
Joshua Mullins
Department of Civil and

Environmental Engineering,

Vanderbilt University,

Nashville, TN 37235

e-mail: joshua.g.mullins@vanderbilt.edu

Sankaran Mahadevan
Department of Civil and

Environmental Engineering,

Vanderbilt University,

Nashville, TN 37235

Bayesian Uncertainty Integration
for Model Calibration,
Validation, and Prediction
This paper proposes a comprehensive approach to prediction under uncertainty by appli-
cation to the Sandia National Laboratories verification and validation challenge prob-
lem. In this problem, legacy data and experimental measurements of different levels of
fidelity and complexity (e.g., coupon tests, material and fluid characterizations, and full
system tests/measurements) compose a hierarchy of information where fewer observa-
tions are available at higher levels of system complexity. This paper applies a Bayesian
methodology in order to incorporate information at different levels of the hierarchy and
include the impact of sparse data in the prediction uncertainty for the system of interest.
Since separation of aleatory and epistemic uncertainty sources is a pervasive issue in cal-
ibration and validation, maintaining this separation in order to perform these activities
correctly is the primary focus of this paper. Toward this goal, a Johnson distribution fam-
ily approach to calibration is proposed in order to enable epistemic and aleatory uncer-
tainty to be separated in the posterior parameter distributions. The model reliability
metric approach to validation is then applied, and a novel method of handling combined
aleatory and epistemic uncertainty is introduced. The quality of the validation assessment
is used to modify the parameter uncertainty and add conservatism to the prediction of
interest. Finally, this prediction with its associated uncertainty is used to assess system-
level reliability (a prediction goal for the challenge problem). [DOI: 10.1115/1.4032371]

1 Introduction

Engineering decisions are often (if not always) made in the
presence of significant uncertainty due to the insufficient quantity
and quality of available data. Since information is typically espe-
cially sparse in the domain of interest (i.e., the usage condition of
the system), data are commonly composed in the form of a hierar-
chy in which lower level data (e.g., simplified test configurations
and conditions, material tests, and component tests) are used to
inform computational models that will be used to predict system
performance. Since the models are always imperfect, verification
and validation (V&V) methods have been actively researched as
an approach for accumulating evidence to support a prediction
model. The results of these activities may then be integrated
together in order to incorporate the known sources of uncertainty
into the prediction.

V&V frameworks [1–3] for prediction typically involve the
following activities: (1) uncertainty characterization, (2) model
verification, (3) model calibration, (4) model validation, and (5)
uncertainty propagation for prediction. Uncertainty characteriza-
tion typically applies to natural variability in system inputs (con-
figuration variables measured in corresponding experiments, e.g.,
load and temperature) and model parameters (system variables
that are included in models but not directly measured in experi-
ments, e.g., material properties), and this uncertainty is commonly
described probabilistically by any of the many well-known para-
metric probability distributions. Characterizing this uncertainty
informs model developers about which input ranges are important
(i.e., what input settings are expected to be exercised during
uncertainty propagation), which enables model verification
(including both code verification and solution verification) to be
conducted efficiently. Then, in model calibration [4–8], since the
model parameters are not measured directly, they are inferred

from experimental observations of input and output quantities.
These parameters may be deterministic values that can be esti-
mated directly or naturally varying quantities for which distribu-
tion parameters that describe the variability may be estimated.
Input and parameter uncertainty are then propagated through the
calibrated models, and the result is compared against an independ-
ent set of experimental observations. This process, known as
model validation [9–18], assesses the accuracy of the prediction
of a computational model. Since the model is never completely
accurate, the model form error should be accounted for. This adds
an additional source of uncertainty when input and parameter
uncertainty are propagated forward to make the prediction on sys-
tem performance in the regime of interest. This paper presents a
framework for model calibration, model validation, and prediction
and discusses how the approach is applied differently in the pres-
ence of different types of uncertainty.

In order to make fair assessments of the models and informed
decisions using the prediction, the sources of uncertainty should
be considered separately and treated appropriately. An important
distinction is the difference between aleatory and epistemic uncer-
tainty sources. Aleatory uncertainty is the natural variation of
inputs and parameters that impact outputs of interest. This uncer-
tainty is irreducible, and it is commonly treated with probability
theory. Epistemic uncertainty results from lack of knowledge
about the system of interest, and it can be further separated into
model uncertainty (e.g., parameter uncertainty, solution approxi-
mation errors, and model form uncertainty) and data uncertainty
(e.g., measurement uncertainty and sparse or imprecise data).
Since it stems from lack of knowledge, epistemic uncertainty can
be reduced by obtaining additional information. In the literature,
this uncertainty has been modeled in a number of different ways
[19–24], but for any of these treatments, it is important to retain
the separation between aleatory and epistemic sources [25–27] in
order to support decisions about prediction uncertainty reduction.
When aleatory and epistemic uncertainty sources are confounded,
it is difficult to assess the benefit of collecting additional
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information (e.g., performing additional tests). For example, when
the aleatory contribution to the overall uncertainty is large relative
to the epistemic contribution and this information is not known,
resources might be allocated inefficiently or consumed unnecessa-
rily on testing even though the additional test data cannot reduce
the aleatory uncertainty and therefore cannot significantly
improve the precision of the prediction. Furthermore, when apply-
ing probabilistic model validation methods, the primary interest is
the epistemic uncertainty (i.e., parameter uncertainty and model
form uncertainty) in the prediction, and the separation of uncer-
tainty sources enables these contributions to be isolated.

This paper applies a Bayesian subjective probability treatment
of epistemic uncertainty and demonstrates how this approach can
be used to distinguish aleatory and epistemic uncertainty sources
in calibration, validation, and prediction. The proposed methodol-
ogy was particularly motivated by the V&V challenge problem
proposed by the Sandia National Laboratories [28]. This problem
presents some significant challenges for uncertainty characteriza-
tion and propagation. In particular, the limitations of the data add
uncertainty to the characterization of a population of interest.
Only a small number of samples are tested, yet the goal is to
extract meaningful information about the overall population in
order to make a reliability assessment. Physical intuition suggests
that system properties and environments vary widely across
the population, but only sparse observations are available to char-
acterize this aleatory uncertainty. Thus, the data limitations intro-
duce epistemic uncertainty about the form and magnitude of the
aleatory uncertainty that is expected to exist. Separation of these
sources of uncertainty is critical to a thorough reliability assess-
ment because the predictive capability of the model cannot be
assessed accurately when these uncertainty sources are combined.

The remainder of this paper details how uncertainty separation
can be achieved and maintained during each phase of the assess-
ment, and then, the methodology is demonstrated for the V&V
challenge problem. In Sec. 2, Bayesian calibration is first
described for the classical case of estimation of purely epistemic
parameters, and it is then extended to a scenario in which the
model parameters have both aleatory and epistemic uncertainty.
The Johnson family of probability distributions is used to repre-
sent the aleatory variability, and the uncertainty about the Johnson
distribution parameters represents the epistemic uncertainty. In
Sec. 3, the model reliability metric approach to model validation
is described. Since this metric is specifically targeted at epistemic
uncertainty in the model (particularly epistemic parameter uncer-
tainty and model bias), the approach is extended to account for
the scenario in which the parameters are also affected by aleatory
variability. In Sec. 4, a method for integrating the results of the
calibration and validation activities is described. The Sandia V&V
challenge problem prediction results and reliability analysis are
presented and discussed in Sec. 5, and the paper is concluded in
Sec. 6.

2 Bayesian Calibration Under Uncertainty

Bayesian calibration [5–7,29] is an approach for inferring
unmeasured parameters by observing particular values of the out-
puts and corresponding inputs. As opposed to deterministic
parameter estimation, which results in only a single value for the
parameters, Bayesian calibration results in a posterior probability
distribution that represents the subjective probability of each value
in the domain. Note that the assumption implicit to this approach
is that the parameter values are deterministic in reality, but the
values cannot be inferred precisely due to data uncertainty in the
observations as well as model errors that may bias the results.
Therefore, the posterior distribution represents epistemic uncer-
tainty and not aleatory uncertainty.

2.1 Calibration of Purely Epistemic Parameters. According
to Bayes’ theorem, the posterior probability of the parameters
fHðhjydÞ is proportional to the product of the likelihood function

fYd
ðyd jh) (i.e., the probability of observing the data yd given a par-

ticular parameter set h), henceforth denoted LðhÞ, and the prior
density fHðhÞ

fH hjyd

� �
¼ L hð ÞfH hð Þð

L hð ÞfH hð Þdh

(1)

To construct the likelihood function, a model that probabilistically
describes the difference between prediction and observation is
needed. A common model is to attribute the difference between a
particular observation ydij

and the prediction ym at input xj to zero-
mean Gaussian measurement noise in the observation edij

ydij
¼ ymðxj; hÞ þ edij

; i ¼ 1;…; nj; j ¼ 1;…;m (2)

Edij
� Nð0;rdÞ; i:i:d: (3)

In Eq. (2), i can indicate a vector response of length nj or nj repli-
cate experiments at state xj , and m denotes the total number of
states. To evaluate the likelihood in Eq. (1) at the data sample val-
ues according to the model given by Eqs. (2) and (3), observe that
fydijg is the sum of a constant and a vector of independent normal
random variables. Thus,

L hð Þ ¼
Ym
j¼1

Ynj

i¼1

1

rd

ffiffiffiffiffiffi
2p
p exp �

ym xj; hð Þ � ydij

� �2
2r2

d

( )
(4)

In practice, the product of Eq. (4) and the prior density (as in
Eq. (1)) cannot be normalized or inverted easily in order to draw
samples from the joint posterior distribution. Instead, a function
that is proportional to the posterior density is sampled via Markov
chain Monte Carlo (MCMC) sampling methods [30–33]. MCMC
methods typically require a surrogate model [34–38] even when
the model is relatively cheap because of the large number of
evaluations that are needed. This is an important limitation of
Bayesian methods; the number of function evaluations is usually
on the order of 104 or 105 in order to achieve convergence in
MCMC. Additionally, the evaluations are typically serial in
MCMC algorithms, so parallel resources cannot improve the effi-
ciency significantly unless they can be used to improve the effi-
ciency of the model evaluation itself. In this paper, Gaussian
process (GP) surrogate models [39] are used because of their abil-
ity to represent general forms of an output response and also pro-
vide a direct estimate of the uncertainty associated with the fit to
the computational model. The required number of serial evalua-
tions is unaffordable for almost any real computational model, but
it is fairly negligible when using a GP model (on the order of
seconds or minutes).

Note that the relationship given in Eq. (2) does not account for
model form error. Since model form error is often a leading source
of the difference between prediction and observation, many
researchers [5,7,8] add a stochastic, input-dependent model dis-
crepancy term to the model prediction. The goal of this approach,
commonly referred to as the Kennedy–O’Hagan framework [29],
is to reduce the bias in the parameter estimates; bias is introduced
when parameters are used to fit an incorrect model form to the
observed data. However, since the mathematical form of the
model discrepancy is always unknown, an additional set of param-
eters must be introduced to define a stochastic model discrepancy
function, and these parameters must be inferred jointly with h.
This expansion of the calibration problem leads to some addi-
tional difficulties, including selection of a proper discrepancy for-
mulation [8] and unique identifiability of the expanded parameter
set [7,8,29]. Therefore, in this paper, no model discrepancy term
is included in the proposed methods, and the model form error is
accounted for through model validation within the prediction
framework that will be described in Sec. 4.
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2.2 Calibration of Combined Aleatory and Epistemic
Parameters. In some calibration problems, the available data are
collected from multiple specimens, and the parameters cannot be
measured directly for any specimen. In this situation, the model
parameters are not simply unknown epistemic values; rather, the
properties may also be varying across the tested specimens. If this
variability is not explicitly considered (e.g., by applying the for-
mulation of Sec. 2.1), all of the variation in the output must again
be attributed to measurement noise. This treatment misrepresents
the actual underlying parameter uncertainty by forcing the param-
eters to take the same values across all the experiments. In partic-
ular, by excluding the aleatory component of uncertainty, the
posterior distribution is likely to underestimate and incorrectly
characterize variability, and this effect is only exacerbated as
more data are collected to reduce the epistemic component of
uncertainty. Failure to adequately account for the variability leads
to underestimates of uncertainty in future predictions of the
model, which use the estimated parameter values, and these pre-
dictions will not be conservative to potential outcomes.

Therefore, the aleatory uncertainty should also be included in
the calibration activity. This can be accomplished by assigning a
probability distribution to represent the aleatory uncertainty and
then applying Bayes’ theorem to estimate its distribution parame-
ters. When data are limited, the appropriate probability distribu-
tion to select may not be known, which forces an arbitrary choice
to be made. To minimize the impact of this choice, it is desirable
to select a distribution of the aleatory uncertainty that is capable
of describing a wide range of potential forms for the variability. In
this paper, the Johnson family of distributions is applied since it is
able to reproduce any shape that can be described by a unique set
of the first four statistical moments.

2.2.1 Johnson Distribution Family. The Johnson family of
probability distributions [40] can represent a wide range of shapes
of probability distributions. It is composed of four types of distri-
butions: the normal, lognormal, bounded, and unbounded. Each of
these forms is achieved by applying a specific normalizing trans-
formation that depends on the four distribution parameters c, d, k,
and n. Since the normal and lognormal distributions are special
cases that are rarely encountered when estimating the distribu-
tional form from observations, the focus of this paper is restricted
to the bounded and unbounded forms. For the unbounded system,
a general random variable X is transformed to a standard normal
random variable Z by applying

Z ¼ cþ dln
X � n

k

� �
þ X � n

k

� �2

þ 1

" #1
2

8<
:

9=
;; �1 < X <1

(5)

Similarly, for the bounded system

Z ¼ cþ dln
X � n

nþ k� X

� �
; n < X < nþ k (6)

Setting X ¼ h in either Eq. (5) or (6) transforms h ¼ hðz; pÞ where
hð�Þ is the inverse mapping of Eq. (5) or (6), and p ¼ ½n; k; c; d�
are hyperparameters that will be modeled as random variables to
be estimated. This estimation will require that Eqs. (2) and (3) be
restated in terms of h and p.

2.2.2 Bayesian Johnson Parameter Estimation From Direct
Observations. While alternate methods exist to estimate the John-
son hyperparameters p [41], a Bayesian estimation approach [42]
is more suitable when observations of the random variable h are
sparse. The resulting probabilistic description of P indicates that
the set of observations can be supported by many probabilistic
descriptions of h, namely, those supported by any sample of the
vector of random variables p. For this Bayesian estimation prob-
lem, Eqs. (2) and (3) become

h ¼ hðz; pÞ (7)

Z � Nð0; 1Þ; i:i:d (8)

where again, hð�Þ is the inverse of either Eq. (5) or (6). Then, it
can be shown that the likelihood LðpÞ ¼ f ðhjpÞ, given n independ-
ent samples of the random variable h, can be expressed for the
unbounded system and bounded system, respectively, as follows:

L c; d; k; nð Þ

¼
Yn

i¼1

d

k
ffiffiffiffiffiffi
2p
p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ hi � n
k

� �2
s

� exp � 1

2
cþ dln

hi � n
k
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hi � n

k

� �2

þ 1

s0
@

1
A

2
4

3
5

2
8><
>:

9>=
>;

(9)

L c; d; k; nð Þ ¼
Yn

i¼1

d

k
ffiffiffiffiffiffi
2p
p hi � n

k

� �
1� hi � n

k

� �

� exp � 1

2
cþ dln

hi � n
k

1� hi � n
k

0
BB@

1
CCA

2
664

3
775

2
8>>><
>>>:

9>>>=
>>>; (10)

The choice of whether to use the form of Eq. (9) or (10) is
determined from the statistics of the set of observations of h. The
second, third, and fourth central moments of the data set together
uniquely specify the appropriate Johnson system [41]. By apply-
ing MCMC methods with the selected likelihood function, a set of
samples can be generated from the joint posterior distribution of
the Johnson distribution parameters, denoted as fPðpÞ. Each sam-
ple of the parameters corresponds to a particular realization of the
distribution of the aleatory variability for the underlying random
variable h. Taken together, the posterior samples of the distribu-
tion parameters yield a family of distributions for the random vari-
able. In some situations it may be useful to reduce the family of
distributions to a single distribution that contains both aleatory
and epistemic sources of uncertainty. This distribution is gener-
ated by integrating the distribution of h conditioned on a particular
parameter sample fHðhjP ¼ pÞ over the domain D of the distribu-
tion parameters [43]

fHðhÞ ¼
ð

D

fHðhjP ¼ pÞfPðpÞdp (11)

The resulting distribution of h is referred to here as the uncondi-
tional distribution. An example (estimation of Young’s modulus E
in the challenge problem solution in Sec. 5) of these two represen-
tations of combined aleatory and epistemic uncertainty is shown
in Fig. 1. Note that the unconditional distribution is much more
conservative to future observations than the maximum a posteriori
(MAP) estimate of the distribution parameters since the MAP
estimate does not account for the epistemic uncertainty in P. How-
ever, after integration, the aleatory and epistemic sources of
uncertainty can no longer be separated from each other.

2.2.3 Bayesian Johnson Parameter Calibration From Output
Observations. When there are no direct observations of the
parameter, the estimation problem is solved by inference from
observations of the output, similar to Sec. 2.1. A separate Johnson
distribution is assumed to describe the aleatory uncertainty of
each unknown parameter. Again, an uncertainty model that relates
prediction and observation must be assumed. For this scenario,
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each individual parameter hk from the vector of parameters h is
described according to Eqs. (7) and (8). Thus, Eqs. (2) and (3)
become

ydij
¼ ymðxj; hðz; pÞÞ þ edij

(12)

Zk � Nð0; 1Þ; i:i:d: (13)

Edij
� Nð0; rdÞ; i:i:d: (14)

Here, Z represents a vector of standard normal random variables,
each corresponding to the description of a particular model
parameter hk. The indices i and j hold the same meaning as in
Sec. 2.1.

The likelihood derived from Eqs. (12)–(14) for a particular set
of the Johnson hyperparameters can be evaluated via a nested
Monte Carlo sampling procedure. The aleatory uncertainty of the
unknown parameter vector h must be sampled and propagated
through the model. An arbitrary number of samples (each denoted
with superscript i) of the aleatory variables can be drawn and
propagated through the model at each input condition xj; the
appropriate number of samples depends on the allowable compu-
tational expense for the simulation

ym
i
j ¼ ymðxj; h

iÞ (15)

The set of samples of Ymj for a given vector p of the Johnson
parameters represents an empirical estimate of the conditional
density of the model output fYmj

ðymjjP ¼ pÞ. By assuming the
relationship between model prediction and observation given by
Eqs. (12)–(14), the likelihood of a particular p is computed over a
set of nj independent observations at each input condition

LðpÞ ¼
Ym
j¼1

Ynj

i¼1

fYmj
½ðydij

� edij
ÞjP ¼ p� (16)

By applying Bayes’ theorem as in Eq. (1) for P, this likelihood is
used to update the joint distribution fPðpjydÞ. Note that if direct
observations of h are also available, this information can be used
within the method described in Sec. 2.2.2 to obtain a prior distri-
bution fPðpÞ.

The methods described in Sec. 2 provide a calibration frame-
work for several different observation scenarios. It is important to
recognize which method is consistent with the assumptions under-
lying the observed data. A Bayesian scheme is capable of han-
dling any of these scenarios, but the analyst must first determine
whether the calibration parameters are subject to only epistemic
uncertainty or combined aleatory and epistemic sources and then
apply the appropriate method. This decision comes from physical

knowledge of the tests and the corresponding specimens and
expert judgment about their relationship to one another.

3 Probabilistic Model Validation

Before using a calibrated model for a prediction of interest, the
model should be independently tested against an additional set of
observations to assess its predictive capability. Typically, the vali-
dation experiments are closer to the domain of the application
than the calibration experiments, such that they are more relevant
to the prediction. In such a scenario, the assessment will provide
stronger evidence of the adequacy of the model. However, since
the model performance is never perfect, it is useful to compute a
probability measure for the validation performance so that the val-
idation quality can be directly incorporated into the prediction as
will be shown in Sec. 4. The model reliability metric r [17,18]
is one such probability measure, and it is the focus of the
methods demonstrated in this paper. Treatments of this metric are
demonstrated for situations with only epistemic uncertainty and
for combined aleatory and epistemic uncertainty.

3.1 Model Reliability in the Presence of Epistemic
Uncertainty. The model reliability metric directly measures the
discrepancy between prediction and observation. It is particularly
intended to penalize epistemic uncertainty in either the model or
the observations that are used to assess the model. It is defined as
the probability of the difference (D) between observed data (Yd)
and model prediction (Ym) being less than a given tolerance limit �

r ¼ Prð�� < D < �Þ; D ¼ Yd � Ym (17)

In Eq. (17), the experimental observation at a given value of the
input is treated as a random variable due to measurement error,
and the model output at a given value of the input is a distribution
resulting from the propagated posterior distribution of the model
parameters. In this case, it is assumed that the parameter uncer-
tainty is purely epistemic uncertainty due to insufficient calibra-
tion data. The difference between the prediction and observation
D is also a random variable at particular input, and its distribution
can be obtained from the probability distributions of Yd and Ym.
Then, the model reliability metric (at a given value of the input) is
computed by integration of the distribution of D

r ¼
ð�
��

fDðxÞdx ¼ FDð�Þ � FDð��Þ (18)

Since the distribution of D is obtained by independently sam-
pling the prediction and observation, the metric only measures
model bias. The sources of epistemic uncertainty (measurement
noise in the data and parameter uncertainty in the model) are

Fig. 1 Combined aleatory and epistemic uncertainty represented as a family of distributions
and as an unconditional density
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independent and should not be expected to cause the distributions
of Yd and Ym to take the same shape. Rather, only the expected
discrepancy between two deterministic samples (i.e., the bias) is
of interest. This behavior is illustrated in Fig. 2.

The model reliability metric can be improved by decreasing
either the measurement uncertainty or the parameter uncertainty
when the means are unbiased. This behavior is logical for episte-
mic uncertainty sources, but when there is also aleatory uncer-
tainty that is common to the prediction and observation, this
computation of model reliability is not suitable. In such a case, it
is desirable for the model to be able to reproduce observed vari-
ability. Therefore, unless the dependency between the prediction
and observation samples is known (it is rarely known in practice),
the strategy given by Eqs. (17) and (18) cannot be applied to com-
parisons that include aleatory variability.

3.2 Model Reliability With Combined Aleatory and
Epistemic Uncertainty. In order to incorporate aleatory variabili-
ty into a formulation aimed at epistemic uncertainty, the formula-
tion of Sec. 3.1 must be modified. In the presence of variability,
the parameter uncertainty that leads to a stochastic model predic-
tion has two components: an aleatory and an epistemic contribu-
tion. Section 2 demonstrated how aleatory and epistemic sources
can be separated during calibration. Specifically, the uncertainty
about distribution parameters is the epistemic contribution, and
each sample of the distribution parameters represents a particular
realization of the aleatory variability. When parameter uncertainty
with combined aleatory and epistemic uncertainty is propagated
through the model, the model prediction is similarly described
by a family of distributions representing combined aleatory and
epistemic uncertainty.

In this context, there are two primary criteria for model valida-
tion: (1) minimum model bias and (2) accurate prediction of
observed variability. Since the model reliability metric is intended
as a discrepancy (bias) criterion, it is best suited to handle the first
of these two criteria. However, if the aleatory uncertainty is
included in the model prediction, the prediction and observation
are inherently correlated through their shared dependence on the
underlying aleatory variables. Therefore, the prediction and obser-
vation must be sampled jointly to perform the computation cor-
rectly, but their dependence is unknown. If, by necessity, they are
instead sampled independently, the reliability metric is artificially
lowered since the prediction uncertainty is increased.

To address this issue, attention can be restricted to only the
mean prediction of the model. If the model is unbiased, the obser-
vations, which also have both aleatory and epistemic uncertainty,
are expected to scatter around the mean prediction of the model.
Therefore, the model prediction distribution Ym is integrated over
the aleatory component of uncertainty in h (represented by the
vector of random variables Z) to obtain the mean prediction

fMYm
ðlYm
Þ ¼

ð1
�1

fYm
ðymjZ ¼ zÞfZðzÞdz (19)

The distribution fMYm
ðlYm
Þ of the mean prediction is dependent

on only epistemic uncertainty in the distribution parameters.
Therefore, it can be analyzed in the same manner as the distribu-
tion of Ym in Sec. 3.1 and compared against the set of
observations

r ¼ Prð�� < DM < �Þ; DM ¼ Yd �MYm
(20)

However, the distribution Yd also includes aleatory variability
while MYm

does not, so the differences between observation and
mean prediction may have large variance. To account for this
issue, the second validation criterion (prediction of observed vari-
ability) can be included in the assessment through the choice of
the tolerance �.

One approach is to set the tolerance based on the average alea-
tory uncertainty in the family of model predictions (i.e., an expec-
tation taken over the space of the epistemic distribution
parameters). In this scenario, the outcome of the assessment dem-
onstrates whether the predicted variability is a good predictor of
the spread in the observations. For example, if � ¼ 2 � EPðrYm

Þ as
will be shown in the example of Sec. 5, 95% of the observations
are expected to fall within 6� when the predicted variability is
equivalent to the observed variability. Note that choosing � based
on the aleatory uncertainty in the prediction is also conservative.
That is, the model attains high reliability when the predicted vari-
ability overestimates observed variability (high tolerance) and low
reliability when the predicted variability underestimates observed
variability (low tolerance). When the model has low reliability,
additional conservatism is added in by expanding the range of the
parameters as will be shown in Sec. 4. This conservatism is often
desirable because it is preferable for the final prediction to predict
a wider range of outcomes than will be encountered in reality.
Unexpected scenarios (i.e., those outside the prediction uncer-
tainty) are most likely to force a system outside its normal operat-
ing regime because they are not explicitly accounted for in design.

4 Including the Validation Result in Prediction

The calibration methodology of Sec. 2 and the validation
approach of Sec. 3 demonstrate how epistemic and aleatory uncer-
tainty can be separated for propagation and assessment. Since the
validation result is interpreted as a probability measure, it can be
used to modify the posterior parameter distributions in order to
add additional conservatism to the prediction to account for model
form error. The underlying assumption of the proposed approach
is that parameters calibrated using imperfect models should not be
fully trusted when they are propagated forward to the prediction

Fig. 2 For �5 2, the model reliability for the closely matching distributions Yd and Ym
(r 5 0:86) is lower than for the deterministic observation with no measurement noise and the
same distribution of Ym (r 5 0:95) because the probability of large bias between the uncertain
deterministic prediction and observation is greater when there is more uncertainty
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stage. Therefore, the probabilistic validation result is treated as a
weight for the calibrated posterior distribution, and the remaining
weight is given to an alternate distribution that may come from
prior information or expert opinion.

Low model reliability signifies only partial support for the pos-
terior parameters, which does not necessarily imply support for an
alternate distribution. However, the posterior distribution always
results from epistemic uncertainty reduction during the calibration
phase. The alternate distribution should have a wider range of sup-
port that has not been updated from observation data. Attributing
weight to this alternate distribution accounts for the possibility
that the model form error caused the posterior parameter estimates
to be biased and overconfident on a narrower range of values. In
this situation, a wider range of parameter values should be
included in the distribution that is propagated to the prediction of
interest. Using the value of r obtained in the model reliability
assessment as a weight on the posterior and the complementary
probability (1� r) as a weight on the alternate distribution leads
to the following formulation:

fHðhjyC
d ; y

V
d Þ ¼ rfHðhjyC

d Þ þ ð1� rÞf̂ HðhÞ (21)

where fHðhjyC
d Þ is the calibrated posterior distribution resulting

from the calibration observations yC
d , f̂ HðhÞ is the alternate

distribution for the parameters, and fHðhjyC
d ; y

V
d Þ is the predictive

parameter distribution that is propagated to the prediction of inter-
est. This predictive distribution depends on the calibration obser-
vations and the validation observations yV

d , which are used to
obtain r.

Once the predictive parameter distribution is obtained, it is
propagated through the system model in the regime of interest to
obtain the stochastic prediction. This distribution should always
have at least as much uncertainty as the posterior distribution and
no more uncertainty than the alternate distribution. The relative
contributions of these two components depend on the quality of
the model reliability assessment. Note that when the reliability
assessment is conducted over a range of different input conditions,
the value of r used in Eq. (21) is an aggregation across all
input conditions. If all the validation input conditions are equally
relevant to the prediction of interest, a simple averaging of the
validation results is sufficient. However, in some cases, some vali-
dation experiments may be more relevant to the prediction regime,
and the validation results from these experiments may be given
higher weight.

5 Sandia Challenge Problem Results

The proposed methods of Secs. 2–4 are demonstrated in this
section using data and models provided by the Sandia National
Laboratories V&V challenge problem [28]. The information pro-
vided for the problem includes many heterogeneous sources that
must be integrated within the proposed framework to make a pre-
diction on system performance. In particular, the prediction goal
addressed in this demonstration is reliability assessment of
in-service storage tanks (shown in Fig. 3) of “mystery liquid” that
are subject to pressure loads as well as loads from the liquid itself.
Available information to make the assessment includes the

following six data sets: (1) legacy data from the manufacturer, (2)
material coupon tests in a lab environment, (3) liquid characteriza-
tion tests in a lab environment, (4) full tank geometry measure-
ments in a lab environment, (5) full tank pressure loading tests in
a lab environment, and (6) full tank displacement measurements
in the production environment with pressure and liquid. The pro-
vided computational model is capable of predicting the output for
any of the test scenarios. The model predicts displacement w and
stress r and depends on the following quantities: axial location on
the tank x, circumferential angle from the tank centerline w, gauge
pressure P, liquid-specific weight c, liquid height H, Young’s
modulus E for the tank material, Poisson’s ratio � for the tank ma-
terial, length L, radius R, and wall thickness T.

The provided data provide a good approximation to the type of
information that would be available in a realistic problem since it
is subjected to many common sources of uncertainty. Only a
limited number of tests were conducted, and all the data are also
susceptible to measurement errors (approximate tolerances are
known in some cases). Therefore, the available measurements are
both uncertain and sparse (e.g., spatial variability along the tank is
explored but unit-to-unit variability information is limited). Fur-
thermore, the quantity of interest (stress) is not measured directly,
and decision makers must rely instead on measurements and pre-
dictions of a related quantity (displacement) to develop confi-
dence. In addition, direct measurements of some properties are
made only for tanks that are pulled out of service. Since the goal
is to make a prediction for the in-service tanks, additional assump-
tions are needed in order to extrapolate knowledge to these other
tanks.

In order to pose this problem within the framework presented in
Secs. 2–4 of this paper, the first important step is to establish the
hierarchy of data and how it will be used for the calibration, vali-
dation, and prediction activities. Only data sets 5 and 6 have infor-
mation about the tank response under an applied load. Therefore,
only these two data sets can be used to calibrate and validate the
input/output relationship in the model. Since data set 6 represents
the full usage condition of the tank (pressure and liquid) while
data set 5 contains only pressure loading information, data set 6 is
considered more relevant to the prediction condition of interest.
As a result, data set 5 is used to calibrate relevant parameters, and
data set 6 is used to validate the predictive capability of the cali-
brated model. Note that raw data for data set 3 are not available,
and the data set is only used to construct an empirical relationship
between liquid composition and the specific weight c. Therefore,
other measurements of liquid composition are treated as equiva-
lent to measurements of c, except that the empirical model intro-
duces an additional source of input measurement uncertainty.
Since the loads from the pressure and/or liquid components (P, c,
and H) and the location variables (x and w) are measured in data
sets 5 and 6, these variables are treated as input conditions (i.e.,
“x” in the formulation of Sec. 2). The remaining variables (E, �,
T, L, and R) are not measured for the calibration and validation
scenarios, so they are treated as calibration parameters (i.e., “h” in
the formulation of Sec. 2). The direct measurements on material
properties (data set 2) and tank geometry (data set 4) represent
useful prior information for calibrating these parameters. The
manufacturer data (data set 1) are used to formulate an alternate
distribution for these parameters, which is applied within the
framework of Sec. 4. The workflow for the proposed solution
strategy is depicted in Fig. 4.

5.1 Parameter Calibration Results. As mentioned in the
previous discussion, one complication (realistic for practical
applications) is that measurements are taken on specific tanks, but
the assessment needs to be made for other tanks. In such a sce-
nario, it is expected that the calibration parameters vary naturally
from tank-to-tank; however, no probabilistic model of this vari-
ability is known. Therefore, the model parameters are subject to
both aleatory and epistemic uncertainty, and the calibrationFig. 3 Idealized diagram of the tanks [28]
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techniques of Sec. 2.2 should be applied rather than the technique
of Sec. 2.1 (which would assume that the parameters are deter-
ministic tank-to-tank). Since the Johnson family of distributions
provides a flexible means of capturing the aleatory variability (as
described in Sec. 2.2.1), the Johnson distribution model is applied
to the aleatory uncertainty for each of the five calibration parame-
ters. Note that this choice does increase the complexity of the
problem since it expands the dimension of the parameter set to be
calibrated. Other distribution types could also be chosen to repre-
sent the aleatory variability if there is some prior belief about the

form of the variability. If the Johnson family is chosen, the results
must be carefully checked to ensure that they are converged
because there are a potentially large number of parameter sets that
lead to very similar descriptions of the uncertainty. Fortunately,
MCMC methods are very well suited to handle correlated parame-
ters since the samples are inherently taken jointly across the set of
calibration parameters.

The calibration variables within the framework of Sec. 2.2 are
the four Johnson distribution parameters that define the aleatory
distribution for each of the five model parameters. Thus, there are
a total of 20 calibration parameters. Both direct observations of
the model parameters (data set 2 for E, �, and T and data set 4 for
L and R) and observations of the output that depend on the model
parameters (data set 5) are available. Therefore, the direct obser-
vations can be used to obtain a prior family of distributions for
each model parameter according to the approach of Sec. 2.2.2,
and then the Johnson distribution parameters for each model
parameter can be jointly updated with the output observations of
data set 5 according to the approach of Sec. 2.2.3. Since this step
requires a large number of model evaluations, a GP surrogate
model is used in place of the underlying model to improve compu-
tational efficiency. The results of this procedure are shown in
Fig. 5, along with the manufacturer estimates (not used in calibra-
tion) for a comparison benchmark. Only the Johnson distributions
corresponding to the MAP estimates of the distribution parameters
are shown in the figures for simplicity of illustration. The priors
from data sets 2 and 4, as well as the posterior from the joint
calibration, are actually families of distributions due to the episte-
mic uncertainty in the Johnson distribution parameters. The
unconditional distributions, which are obtained from the joint
posteriors according to Eq. (11), represent the combination of
epistemic and aleatory sources of uncertainty.

Note that the direct observations on the model parameters are at
different locations within a particular tank; they are not observa-
tions on different tanks. Therefore, in order to update with the
output data from another tank, an assumption of ergodicity is
needed. That is, it is assumed that the variability across locations
of a particular tank follows approximately the same distribution as
variability from tank-to-tank. This assumption is certainly not true
in general, but even if the assumption is invalid, the result of the

Fig. 4 Diagram of workflow and data usage for the proposed
solution strategy

Fig. 5 Results of model parameter calibration
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calibration under this assumption will be a distribution of the alea-
tory variability that best represents the combination of variability
within a tank and tank-to-tank variability. The negative effect of
an invalid assumption of ergodicity is that the distribution may be
biased toward the particular tank that has most measurements
(since all observations are treated with equal weight in the
likelihood function).

5.2 Model Validation Results. Once the model parameters
have been calibrated, they are each represented by a posterior
family of distributions that includes both aleatory and epistemic
sources of uncertainty. These families of distributions for the
model parameters can be propagated through the model to obtain
a family of distributions for the model output Ym. Since this distri-
bution contains combined aleatory and epistemic uncertainty, the
modified approach to computing the model reliability metric pro-
posed in Sec. 3.2 must be applied. The displacement w is pre-
dicted at all locations where it is measured in data set 6, and a
family of model predictions is obtained at each location for each
of the four field-tested tanks. For each of the metric computations,
the tolerance is set according to � ¼ 2 � EPðrYm

Þ for the particular
family of distributions for Ym. Two examples of transforming a
family of distributions for Ym into a single distribution for MYm

are
shown in Fig. 6. The distribution of the mean prediction is then
integrated over the interval [ yd � �, yd þ � ] to obtain the reliabil-
ity at each location.

At the two different tank locations depicted in Fig. 6, the model
reliability is significantly different. In fact, the model reliability
varies significantly from one location to another across the entire
tank. An average of the results taken across the four tanks at each
location is shown in Fig. 7. In general, the model reliability tends
to increase as x increases (i.e., nearer the end caps of the tank),
and it is maximized at a circumferential angle of about 60 deg.
Understanding the predictive capability of the model as a function
of location is useful for isolating physics inadequacies in the
model and making improvements. However, if the model is used

in prediction as is, a global measure of reliability is useful to
modify the parameter distributions according to the approach in
Sec. 4. In this case, the mean model reliability across all the loca-
tions is approximately 0.4.

5.3 Prediction and Reliability Assessment Results. The
validation assessment does not give high confidence in the
predictive capability of the model across all the tank locations.
Additional conservatism should be added to the prediction; one
approach is to acknowledge a potentially wider range of uncer-
tainty in the parameters. In some of the posterior distributions,
particularly the posteriors of the geometry parameters, the inferred
aleatory distributions are significantly biased from the manufac-
turer data. One potential explanation is that the ergodicity assump-
tion is invalid, and the posterior distributions of the model

Fig. 6 Sample computations of model reliability in the presence of combined aleatory and
epistemic uncertainty. For this particular tank prediction, r 5 0 for X 5 0 and w 5 30 (left) and
r 5 0:98 for X 5 0 and w 5 90 (right).

Fig. 7 Spatial variation of model reliability averaged across
four tank predictions
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parameters are the result of overweighting the observations for the
particular tanks where measurements were available. In this sce-
nario, other parameter values that have not been accounted for
may be realized in other tanks. To account for this possibility,
some weight should be given to the manufacturer specifications.
However, it is challenging to incorporate this information because
the manufacturer data include only deterministic estimates of the
parameter.

Some additional expertise from past experience is needed in
order to translate these deterministic estimates into an estimate of
uncertainty. For example, past experience with other similar fabri-
cation efforts might provide an estimate of expected variability. In
the absence of specific experience, one option is to consult the lit-
erature for information about similar materials or assemblies. For
example, U.S. Department of Commerce building codes [44] indi-
cate that a coefficient of variation (COV) of 0.06 is typical for ma-
terial properties, and a COV of 0.05 is typical for geometric
parameters. For illustration, alternate distributions for the parame-
ter uncertainty with mean equal to the manufacturer specification
are assumed normal with variance obtained from these literature
COV estimates. Following the approach in Eq. (21), a weight of
0.4 (the overall average model reliability) is given to the posterior
parameter distributions, and a weight of 0.6 is given to the
alternate distribution to achieve the more conservative parameter
distributions that are shown in Fig. 8.

Once the uncertainty in the model parameters is expanded, the
distributions must be propagated through the model in order to
predict the behavior of the remaining tanks. The predictions of the
maximum stress in the tank material can then be compared against
the yield stress of the material in order to assess the tank reliabil-
ity. However, the yield stress of the material is also variable with
unknown aleatory distribution. By again applying the method of
Sec. 2.2.2 and using the direct observations of yield stress from
data set 2, a family of distributions is obtained for the yield stress
of the material. By applying Eq. (11), this family is condensed to
a single distribution that includes aleatory and epistemic uncer-
tainty in the yield stress. The probability of maximum predicted
stress exceeding the yield stress is then computed according to the
Monte Carlo sampling from the distributions shown in Fig. 9.

The reliability analysis predicts a probability of 0.0075 that the
maximum stress will exceed the yield stress of the material. This

probability may or may not be acceptable to the decision maker,
but it should be noted that this value itself is very uncertain. This
value is very sensitive to assumptions that were made in the analy-
sis (in particular, the assumption of ergodicity and the assumption
of an alternate distribution from the manufacturer data). This com-
putation is primarily performed for the purpose of illustration, and
the results should not be blindly trusted without first collecting
some additional information to check the validity of these
assumptions. In other words, the quality of these assumptions
dramatically influences the credibility of the prediction, and in
practice, it is very dangerous to make decisions based on an
assessment without first testing the major assumptions. As a start-
ing point, sensitivity analysis can provide some insight about how
much a change in the assumptions impacts the final assessment.
This knowledge may then help to guide additional activities aimed
at reducing the sources of uncertainty to which the prediction is
most sensitive.

Fig. 8 Expansion of parameter uncertainty to account for model form error and insufficient variability information

Fig. 9 Reliability assessment based on the distributions of
maximum predicted stress and material yield stress
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6 Conclusion

This paper proposes and demonstrates a comprehensive
methodology for calibration, validation, and prediction under
uncertainty. The proposed methods particularly focus on novel
approaches to include and separate aleatory and epistemic sources
of uncertainty in calibration and validation. For existing calibra-
tion and validation approaches (in particular, Bayesian calibration
methods and the model reliability metric for validation) to be
appropriate, they must be cast in a way that is consistent with the
sources of uncertainty in the available data. A primary goal of
the methodology is to be conservative when quantifying the pre-
diction uncertainty. This paper adds conservatism by imposing a
stricter validation tolerance on overconfident models (i.e., models
that predict low uncertainty) and by expanding parameter uncer-
tainty to account for model form error. The proposed approach
incorporates heterogeneous data sources in a hierarchical fashion
based on the relevance of the information to the prediction of
interest. Decisions about how to handle the available information
are always subject to some expert judgment and knowledge from
prior experience, and this expertise may be qualitative. In
problems where data are particularly limited and uncertain, some
additional assumptions are required in order to integrate the avail-
able information. While the assumptions may be unavoidable, the
assessment is not credible unless the major assumptions are tested,
and the sensitivity of the predictions to these assumptions is
understood.
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