | 1752007221 11.008590184
8 1591734375 | 1928337847 |  0.999999999
19 | 1118346875 | 0.385667569 | 0.071926527
20 44733875 | 0542670277 | 0.6294890305
21 14733875 | 1542670277 |  0.65525986
22 | 223669375 | 0438001805 | 0.186928032
23 | 33550540625| 0490336041 | 0372782291
24 | 371008125 | 0980672082 | 062278229
25 | 271008125 | 1314005416 | 0.635667568
26 | 1355040625 | 1157002708 | 0.385667569
27 123669375 | 0.771335138 | 0.191223124
28 24733875 | 087600361 | 0.361780184
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Table Il (Arc Length values)

Parametric x(&), y(&) of the curved boundary and arc length for the triangle.

Triangle order/| Location of | Parametric of the curved boundary Arc Length s
Discretisation | Points (Xa, Ya)
on Type on boundary
curve
SexticTriangle x(&) = y(&) =
First solution | (5.701941016,| 11.053975315¢ | 2-0.315341563¢ | 6.656077036
0.567313672) | .5053075315£2 | -1.684658437 &2
Second solution | (5.741657387,| 11.339933186% | 2-0.22002227¢ 6.700775893
0.580552462) | 533993318652 | -1.779977729&2
Fifth solution (5.7850 11.65097502¢ | 2-0.579837501& 6.675275273
13542, | .565007502&2 | -1.420162499 52
Sixth solution |(5.591734375,| 10.2604875¢ 2-0.115967504¢, 6.61679063
0.395004513) | 426048757 | -1.884032496 &>

Exact arc length s =6.688222104
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Table 111
Triangle | Location of Points | Explicit 1_‘orm of Expli_cit form of )_( (centroid)
order (X, Va) Parametric egns. Jacobian —
poa X=a &+ J=a +a.f+ y (centroid)
on boundary = ay,¢ +a,,En =y + &+,
curve
y =b,n+b,&n
Sextic X, =5.70194101 a, =6 a, =12 K 9.369316875
Curved
Triangle | Y4 =0-56731367 | 4 5053975313 | o, =10.10795062 |, | 2381079506
First by, =2 a, =10.10795062 | | 7.936931685
solution b,, = 1.684658437 =
=1 x| 2541398711
y | 084711957
Second X, =5.74165738 | & =6 a, =12 A | 9559955457
solution
Y, =058055246 | 5 —5339933186 | o, =10.67986637 | | 245808585
X
by, =2 @, = 1007980037 7 "1"5.163619505
b,, =1.779977729 % | 257123152
y | 0857077172
Fifth X, =5.78501354 | a,, =6 o, =12 A | 9304195
solution 1, ' _ 0,53057812 a,, =5.652007502 | @, =8.520975 | | 2378014823
b. =2 a, =11.304195 |, | 7773444383
01
b,, =1.4201625 x | 2555852304
y | 0835477371
Sixth X, =5.59173437 | a,, =6 o =12 A | 9.304194996
solution 1y, 059500451 a, =42604875 | @, =11.304195 |, | 2332033314
by, =2 o, = 8520975 |, | 7.926716071
bl , =1.88432496 ;( 2.506432115
y | 0851950767
Exactvalues: A= 9.424777961,1, =24, 1 =8, x = 2.546479089, y = 0.848826363
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APPENDIX-A

alY = [-137 t1-137t,-1350t; +72 ty +45t5 +40 t6.45t; +72 tg +5400t19-540tp-540tx-3600t
+1800t)3-360t,4-360t,5+1800t56 -3600t27+1350t23] ,

ag‘j) = 45[0 11 +15t, +132t3-20t, -1115 -8 t5-6 t7 -684t19 +144150 +12t51+776t-48t)3+80t,4+5615
-88tyg +296ty7 -246t28],

a'Y =45[15 t; +0t, +132t; -6t5 -8 ts — 1 1t; -20tg -684t1g +12ty +144ty1+296t2-8ty3+56t5,+80ts
-448tye+776t; -246t28],

al? =180[0 t;- 9t, -61t; +21 t, +Ots +4t +357tyg 141ty - 534ty +390t03 -54tys-12tps+12t 6 -
90t27+108t28] ,

ald) =270[0 ty+0t, -70tz+11ts +12t +11 t7 +476t19-22tp0 -22ty1-416tp+148t55- 92154 -92tps5+148t56-
416t27+324t23],

a1‘36 ) = 180[-9 11+0t,-61t5+4tg +9t; +21tg +357119 -1411tH1 - 90ty +12t)3 -12t94-54t55+3901 6 -
534t27+108t28],

aﬁ’ = 540[0 t +3t +181t3 -12 t4 -3t5 -108t19 +72tyg +192t2,-168tp3+12ty4+121; -18t28],

aég) = 1080[0 1140ty +21t5 -9t -615 -162t19 +18ty0+198ty, -102t3+60ty4 +18t)5 -18t6+108t,7-

aég) =1080[0 t;+0t; +21t3 -6 t5 -9 t7 -162t;9 +18ty1+ 108t;; -18tys+18t+60t,5-102tp6+198t,7-
126t5],

) =540[3t,+0t,+18t3-3t7-12t -108t19 +72tp; +12tpy+12t55-168t6+192ty7 -18t4],

al®) = 3888[0t;+0t,-tz+ts+5t1g -5tag-10tp+10t53], 8% = 9720[0 ty+0t,-ta+ts+8tig-2trg-12tpy+8tys-
Atos-Atyr+6tog],

s =12960[0 ty+0tp-ta+ t +9t19-Otp+3tra-3tag-3tos+3tog-Otor+Otag], A =9720[0ty+0ty-to+t7
+8t19-2tp1-Atyo-Atos+8toe-121y7+6tg],

ai‘g) =3888[0 t1+ Oty-ts+tg+5t;9-5ty+10ty-10t57]
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