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tistically admissible stress field M(X) can only be optimal if at 
moment values Mi (i = 1, 2, . . ., n) the rotations given by equa
tions (l)-(3) result in a kinematically admissible displacement 
field (necessary condition). 

Example. For a clamped beam with three point loads, Fig. 
2(a), the moment diagram and specific cost function are given in 
Figs. 2(b,c). Note that cost discontinuities occur at multiples of 
TaP/8. The redundant moment value x that minimizes the cost is 
to be determined. 

Since the slope of the moment diagram in the outer half of the 
beam is three times that in the inner half, equation (1) will give 
three times greater rotations in the inner half, the stress in the 
cost function being equal. 

The foregoing theorem admits an infinite number of solutions 
corresponding to 2.625 aP < x - 3.25 aP. The moment diagrams 
for the limiting cases are shown in Figs. 2(d,f) and the corre
sponding displacement fields in Figs. 2(e,g). It can be checked 
easily that solutions outside the foregoing range are both kinema
tically inadmissible and nonoptimal and that within that range 
the cost value is constant. 

Remark. The proposed theorem is not related directly to 
Foulkes' theorem [2] and its extensions [6] because the latter pre-
assign a specified strength distribution to given subsets of the 
structure. In the problem considered, the cost function is discon
tinuous but the subsets of the structure over which various re
gimes of the cost function apply are not preassigned. Hence the 
proposed extension of the Prager-Shield theory gives a more eco
nomical design than Foulkes' method. 
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Nonlinear Axisymmetric 
Free Vibration in Simply 
Supported Cylindrical Shells1 

J. H. Ginsberg2 

Introduction 
The problem of nonlinear resonant and free vibration of cylin

ders has received considerable attention in the published litera
ture; a partial bibliography may be found in [l] .3 Previous inves
tigations such as [2] and [3] have considered the case of axisym
metric motion; however they suffer from a dual weakness. First, 
being based upon Donnell's shell theory their validity is limited 
to very long axial wavelengths [4]. Equally important, the solu
tions obtained in these studies were not uniform asymptotic rep
resentations of the response, e.g., the boundary conditions were 
not fully satisfied and some significant terms were omitted from 
the expressions for the displacement [5]. 

This analysis of undamped axisymmetric free vibration follows 
the method of [5] in presenting a uniform asymptotic solution, for 
which the only assumption necessary is that transverse shear and 
rotatory inertia are negligible. 

Formulat ion 
The length of the shell is L and the radius is R; let £ = x/L and 

0 be nondimensional cylindrical coordinates. The axial and radial 
components of displacement of a point on the middle surface are 
u and w, respectively, and there is no circumferential displace
ment for axisymmetric motions. The expressions for the strain 
energy V and kinetic energy T are detailed in [5] and are not re
peated here, except to note that 

^ = = "membrane ~t "bending I t ) 

and that only Vmembrane contains terms of higher order than qua
dratic. 

The boundary conditions for the simply supported shell are 

N( = 0 at £ = ± 1/2, u = 0 at | = 0 (2) 

where N\ is the axial stress resulta-nt referred to the deformed 
configuration. This requirement on JVg leads to the following non
linear boundary condition for the displacements [5]: 

IrR • n R2 

[(3w,f
2 + w, 2) + vw2 

0 at £ 
R l 

+ v—ii,tw) L ± 1 (3) 

If the displacement components are expressed as infinite sums 
of the axisymmetric modes of linear nontorsional free vibration, 
only the linear portion of (3) will be satisfied. To satisfy the non-
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linear portion a term u is added to the expression for u. Thus, 
the case of displacements which are symmetric about £ = 0, 

« 2 

u = u + S JJ a 0 , fec0 .• „(T) s in JTT̂  

- 2 

W = S S y o i t C » , k(T) COS J77| 
j o d d *=1 ''• "•]'" 

in 

(4) 

where T is the nondimensional time Ot and a dot will indicate a 
derivative with respect to T. Equation (4) follows the notation of 
[5J. Axisymmetric motion is indicated by the first subscript being 
zero and the value k denotes the particular mode of nontorsional 
motion corresponding to the axial wave number j . For the case of 
antisymmetric motion about f = 0 the sum over j should extend 
over the even values j > 2. The values aoj.n and 70,;,* are the 
modal amplitudes for axisymmetric free vibration, normalized so 
that 

a0,J,* + 70, J, k (5) 

The linear analog of the nonlinear problem considered herein is 
harmonic free vibration at the natural frequency ilo,m,p (m and p 
are fixed values). To establish this correspondence the perturba
tion parameter e is introduced by the initial condition 

J0,m,p ( T = 0)= e, 'C0„JT= 0) = 0 

It is then required that 

and 

< 0(e2) un l e s s j = m and k = p 

Co,j,k(T+ 2ff) = c 0 i i i t (T) 

(6) 

(7) 

(8) 

Condition (7) allows for the determination of a function u 
which, in conjunction with (4), satisfies the boundary conditions 
to0(e2), specifically 

u = - ^ 7 a o , m , f . 2 c o , m , o s i n 2 » « ^ + °( £ 3 ) • (9) 

The displacements (4) and (9) are substituted into the equa
tions for the strain and kinetic energies, and requirement (7) is 
utilized to retain only terms in the energy expressions which are 
0(e4) or larger. The result of this substitution is 

ao 2 

T, nERhL r v* y* / 2 2 , rs r^ 2^ \ 
V = 9(1 _, ,8\L . ^ H u, K ' i » C t . » + KD,i,HC0,m,P <^0,j,k) 2 ( 1 - ^ 2 ) jodd *=i 

+ Klc0,m,pl 

T= ^ £ c o 2 { £ S [(c0 , s)
2 

2(1 -V2) j o d d k= 

)2} (10) 

whe re 

^riLz^'V, 

r ( l - ^ 2 ) P ^ 2 

J0,i,k : 
1/2 

D,j,k ( H ) 

The terms in (10) associated with Ko,m,P and M0,m,p are 0(t3), 
while all other terms are either 0(e2) or 0(e4). These terms result 
in a quadratic nonlinearity in the equations for well as 
the usual cubic nonlinearity. 

The equations of motion are obtained from Lagrange's equa
tions. To solve the equations of motion, the perturbation tech
nique of Lindstedt is used. Let 
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Table 1 Coefficients when h/R = 0 .01 , v = 0.3, and m = 1 

Fundamental Frequency (p = 1) 

L/R 1 2 4 8 16 

(1) 1 , 0.949 0.928 0.711 0.372 0.187 

oij -11.295 0.129 -0.209 -0.130 -0.031 

<•>?(<:„ „ „ only) 10-991 0.044 -0.203 -0.099 -0.026 
t o,m,p ^ 

L /R 

"0 ,1 ,2 

u2 

"2< co,m ,p
 o n l y > 

1 

3.157 

-13.000 

-6.494 

Hiqher Frequency ( 

2 

1.614 

-3.057 

-1.446 

4 

1.055 

-1.292 

-0.506 

p - 2) 

8 

1.008 

-1.162 

-0.542 

16 

1.002 

-1.115 

-0.537 

r — cr ( 1 ) -I- c2r l Z ) 4- e3r ( 3 ) 

cQ,m,P — fcc0,m,*> "T fc c0,m,p ^ fc L0,m,p 

' 0 , j , k + . . . ; k * p if j = m 

w = wo,m , / .(l + « w i + e2aj2 + • • • ) (12) 

The foregoing are then substituted into the equations of motion 
and each perturbation step is solved such that the initial condi
tion (6) and periodicity condition (8) are satisfied. The solutions 
for the first two steps are 

C0,m,plU = C O S T 

Wj = 0 

(2) _ J0,m,p — 4w 0,m,i> 
-r[(wo,m , /-Mo,m ,< ,-3 JK-0 i„ i ; ,) 

+ 2K0im<l, cos T - (w 

(2; Kg.i.k 

g,m,plM0,m,P~KhmtP)cOS 27-; 

2 
' 0 , j , « 

( 2 " i j . w . / M , , . / » " i i . f . * / . C 0 B 2 T - ^ • f . * ) 
4 ( W O , J , * - 4 w o , m , # -

(13) 

A secular term is found to occur in the equation for co,m,p at 
the third perturbation step and the value o>2 which eliminates 
this term is determined. Hence the detuning factor is 

= o>2£
2 (14) 

0,m,i> 

This result is analogous to that found for free vibration of a sim
ple one-degree-of-freedom oscillator whose spring has linear, qua
dratic, and cubic characteristics. The coefficients appearing in 
the foregoing equation depend upon the values of L/R, H/R, v, m, 
and p. Typical values of coo'm'p and u>2 are given in Table 1 for 
the common case m = 1. 

D i s c u s s i o n of R e s u l t s 
The first point of consideration is whether the Galerkin proce

dure of [2, 3] can yield accurate results for this problem. These 
two studies in effect retained only co,m,p in the determination of 
the axisymmetric response. The present analysis was used to 
check this assumption by letting co.m.p be the only nonzero gen
eralized coordinate. As can be seen from Table 1, this procedure 
can be expected to yield reasonable results only in the case of vi
bration of long shells at their fundamental frequency. 

It is useful to make a comparison with the results for nonaxi-
symmetric motion [5]. The first noteworthy feature is that the 
magnitude of U2 is significantly lower for axisymmetric motion. 
Also, it was found here that satisfying the nonlinear portion of the 
boundary condition (6) is less important than it is for nonaxisym-
metric motion. Finally, nonaxisymmetric motions did not show 
any quadratic nonlinearity. This effect arises because in the non-
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linear theory the increase in the shell diameter at any instant is 
0(e) in the case of axisymmetric motion, whereas it is QUz) for non-
axisymmetric motion. Similarly, quadratic nonlinearities were 
found to occur in the case of prestressed shells [6], where the di
ametral change is also of first-order significance. 
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The Effect of Pulse Duration on 
the Transient Response of 
Cylindrical Shells Subjected to 
Axial Impact 

R. W. Mortimer1 and A. Blum2 

Introduction 

Wave propagation in isotropic cylindrical shells has been the 
subject of numerous papers. When studied together, these papers 
describe the response of cylindrical shells having a range of thick
ness-to-radius ratios, subjected to pulses of various shapes (e.g., 
sine squared, triangular, rectangular, step) and a spectrum of 
pulse durations. In addition the analyses described in these pa
pers involved the solution of the governing equations of different 
theories (e.g., uniaxial, membrane, or bending) by various mathe
matical techniques (transforms, finite difference, method of char
acteristics, modal, etc.). No major conclusions regarding the ef
fects of pulse shape and duration on the choice of shell theory 
needed for a transient analysis can be gleaned from these papers. 
In addition, there is a need to understand the impact response of 
a shell, as a function of the thickness to equivalent pulse wave-' 
length ratio. 

This Note presents a portion of a study designed to respond to 
some of the previously mentioned needs. The effect of pulse dura
tion on cylindrical shell response to impact loading, together with 
the adequacy of the uniaxial, membrane, and bending theories to 
handle pulses of different durations will be presented. In this 
study, the cylindrical shell governing equations of motion for each 
of the three theories are solved, in conjunction with axial impact 
boundary conditions, by the method of characteristics. All con
clusions and discussions are based on this type of analysis. 

Equat ions of Mot ion 
In this study, three systems of equations of motion for a cylin

drical shell were used. The equations, as presented herein, have 
been nondimensionalized with respect to h such that . 

— U -j- . — W - X - tC„ 

where u, fi, and w are the axial, rotary, and radial displacements, 
respectively; h, x, and t are the shell thickness, axial coordinate, 
and time, respectively, and cp is the plate velocity, [E/p (1 — 
K 2 ) ] 1 / 2 ; v is Poisson's ratio and p is the mass density. 

The first system of equations, hereafter referred to as the bend
ing theory, includes bending, transverse shear, and rotary inertia 
effects and is given by [l]3 

ffty 
dx2 

d2W 

dx2 

d2t 
ST2 

\cj dr2 

dx2 

(1) 
- ( 

d2u 
ST2 

1 g 
"(1 - ») 

h\ v du 
~R}~g!x ' 

— V 

* + 

"(• 

h dw 
R dx 

(hY{g + 
\RJ vd -

g) dx 

7)v) dw 

rf) dx 

+ , ) -
8 

w (1) 

The second system of equations results from a modified mem
brane theory (transverse shear effect included) and is given by [2] 

d2^ 
dx2 

die2 

\2d^w 

Or-

d2u 
W2 

h_dw_ 
1' R~dT 

\cj dr2 \R/g dx + \R) 
2(i + n)-

w 
g 

(2) 

The final system of equations is the simple uniaxial theory and 
is given by 

ff2u 

JT2 dr2 0 (3) 

where R is the radius of the midsurface of the shell, cs is the shear 
velocity, k (G//5)1/2, and fe2 is the shear correction factor; r\ -
h2/12R2, g = k2(l - v)/2. 

Analysis 

Each of the three systems of equations, equations (l)-(3) are 
completely hyperbolic and are amenable to solution by the meth
od of characteristics. A computer code, MCDIT 21 [3], based on 
the method of characteristics, was used to obtain the transient 
solution of each of these systems. Axial velocity impact boundary 
conditions were utilized at the impacted end of the semi-infinite 
cylindrical shell and are given by 

Bending Theory: 

du 
(0 ,T) = sin 

<& 
TV,(0,7) = 0; T„ < 7 

QX(Q,7) = MX(0,T) = 0; 0 < r0 

(4) 

Modified Membrane Theory: 

-~=(0,T) = sm • 
or 

. ( I ) ; 0<7<r„ 

AfA-(0,r) = 0; T0 < r 

QX(0,T) = 0; 0 < T0 

Uniaxial Theory: 

(5) 
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f(0,T) = s i n . ( | ) ; 0<^ 

NX(Q,T) = 0; 

(6) 

To < T 
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