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Abstract. In service composition, quality of service is a major criterion for 
selecting services to collaborate in a process flow to satisfy a certain quality 
goal. This paper presents an approach for service composition which considers 
QoS-based service provision schemes and variability of the QoS when 
planning. The QoS of a service can be stated in terms of complex service 
provision schemes, e.g. its service cost is offered at different rates for different 
classes of processing time, or its partnership with another service gives a 
special class of QoS when they operate in the same plan. We also address that it 
is desirable for service planning to result in a plan that is durable and reusable 
since change in the plan, e.g. by deviation of the actual QoS, would incur 
overheads. Our planning approach takes into account these dynamic situations 
and is demonstrated by using the Estimation of Distribution Algorithm. 
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1   Introduction 

Service composition is a process that selects software units, called services, and 
composes them into a workflow that represents a business process [1]. The workflow 
can be viewed as a composite service since it provides an aggregated function and can 
be used further in composition of other services or business processes. A service 
composition problem can be considered a planning problem. That is, given a flow of 
abstract services (AS) for a particular business domain as a goal, composition will 
create a plan that satisfies such a goal by assigning a service instance (SI) in place of 
each abstract service. A flow for a travel planner, for example, may consist of three 
abstract services, i.e. tourist information, transportation, and accommodation services. 
A service instance will be selected for each abstract service to make a concrete plan.    

Quality of service (QoS) has been considered widely in the composition problem. 
Service instances that collectively give the optimal quality or meet the quality defined 
by the user will be the solution to planning. Several publications [2-5] give slightly 
different QoS definitions but the most common QoS attributes include cost, time, 
availability, reliability, reputation, and security of services. A number of research 
efforts have proposed ways to compose services based on QoS attributes by using 
several optimisation methods and techniques, e.g. integer programming, linear 
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programming, genetic algorithm. We are interested in using QoS attributes to 
determine the solution plan, but also discuss the following issues: 

1. The QoS of service instances may vary when the instances are used in 
different operational environments, and therefore different users may have 
different experiences when using the same service instance. To have an 
accurate view of the actual QoS, each user will maintain his/her own 
experiences in using particular service instances, i.e. how much the actual 
QoS deviates from what was published by service providers. Such 
information should be fed into future planning which involves those 
service instances.   

2. In certain cases, an organisation that formulates a composition plan to 
represent a business process would expect the plan to last and can be 
reused at least for some time. A travel planning organisation, for example, 
would use the plan which consists of particular instances of tourist 
information, transportation, and accommodation services to arrange trips 
for its customers. If the actual QoS of these instances is quite stable 
compared to what was published at planning time, the organisation can 
reuse the plan in serving its customers. Deviation of the QoS of each 
service instance can affect the overall QoS of the flow and hence will call 
for a new plan to be composed. Such replanning incurs overheads and is 
not desirable if it happens frequently. We address this issue as plan 
durability. 

3. Instead of publishing service quality in terms of individual QoS attributes, 
service providers can state the QoS in terms of complex service provision 
schemes to realise various classes of service provision. For example, a 
service instance may offer different classes of service time which vary by 
the cost charged to the user, or the availability of the service instance may 
vary by the time of use. A service provider may also work in partnership 
with another provider to provide a special class of service, e.g. they give a 
discount in cost or offer less service time if their instances operate 
together in a plan. Partnership nevertheless can affect plan durability. 
When two service instances are coupled, a QoS deviation at one instance 
could affect its partner and lead to change at both instances; the plan 
becomes less durable as a single deviation may incur change to a large 
extent of the plan.  

In this paper, we propose an extended QoS model and a planning approach that 
will result in composition plans that address the three situations above. QoS-based 
service provision schemes will be taken into account when service instances are 
selected for the plans. Our QoS model captures common quality attributes, i.e. cost, 
time, reliability, and availability, and enhances with durability quality via self-rating 
and partnership-coupling metrics. Self-rating refers to the rating an individual user 
gives to a particular service instance based on his/her own experience in its QoS.  
Partnership coupling refers to the degree of coupling between service instances which 
is present in the plan via partnership schemes. We see that considering the durability 
issue at planning time will result in a plan that lasts longer and thus help reduce the 
chance of frequent replanning. We use the Estimation of Distribution Algorithm 
(EDA) [6], which is a technique of the Genetic Algorithm (GA) [7], as the planning 



algorithm. To search for a planning solution, the EDA generates population by a 
probabilistic model which is derived from the knowledge obtained from the past 
generations of population. We are interested in this characteristic of the EDA because 
such knowledge should facilitate the creation of a new population during a solution 
search process, and should additionally contribute to replanning when a new plan is 
needed. A simulation of service instances QoS and EDA-based planning will be 
conducted.  

Our approach can be used for both offline and runtime planning. A concrete plan is 
composed with regard to a given abstract flow, service provision schemes, and the 
durability issue. The plan should last until there is a requirement for a new plan, e.g. 
when there are new service instances or new updates on the QoS of existing instances. 
If runtime monitoring of the flow is supported, planning can also be triggered when 
there are service outages or serious deviations of the QOS. This work assumes that all 
service instances that are bound to a plan are compatible in terms of interface 
signatures and semantics. Service providers will publish the QoS of service instances 
in a public registry, e.g. UDDI for Web services, or provide other means for users to 
have access to QoS attributes.      

The paper is organised as follows. Section 2 presents related work and Section 3 
discusses our approach to QoS-based service provision schemes and variability of the 
QoS. We present the extended QoS model in Section 4 and describe how EDA is used 
in planning in Section 5. Simulation results from running the EDA are shown in 
Section 6 and the paper concludes with a discussion and future work in Section 7. 

2   Related Work 

Research works in QoS-based service planning tackle this problem by using different 
optimisation techniques to find composition plans based on slightly different QoS 
models. One of the major efforts in this area is the work in [2] which proposes a QoS 
model that captures execution price, execution duration, reputation, successful 
execution rate, and availability. By using integer programming, its QoS-aware 
composition maximises the QoS of composite services while taking into account the 
constraints of the users. Its supporting execution environment also considers runtime 
changes in the QoS of the service instances. The QoS model in [8] is used as a fitness 
function for composing a plan by GA. The QoS attributes include time, cost, 
reliability, and availability, and the plan will be penalised if it violates user QoS 
constraints. In [9], time, cost, and reliability are of concern in the QoS model and a 
distance function-based multi-objective evolutionary algorithm is used to find an 
optimised composition. A QoS reference vector is proposed in [10] to model price, 
time, reliability, trust (i.e. subjective rating), and security. The work evaluates service 
quality against cost of service selection by comparing a global exhaustive search and 
the integer programming approach. The work in [11] introduces a model-driven 
methodology for building QoS-optimised composite services and uses UML profile 
for QoS to model QoS requirements. The overall QoS of a plan is determined based 
on the multiple criteria decision making approach and patterns of control flow. Price, 
execution time, user rating, and encryption level are the QoS attributes of concern.     



     The paper [12] proposes a broker that supports planning and execution of any 
composite services with multiple QoS classes. Since a particular plan can be reused 
and executed repetitively as a flow, the QoS can be guaranteed on a per-flow rather 
than a per-request basis, and different QoS levels can be negotiated with respect to the 
volume of execution requests. Time, cost, and availability are included in the QoS 
model, and linear programming is used as the planning algorithm. The work in [13] 
presents a semantics-based planning approach in which data semantics, functional 
semantics, QoS (i.e. time, cost, reliability, availability, domain-specific QoS metrics), 
and constraints of service instances are considered. Ontology-based service 
dependencies such as business/technological constraints and partnership between 
services are addressed, and integer linear programming is used as the planning 
algorithm. 

Regarding the works above, we see that EDA is only an alternative planning 
algorithm with a means to utilise prior knowledge when finding a solution plan and 
thus we do not aim to compare its performance with the algorithms in other 
approaches. Nevertheless, we share with them the common QoS attributes, but the 
reputation attribute is captured by a self-rating metric which is derived from a user’s 
own experiences in the delivered QoS rather than from other users’ subjective 
opinions. None of the related works address QoS-based service provision schemes and 
plan durability at planning time.  

3   QoS-Based Service Provision Schemes and QoS Variability 

In this section, we present our view on QoS-based service provision schemes and 
variability of the QoS towards plan durability. The following contribute to the 
extended QoS model and EDA-based planning in Sections 4 and 5.  

3.1 QoS-Based Service Provision Schemes 

Service providers can state the QoS in terms of complex service provision schemes to 
realise various classes of service provision. We give three examples here: 
 
Multi-level QoS.  A particular QoS attribute value may be published at different 
rates. Table 1 shows an example of multi-level availability of a service instance based 
on time of day. Multi-level QoS can be modelled in other ways, e.g. availability rates 
by classes of users, or by both time and classes of users. The scheme relating to cost, 
time, and reliability can be formulated in a similar manner.  

Table 1.  Example of multi-level availability. 

Service Instance A 
Time of Day Availability 
06:01 – 18:00 Base availability 
18:01 – 00:00 +3 %  
00:01 – 06:00 +5 %  



Multi-level QoS affects service instance selection for abstract services. With the 
scheme in Table 1, a single service instance A effectively ‘spawned’ into three logical 
service instances; each of them is in service during particular time of day and with a 
particular availability rate. The planning algorithm considers them as three candidates 
for the abstract service. 

QoS Interdependency.  This service provision scheme forms a relation between 
different kinds of QoS attributes of a particular service instance. In Table 2, a service 
instance offers different classes of processing time based on service cost charged to 
the user. This QoS interdependency can be modelled in other ways, e.g. offering 
classes of discount for different levels of increased processing time. The scheme 
relating to availability and reliability can be formulated in a similar manner.  

Table 2.  Example of cost-processing time dependency. 

Service Instance A 
Cost Processing Time 
Base cost Base processing time  
+3% -5%  
+5% -8%  

 
Similarly to multi-level QoS, QoS interdependency affects the number of service 

instances that is associated with an abstract service. With the scheme in Table 2, a 
single service instance A is viewed as three logical instances; each of them offers 
service at the designated cost and processing time. 
 
Partnership.  Partnership refers to an agreement between service instances to offer a 
special class of service to attract users. The partnered instances may belong to the 
same service provider or different providers. A partnership scheme thus models 
dependencies between QoS attributes of the partnered instances. Table 3 shows a 
partnership scheme between service providers A, B, and C. The scheme offers a 10% 
discount in cost when the following instances of A, B, and C altogether participate in 
a particular plan: (1) any instance offered by A (2) any instance of abstract service X 
offered by B and (3) instance x1 of abstract service X or instance y1 of abstract 
service Y offered by C. 
     Partnership nevertheless can affect plan durability. When any two service 
instances are partners, it is likely that a QoS deviation in one instance could affect its 
partner. For example, when the instance y1 fails or has a QoS deviation and is 
replaced by another instance of a service provider D, the discount in Table 3 will no 
longer apply. The planning algorithm may choose to replace also the instances of A 
and B in order to benefit from the partnership scheme that D has with other service 
providers. In this view, partnership leads to coupling between service instances and 
the plan becomes less durable as a single deviation may incur change to a larger 
extent of the plan.   

 



Table 3.  Example of partnership. 

10% discount in cost when these instances collaborate 
Service Provider Constraint on Instances 
A Any instance 
B Any instance of abstract service X 
C Instance x1 of abstract service X, or instance y1 of abstract service Y 

3.2 QoS Variability 

The QoS of a service instance may be affected not only by communication networks 
but also by the service instance itself. Since each service instance is built and tested 
independently in certain environment, the QoS behaviour may vary when it is used in 
different operational environment. Therefore different users may have different 
experiences in using the same service instance. We address QoS variability through 
user self-rating, which is given to service instances, and a supporting planning 
architecture.   
 
Self-Rating.  Instead of using users’ subjective opinions to determine the confidence 
in the overall quality of service provision, we aim for a self-rating approach which is 
more objective and respects users’ personal experiences in service usage. Self-rating 
follows the idea of [14] such that service rating is based on deviation of the delivered 
QoS from the published QoS; the rating score is increased if the QoS fluctuates in a 
good way, and decreased otherwise.  However, the score by [14] is computed at the 
service side and based on users’ invocations from different network environments. 
The score is therefore biased from a particular user’s viewpoint. We propose a self-
rating metric (P) which reflects QoS fluctuations of a service instance experienced by 
a particular user:   

( )s

NRating P
E

=  (1) 

where N is the reward score given when the delivered QoS deviates in a good way, 
and E is the penalty score given otherwise. Rating runs between (0, 1], and when it 
reaches 1, it stops responding to any more rewards. For an initial rating given to any 
service instance that is first known to the user, we adopt the mid-value 0.5 rather than 
an external rating score (e.g. published rating or other users’ rating). This is because 
we prefer the user to truly rate service behaviour from personal experiences and not to 
be biased by the score determined under different operational settings. This initial 
score, in other words, is a representation of an initial N (e.g. 10) divided by an initial 
E (e.g. 20). When a user invokes any service instance, delivered QoS will be 
measured in order to update rating according to the user’s own rating rules. We allow 
for personal rating rules since different users may be sensitive to QoS deviation in 
different manners and may opt for different reward-penalty schemes. Table 4 shows 
rating rules for time and availability defined by a user. The time rating rules are based 
on the distance of the delivered QoS from the published QoS under an acceptable 
fluctuation range (± f). The availability rating rules penalise the service instance if it 
is not accessible at the time the invocation is made and retried. Given a scenario that a 



service instance is known to a user for the first time, the user sees the rating score 0.5 
(i.e. 10/20). Suppose when the user invokes the service instance, it does not respond 
at first but a retry succeeds, and the delivered time of this invocation falls under the 
third rule of time rating rules. Hence the score of the service instance in this scenario 
will be (10+1)/(20+1) = 11/21 = 0.524. The values N = 11 and E = 21 become the 
new base values for this service instance for the next rating computation. While the 
user experiences the quality of the service instance through repeated invocations, the 
rating score is refined and becomes more accurate.    

Table 4.  Example of personal rating rules for time and availability. 

Time  Availability  
Event Action Event Action 
• Tsdelivered > Tspublished + f +1 to E • Not available first time +1 to E 
• Tspublished + f ≤ Tsdelivered ≤ 

Tspublished – f  
+0.25 to N • Not available next time +2 to E 

• Tsdelivered < Tspublished – f  +1 to N   
 
This QoS-based self-rating contributes to plan durability. If all service instances in 

a plan are quite stable or do not fluctuate much in a bad way (i.e. good rating), the 
plan becomes durable and can be reused. On the contrary, if any service instance 
behaves much badly (i.e. low rating), the QoS of the whole plan may be affected and 
replanning becomes necessary.  
 
Planning Architecture.  To support QoS-based service provision schemes and QoS 
variability, we assume each user has a planning architecture as in Fig. 1.  

 
Fig. 1. Client-side planning architecture. 

     The QoS registry stores QoS information of all service instances which are 
relevant to his/her business domain; discovery of these instances can be performed 
manually or automatically prior to composition. Cost, time, availability, and 
reliability information is retrieved from a public service registry or directly from 
service providers, and can be refreshed periodically or before planning. In contrast, 
rating information is initialised to 0.5 and gets updated only by rating rules. Note that 
each of the logical instances (e.g. each of the three logical instances of A according to 



Table 1) has its QoS information stored separately but they all share the same rating 
score. With the QoS information, plans are created by the planner and executed on the 
business process execution platform. During execution, delivered QoS is monitored 
by the QoS monitor and fed to the QoS registry where rating is then computed for 
service instances. Such knowledge of the QoS and personal experiences regarding 
particular service instances can help the planner to replan existing abstract flows for 
the user when necessary and to compose plans for new abstract flows that involve 
those service instances. 

4   Extended QoS Model 

Our QoS model comprises five quality attributes: time (i.e. processing time + 
transmission time), cost, availability, reliability, and rating. The definitions of the first 
four can be found in [2] while rating refers to the proposed self-rating in Section 3.2.  
Since a composition can be viewed as an aggregation of control flow constructs, the 
overall QoS of the flow is based on the QoS concerning each construct. We adopt a 
set of QoS metrics for common control flow constructs (i.e. sequence, switch, fork, 
and loop) of [8] and extend it with self-rating metrics (shown in boldface type) as in 
Table 5.   

Table 5.  Metrics for control flow construct-QoS pairs. 
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The metrics are recursively defined on compound nodes of the flow. For a 

Sequence construct of tasks {t1,…, tm}, the time and cost metrics are additive, while 
availability, reliability, and rating are multiplicative. Each of the Cases 1,…, n of the 
Switch construct is annotated with the probability to be chosen (pai); probabilities are 
initialised by the user and can be updated later considering the information obtained 
by monitoring flow execution. The functions for the Fork construct are essentially the 
same as those for the Sequence construct, except for the time attribute where this is 
the maximum time of the parallel tasks {t1,…, tp}. Finally, the Loop construct with k 
iterations of task t is equivalent to the Sequence construct of k copies of t. 



5   Planning Algorithm 

Planning a composite service is a constraint optimisation problem that needs to  
1. meet user QoS constraints. For example, an abstract service must not have 

service cost above a given limit, or the overall cost of the plan is constrained. 
The former is called a local constraint and the latter a global constraint.  

2. optimise a function of some QoS attributes. For example, the user may want 
to minimise service time while keeping cost below the limit.   

This section describes how EDA is applied to find QoS-optimised solution plans.     

5.1   Planning with EDA 

Like other evolutionary computation techniques, EDA follows the process in Fig. 2(a) 
to find a solution to an optimisation problem.  

 
                             (a) 

 
 
 
 
                                                    (b) 

Fig. 2. EDA (a) Evolutionary computation process   (b) Chromosome encoding (similar to 
encoding in GA [8]). 

The algorithm starts with a generation of a fixed-size initial population, which 
consists of a number of randomised encoded solutions called chromosomes. The 
initial population is allowed to evolve under specified selection rules to a state that 
satisfies user constraints and optimises a particular fitness function. Each 
chromosome will be evaluated against the constraints and its fitness is computed. If 
any chromosome satisfies the constraints, the algorithm may stop and the 
chromosome becomes the solution. Otherwise the algorithm continues to find a more 
optimised solution until a certain number of generations have been processed. To 
generate a new generation of population, some best-fitted chromosomes from the 
previous generation are selected for the new generation, and additional chromosomes 
are generated until the population size is reached. Then the algorithm repeats. 

An EDA chromosome is encoded in a bit string of a fixed length. Sub-bit strings 
represent service instances (SI) that are mapped to abstract services (AS). In Fig. 2(b), 
AS1 has three SIs and therefore is encoded with two bits, whereas AS2 has five SIs and 



is encoded with three bits. Suppose SI12 is selected for AS1, its sub-bit string is 10, and 
if SI25 is selected for AS2, its sub-bit string is 101. A chromosome is then a sequence 
of sub-bit strings representing all selected service instances for the abstract flow. 

Each chromosome g in a generation has its fitness computed by using the 
following fitness function (to be minimised); the function is similar to the one 
proposed in [8] except for Rating(g) and Dp(g) components (shown in boldface type) 
that we augment to represent self-rating and partnership coupling respectively:   

1 2
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• Cost(g), Time(g), Availability(g), Reliability(g), and Rating(g) are the QoS 
values computed for the chromosome g using the metrics in Table 5.  

• D(g) is the distance of the chromosome g from constraints satisfaction, i.e. 
F(g) penalises the chromosome that does not meet the user’s constraints 
and drives the evolution towards constraints satisfaction. It is defined by  
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• Dp(g) is the degree of partnership coupling, i.e. F(g) penalises the 
chromosome in which associated service instances are part of partnership 
schemes. It is defined by  

   
n
S

gD p
p =)(  

where Sp is the number of service instances involved in partnership 
schemes, and n is the total number of service instances in g. 

• wi indicates the weight (i.e. importance) the user gives to each component 
of F(g).  

 
When a satisfactory solution is not yet found, there are several strategies for EDA 

to generate a new generation of population. We use the one called Probabilistic 
Building Increasing Learning (PBIL) to generate chromosomes for the new generation 
by using Generator Function (GF). A GF contains probabilities pi, i.e. {p1, …, pn}, 
where pi is the probability that the ith bit of an n-bit chromosome is 0. For a given 
population with m chromosomes, pi is the proportion of the number of 0 bits found in 
the ith bit position to the total number of bits in the ith bit position (i.e. m). For 
example, given a population with four chromosomes {010, 100, 111, 101}, the GF 
contains p1 = 0.25, p2 = 0.5, and p3 = 0.5. To generate a new generation of population, 
each new chromosome in the new population would have 0 (zero) assigned to its 1st, 
2nd, and 3rd bit with the probabilities 0.25, 0.5, and 0.5 respectively. In this manner, 
GF reflects knowledge from the past which guides how to generate good 
chromosomes. This knowledge would be refined as the population evolves from one 
generation to the next.      



5.2   Durable Planning 

In the fitness function above, rating and partnership coupling components contribute 
to durability of the generated plan. Since rating concerns QoS fluctuation while 
partnership coupling signifies a potential that a single service change may affect the 
plan to a larger extent, putting weights on them will indicate to EDA to find an 
optimised plan with good rating and low partnership coupling. That is, when it is less 
likely for the plan to require change, the plan is durable and can be reused. 

At execution time, service instances, and hence the business process flow, may 
suffer from performance degradation and cannot deliver service quality as planned. 
The flow should be prepared to survive in unstable operational environment by 
considering performance deviation at planning time. We can simulate the situation by 
injecting QoS deviation to service instances and letting the EDA process makes a plan 
out of those instances (see Section 6.2).  

6   Experimental Studies 

We conducted a couple of simulations to study the behaviour of EDA-based planning 
with respect to QoS-based service provision schemes and plan durability. Note that 
service provision schemes took part in the experiments by constraining the QoS of 
candidate service instances. The first study focused on the use of GF from previous 
planning in building a new composition plan when published QoS of service instances 
was updated. The second study focused on durable planning. In each study, the 
population size was 200, the maximum number of generations to run EDA is 50, and 
the experiment was repeated for 50 times to obtain average results. The simulation 
program was written in Java with J2SDK 1.6. Experiments were run on a 1.8 GHz 
Intel PentiumTM, 1 GB of RAM, and Ubuntu Linux version 7.04. 

6.1   Use of GF 

This study focused on the use of GF from previous planning in building a new 
composition plan when the published QoS of service instances was updated by 
service providers. This will demonstrate how GF benefits a search for a new solution 
plan. Suppose a user constraint was that the fitness value of the plan had to be below 
9,600. The QoS of service instances was updated 4 times after the instances were first 
published. To simulate each update, we degraded all QoS values of the instances 0-
5% at random. For example, if a service instance, with 1,500-millisecond service 
time, was randomised to degrade 1%, its service time would be updated to 1,515 
milliseconds. At each update, EDA generated a new plan. There were 10 abstract 
services and each of them had 111 candidate service instances. 

We compare between a composition that does not use GF from previous planning 
(i.e. it uses GF in current planning only) and the one that does. In Fig. 3, the left graph 
shows that, when GF from previous planning involves in the creation of chromosomes 
in the new planning after a QoS update, convergence time decreases. This means it 
takes less time (i.e. less number of generations) to find an optimised solution plan. 



This is because GF from previous planning is the knowledge that guides the 
characteristics of good solutions. It can be seen that, for example, the 1st – 50th 
generations of the planning on the 1st QoS update are effectively the 51st – 100th 
generations of the initial 0th planning. The right graph shows that, under a user 
constraint on the fitness value of the plan (i.e. below 9,600), composition that uses GF 
from previous planning gives better solutions. As GF is passed along, each 
composition gives a more optimised solution plan.    

 

Fig. 3.  Composition with GF. 

6.2 Plan Durability 

Usually service QoS that is published by service providers is considered during 
planning. We expect that early (i.e. planning-time) consideration about the possibility 
of QoS deviation from what was published should result in solution plans that are 
more durable at execution time. This study focused on composition of plans that can 
survive unstable execution environment. Given a flow of 20 abstract services and a 
user constraint such that the fitness value of the plan had to be under 9,600, two 
groups of 100 plans were generated. For the first group, published QoS was 
considered during planning; this represented composition with ideal service instances 
with no QoS deviation. The second group comprised the concrete plans from the first 
group but with degraded QoS; this represented composition with an expectation of 
service QoS deviation. The service instances of each plan within the second group 
had all their QoS values degraded by 1-5% randomly.  
     After two groups of 100 concrete plans were obtained, we simulated their 
execution under unstable environment. Each service instance in any of these plans 
was randomised with a 40% chance to have its QoS degraded at run time. For the 
service instance that was to degrade, its QoS was degraded by 1-10% randomly. Then 
the fitness values of the plans in these two groups were computed to determine a 
percentage of survival, i.e. how many of the plans in each group still met the user 
constraint (with an acceptable 5% deviation) in unstable runtime environment.   

We experimented with various number of service instances per abstract service; 
this reflected the variation in size of solution search space. In Fig. 4, the left graph 
shows that the plans in the second group (i.e. those created with consideration about 
QoS deviation) can survive runtime degradation better than those in the first group 



(i.e. those created with no QoS deviation). This observation is true regardless of the 
size of solution search space. Nevertheless, the right graph indicates that it takes 
longer time (i.e. more number of generations) for EDA to find an optimised plan 
when the possibility of QoS deviation is considered during planning.  

 

Fig. 4.  Effects of plan durability.  

7.   Discussion and Conclusion 

In this paper, we discuss various schemes of QoS-based service provision and address 
a plan durability issue concerning QoS deviation and service relations. Self-rating and 
partnership coupling are introduced as part of the extended QoS model for service 
instances and workflows. A client-side planning architecture is also proposed. Using 
EDA as the planning algorithm, our experiments show that GF can benefit planning 
since knowledge of good solutions is utilised in finding a QoS-optimised plan. 
Considering the possibility of QoS deviation early at planning time will also result in 
more durable plans which can survive performance degradation at execution time.  

On plan durability, our approach does not aim to make very durable plans so as to 
replace runtime replanning. Replanning capability is necessary when new services are 
offered or there are service outages or severe QoS degradation during flow execution. 
In commercial scenarios today, it is common practice that service providers publish 
their service instances QoS with a possible reduced QoS rate as a safety buffer. This 
safety buffer is taken into consideration at run time to determine QoS violation. Our 
work is aligned with this compromised QoS approach but takes the QoS safety buffer 
into consideration at planning time. By planning with degraded service instances in 
mind, we obtain the solutions that are more durable at run time. Our approach thus 
reduces the chance that a solution will need runtime replanning. It is also worth noting 
that our approach assumes the published QoS information is accurate. If service 
providers understate their service QoS only to boost their ratings, they put their 
service instances at the risk of not being selected to the plans from the beginning. 

On performance of EDA, we rely on the performance result of the GA-based 
algorithm compared to that of the integer programming approach as reported in [8]. 
GA takes less time to find a solution and its timing performance is almost constant 
when the solution search space grows (i.e. when the number of service instances per 



abstract service increases). Thus it is preferred for the case of widely used abstract 
services, such as hotel booking and ecommerce services, which have a large number 
of candidate service instances. By using EDA, we also observe that the solutions 
generated in each generation can be very much similar to those in the previous 
generation because of knowledge in GF. That is, GF can lead EDA to fall easily into 
local optima. We will find a way to detect the situation and adjust GF. Nevertheless, 
we expect that knowledge in GF would be useful for runtime replanning, either in 
making a whole new plan or replacing specific part of the plan. We will explore more 
about the influence of GF over replanning.   
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