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Abstract: In this note we combine two known algorithms and show how they can be used in 

order to generate tradeoff curves between time and cost for deterministic project scheduling 

problems with multiple modes and resource availability costs. The approach can handle linear 

and non-linear non-decreasing cost functions and it is based on the exact algorithm presented in 

Demeulemeester (1995) for the resource availability cost problem without multiple modes. As 

the problem is NP-hard, the method is computationally viable to solve only problems of a 

moderate size. The performance of the combined algorithm is evaluated solving different 

problem instances generated by the software Progen, and the solutions are compared to the ones 

generated by a modeling language with the solver CPLEX. 

Keywords: project scheduling, resource availability cost, multiple modes, time/cost tradeoff 

curve, exact algorithm. 

 

1. Introduction 

This note deals with a deterministic project scheduling problem of minimizing resource 

availability costs considering the project completion time, the precedence relations among the 

activities and the multiple modes to execute an activity. The special case of this problem where 

there is only one mode to execute each activity is known as the resource availability cost 
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problem (RACP). The RACP was introduced in Möhring (1984) where it was shown to be NP-

hard. Drexl and Kimms (2001) point out that the solution of the RACP for different project 

deadlines provides interesting time/cost tradeoffs, which is valuable information for negotiating 

the price of a project. 

The RACP differs from the resource constrained project scheduling problem (RCPSP) 

in that the former seeks to minimize a non-decreasing discrete cost function of unlimited 

resources while completing the project by a given deadline, whereas the latter seeks to minimize 

the project deadline or makespan (i.e., the completion time of the last activity of the project) 

with limited resources. Surveys on exact and heuristic methods for the RCPSP are found in 

Herroelen et al. (1998), Kolisch and Hartmann (1998), Brucker et al. (1999), Kolisch and 

Padman (2001), Kolisch and Hartmann (2006) and Lancaster and Ozbayrak (2007). 

The literature on solution methods for the RACP is relatively scarce. Möhring (1984) 

presented an exact approach for the RACP and applied it to a bridge construction. 

Demeulemeester (1995) proposed an exact algorithm for the RACP that solves a sequence of 

RCPSPs, here called D-algorithm for short. Drexl and Kimms (2001) proposed two lower bound 

procedures for the RACP based on Lagrangean relaxation and column generation methods. 

Yamashita et al. (2006) developed a scatter search procedure for the RACP and applied it to a 

number of test instances. We are not aware of exact solution methods for the problem addressed 

here, the multi-mode resource availability cost problem (MMRACP), which extends the RACP 

by considering multiple modes to execute an activity. To the best of our knowledge, there is 

only one heuristic procedure for the MMRACP recently proposed in Hsu and Kim (2005), which 

is based on priority rules. The project scheduling model becomes more general and realistic as it 

considers multiple modes to execute the activities, obviously at the expense of an increase in the 

number of decision variables. Recent studies on project scheduling models with multiple modes 

are found in e.g. Alcaraz et al., (2003), Bouleimen and Lecocq (2003), Brucker and Knust 

(2003), Mika et al. (2005), Zhu et al. (2006), Buddhakulsomsiri and Kim (2007). 
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In this note, we combine two known exact algorithm and show how it can be used to 

solve the MMRACP and generate tradeoff curves between the project completion time and the 

costs of resource requirements. As Chassiakos and Sakellaropoulos (2005) point out, time-cost 

analysis is an important element of project scheduling, in particular, for lengthy and costly 

construction projects. Our approach is based on the D-algorithm and it uses the branch-and-

bound method presented in Sprecher and Drexl (1998) to solve the multi-mode resource 

constrained project scheduling problems (MMRCPSP) involved in the algorithm. As the 

MMRACP is NP-hard, the algorithm is computationally reasonable to solve only problems of a 

moderate size. We also explore the potential of the approach to handle nonlinear non-decreasing 

cost functions concerning resource availabilities. To evaluate the method, a number of test 

instances were generated using Progen (Kolisch and Sprecher, 1996), software that has been 

extensively used for various project scheduling problems. The performance of the combined 

algorithm is compared to the modeling language GAMS (Brooke et al., 1998) with the solver 

CPLEX.  

The remainder of the note is organized as follows. Section 2 contains a brief description 

of the problem and an illustrative example. In Section 3, we describe how the D-algorithm was 

adapted to solve the MMRACP and generate tradeoff curves between the project deadline and 

the resource availability costs. Computational tests are reported in Section 4 and concluding 

remarks are presented in Section 5. 

 

2. Problem description 

Consider a project with n activities subject to finish-start precedence relations (h,j) ∈ H, 

where activities 1 and n are dummy activities that indicate the starting and finishing time of the 

project, respectively. Each activity j if executed in mode i (i = 1, …, Mj) has a duration dji and 
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requires rjik units of resource type k (k = 1, ..., m) over its duration. We assume that the resources 

are renewable, like workforce and machines. 

Let D represent the project deadline and Ck(ak) denote a linear or non-linear non-

decreasing cost function associated with the availability ak of resource type k. A mathematical 

model for the MMRACP, based on the model presented in Talbot (1982) for the MMRCPSP, is 

described below. The decision variables are the finishing times of the activities and the resource 

availabilities: 

• 
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• a = (a1,…, am) is the vector of resource availability variables, where ak is the availability 

of resource type k, k = 1,..., m. 

The remaining input data for the MMRACP is: 

• LFj = the latest finishing time in which activity j can be processed, without violating 

project deadline D, satisfying the precedence relations among the activities in H, and 

considering unlimited resource availabilities. LFj can be found straightforward by 

working backwards through the network, starting from dummy activity n, which is 

scheduled at time instant D. The remaining activities are scheduled iteratively, as soon as 

all their successors have already been scheduled. Since we can have more than one mode 

to execute an activity, in order to compute LFj we select the mode that yields the smallest 

duration for activity j. 

• EFj = the earliest finishing time in which activity j can be completed without violating 

the precedence relations among the activities, and ignoring the resource constraints. 

Similar to LFj, it is computed straightforwardly by forward scheduling, starting with 

dummy activity 1, which is scheduled at time instant 0. Activities are then scheduled as 

soon as their predecessors have been scheduled.  
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In this formulation of the MMRACP, (1) refers to the objective function that minimizes 

the total resource availability cost of the project. Restrictions (2) impose that each activity is 

executed exactly once and in only one mode. Restrictions (3) guarantee that the precedence 

relations among the activities is respected, and restrictions (4) guarantee that the total amount of 

type-k resources required by the activities in a time instant t does not exceed the amount of 

resources available for the project. Finally, restrictions (5) define the binary decision variables 

and restrictions (6) assure that the resource availability variables are non-negative integers. Note 

in formulation (1)-(6) that the completion time of the project is considered implicitly, since 

Dt ≤  for all binary variables xjit. 

 

An illustrative example 

We present an illustrative example for the MMRACP. Figure 1 shows the precedence 

relations among the activities for a project instance with n = 7 activities and m = 3 resource 

types, called example 1. Table 1 presents the duration dji and the amount of resources rjik 

required by each activity j, when executed in mode i. The resource availability cost of the 
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project is a linear function given by c1a1 + c2 a2 + c3a3, where c1 = 1, c2 = 5, c3 = 2, and the 

deadline of the project is D = 20. If the resource availabilities for the project are a1 = 2, a2 = 4 

and a3 = 6, then the corresponding cost associated with these availabilities is equal to 34. 

 

Figure 1. Precedence relations for example 1. 
 

Table 1. Input data for example 1 
 

An infeasible schedule for this project is displayed in Figure 2. The horizontal axis of 

Figure 2 shows the starting and finishing times of each activity, and the vertical axis shows the 

amount of resources of type k = 1, 2, 3, available for the project. Note that activity 4 is executed 

in mode 2, while the other activities are executed in mode 1. This schedule is infeasible with 

respect to the project’s deadline, D = 20, however, it is feasible with respect to the maximum 

resource usage (which has to be smaller than 2 units for resource type 1, 4 units for resource 

type 2 and 6 units for resource type 3). 

 

Figure 2. Gantt diagram for example 1 

 

Models (1)-(6) assume that the decision maker has a deadline D for the project and the 

goal is to find out the scheduling of the activities and the resource availabilities, so that the cost 

of resource requirements is minimized and the project can be done within this deadline. 

Alternatively, there can be situations where the decision maker has a limited budget C  for the 

project and he or she wishes to minimize the completion time of the project within this budget 

limit. This situation is described by model (7)-(9) below. Note that the objective function (7) 

now minimizes the project completion time and restriction (9) refers to the budget limitation of 

the project. Both models (1)-(6) and (7)-(9) could be used to generate tradeoff curves between 

time and cost, nevertheless, in this note we choose arbitrarily the first model. 
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3. Generating time/cost tradeoff curves for the MMRACP 

In this section we describe how we combine the D-algorithm and the algorithm proposed 

by Sprecher and Drexl (1998) to consider multiple modes of execution for the activities and to 

generate time/cost tradeoff curves for the MMRACP. Since the solution procedure relies on 

solving a sequence of MMRCPSPs, first we present a mathematical model for the MMRCPSP. 

The main differences between the MMRACP and the MMRCPSP are the objective function and 

the resource availability variables ak, k = 1,…, m. In the MMRCPSP, the objective function is to 

minimize the project makespan and the resource availability is an input data for the problem.  

It can be formulated as (Talbot, 1982): 

�
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n

n

LF

EFt
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subject to (2), (3), (4) and (5).        (11) 

As in model (1)-(6), model (10)-(11) includes the constraints (2)-(5) to ensure that each 

activity is executed exactly once and in only one mode, and to make the project feasible with 

respect to the precedence relations and resource limitation. It is worth noting that, unlike model 

(1)-(6), this model does not include restrictions (6), since the resource availabilities ak, k = 

1,…m, are parameters rather than variables.  

Hartmann (2000) compared several branch-and-bound algorithms proposed in the 

literature to solve the MMRCPSP (model (10)-(11)), and ranked the algorithm proposed by 

Sprecher and Drexl (1998) among the best. Hence, in this work the MMRCPSP is solved by the 
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branch-and-bound algorithm in Sprecher and Drexl (1998). The algorithm generates a search 

tree, the nodes of which are partial schedules, and branching occurs by selecting the next activity 

that is scheduled, as well as its execution mode. 

The enumeration procedure starts by scheduling activity 1 at time instant t = 0. At each 

level of the search tree, we determine the set of activities that were already scheduled (partial 

schedule) and the set of candidate activities, that is, activities that were not scheduled yet but are 

precedence feasible. The next step is to select an activity from the set of candidate activities and 

a respective execution mode. This generates a new branch in the search tree. We proceed this 

way until all activities are scheduled, and therefore, we obtain a makespan for the project. More 

details of this branch and bound algorithm for the MMRCPSP can be found in Sprecher and 

Drexl (1998). 

 

Solution procedure of the MMRACP 

In order to adapt the D-algorithm to handle multiple modes of execution for the activities 

and to generate a time/cost tradeoff curve, two main modifications are made to the original 

algorithm: 

• Instead of solving a sequence of RCPSPs, the algorithm solves a sequence of 

MMRCPSPs. 

• A procedure to generate a time/cost tradeoff curve is added to the algorithm.  

 Since the modified algorithm does not alter the main steps of the D-algorithm, and the 

MMRCPSPs involved are solved by an exact solution procedure, the algorithm is exact for the 

MMRACP. 

The algorithm starts by specifying a deadline range, (Dmin , Dmax). In the next step, the 

current deadline value is set to Dmax and a lower bound limit for the amount of resources 

available is computed. Once the resource availability is fixed, a MMRCPSP (model (10)-(11)) is 
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solved. If it is possible to find a feasible solution for the MMRCPSP, then we have found an 

optimal solution for the MMRACP. Otherwise, we create a set of candidate solutions ES, where 

a candidate solution a = (a1,…, am) is the vector of resource availability variables. Initially, this 

set consists of candidates´ solutions generated from a lower bound solution, marginally 

increasing its resource availabilities. These new solutions are inserted in ES if they are efficient 

points. Point ),...,( 1 maa  is an efficient point if there is no other point ),...,( ,,
1 maa  in the solution 

space such as kk aa ≤,  for all k = 1,.., m. For example, suppose we have ES ={(5,2,3), (4,5,7), 

(5,5,1)}, then (4,6,7) is not an efficient point, since point )7,5,4(  is already in ES. 

The next step is to solve the MMRCPSP corresponding to the cheapest efficient point. If 

the MMRCPSP is infeasible with respect to the current deadline, this efficient point is 

eliminated from ES and the algorithm generates m solutions from this infeasible solution, 

increasing the resource availabilities, one resource type at a time, by one unit. These new 

solutions are included in ES if they are efficient points and the search proceeds by solving the 

MMRCPSP corresponding to the cheapest efficient point. This process is repeated until a 

feasible solution is found, that is, the project finishes before the current deadline and the 

resource limits are not violated at any time while the project is being executed. This is the 

optimal solution for the MMRACP for the current deadline. 

The procedure to generate the time/cost tradeoff curve starts by decreasing the current 

deadline value by one unit (or more, if it suits the decision maker) and repeating the process of 

examining ES, until finding the cheapest efficient point that finishes before the current deadline. 

Note that, rather than creating a new set ES from scratch, we save some computational time by 

using the set found in the previous iteration as a starting point in the new iteration. The 

procedure stops when the current deadline is smaller than Dmin. It should be noted that this 

algorithm is computationally viable in situations where it is reasonable to consider the resource 
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availability as integer numbers and in relatively small amounts (e.g., few dozens of workers, 

instead of hundreds or thousands of workers). 

A concise pseudo code for the solution procedure is presented in Figure 3, followed by a 

discussion of its application to the illustrative example of Section 2. Step 1 computes a simple 

lower bound (b1,...,bm) for the vector of resource availabilities (a1,...,am). The main goal of Step 

2 is to improve the lower bound bk: first we choose a resource type k and set ak = bk, while the 

remaining m-1 resource types l, kl ≠ , are set to their upper bound value al = ul, and then we 

solve a MMRCPSP for this resource availability (a1,...,am). If this solution is feasible, the lower 

bound bk cannot be improved, otherwise, ak (the variable that was initially set to bk) is increased 

by one unit, i.e., ak = bk+1, and a new MMRCPSP is solved for this new vector of resource 

availabilities (a1,...,am). This procedure is repeated until a feasible solution is found. Note that 

this procedure results in an optimal solution for the MMRACP if we have only one resource 

type (m = 1). 

In Step 3, the procedure starts by generating candidate solutions by combining two 

resource types: resource type 1 and resource type k, k ≠ 1. Initially, these two resource types 

receive the value of the lower bound, a1 = b1 and ak = bk , and the remaining resource types 

receive the upper bound value. The objective is to find a set of tuples (a1, ak) that result in a 

feasible schedule, such as if we decrease one of the resource types, a1 or ak, the solution 

becomes infeasible. For each resource type k, k ≠ 1, these values are stored in set PESk, that 

consists of tuples (a1, ak) where the second element is the minimum amount of resource type k 

necessary when only a1 units of resource type 1 are available (where a1 is the first element of the 

tuple). Set PESk is updated as follows: we check if there is already a tuple in PESk, where the 

first element is equal to a1. If this is the case, the second element of the tuple is replaced by ak. 

Otherwise, a new tuple is added to PESk where a1 is the value of the first element and ak is the 

value of the second element. Set EP is a set related to PESk, and it contains all values a1 for 

which a tuple was added to PESk. Set EP is updated as follows: we check if there is an element 
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in EP equal to the current value a1. If such an element does not exist, then it is added to the set. 

Note that if m = 2, Step 3 finds an optimal solution for the MMRACP.  

 In Step 4, we create set ES, a set of the candidate solutions obtained from the elements of 

PESk. Note that these solutions are lower bounds for the MMRACP. For each element EPa ∈1 , 

we seek tuples in PESk, where the first element is the greatest element smaller than or equal to 

a1, and we set ak to the value of the second element, k = 1, 2.,..., m. Then, we check if this lower 

bound can be included in ES. If there is no element in ES with the same resource values, and if 

there is no other element in ES that dominates the current solution, that is, there is 

no ),...,( 1 myyy = , ESy ∈ , such as, kk ay ≤ , for all k = 1,..., m, then the current element is inserted 

in ES. Otherwise, no other element is inserted in ES.  

 In Step 5, the resource availability is the one defined by the element in ES with the 

smallest cost. If this resource availability yields a feasible solution, then an optimal solution for 

the current deadline is found. Otherwise, the algorithm generates m solutions from this infeasible 

solution, increasing the resource availabilities, one resource type at a time, by one unit. These 

new solutions are included in ES, if they are efficient points.  

 In Step 6, we generate the time/cost tradeoff curve. As we reach this step, we already 

have a solution for the MMRACP for the current deadline, and one iteration of the algorithm is 

completed. We proceed by updating the current deadline, decreasing it by at least one unit. The 

algorithm stops if the current deadline is smaller than Dmin (other stop criteria can be also used, 

for instance, a computational time limit or a maximum cost for the project). If the stop criterion 

is not satisfied, we generate a new point of the tradeoff curve. First, we update the lower bound 

value bk using a similar procedure as the one described in Step 2. Note that, since the current 

deadline is smaller than the deadline of the previous iteration, the new lower bound value bk is 

greater than or equal to the lower bounds computed in the previous iteration. Therefore, we do 

not have to compute bk from scratch, instead, we start a new computation of bk using the value of 

bk obtained in the previous iteration. After bk is updated, we examine list ES and we update the 
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elements ESyk ∈  where kk by ≤  for some k = 1,…,m, by increasing the value of yk to bk. The 

new costs of the updated elements in ES are computed, the set ES is resorted and Step 5 is 

repeated. 

 

Figure 3. Pseudo code of the combined algorithm 

 

Algorithm application to the illustrative example 

 In order to illustrate the application of the algorithm, we use the example presented in 

Section 2.  

Step 1: We set the current deadline to D = 20. The lower bound is 

computed:    b1 =1, b2 = 3, b3 = 3 . 

Step 2: The upper bound value is computed by � =
=

n

j jikik ru
1

)(max , thus u1 = 7, u2 = 11 

and u3 = 11. The objective in this step is to improve the lower bound value. It starts by assigning 

a lower bound value to resource type 1, and the remaining resource types receive the upper 

bound value, in other words, the resulting vector of resource availabilities is given by ),,( 321 aaa  

= (1,11,11). Then, a MMRCPSP is solved for this vector of resource availabilities, and we 

obtain a makespan value that exceeds the project’s deadline. Therefore, resource type 1 is 

increased by one unit and we determine the makespan for ),,( 321 aaa  = (2,11,11). This solution is 

feasible and therefore, a new lower bound for resource type 1 is given by     b1 = 2 . This procedure 

to determine the lower bound is repeated for resource type 2: we evaluate (7,3,11) and we obtain 

an infeasible solution. We increase the availability of resource type 2 and we obtain (7,4,11), 

which is a feasible solution, thus, the new lower bound for resource type 2 is 41 =b . We proceed 

in this way for resource type 3 and we find the value 43 =b . The lower bounds for each resource 

type at the end of Step 2 are 4,4,2 321 === bbb . 
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Step 3: We start with resource type 2, k = 2, and we enumerate all pairs (a1, a2) that 

result in a feasible solution, such as if we decrease one of these resource types by one unit, the 

solution becomes infeasible, that is, (a1-1, a2, a3) and (a1, a2-1, a3) are infeasible. As in the D-

algorithm, we begin with solution )11,4,2(),,(),,( 321321 == ubbaaa . Resource a2 is increased by 

one unit and a MMRCPSP is solved for this vector of resource availability. Since it yields an 

unfeasible solution, a2 is increased again, that is, a2 = 6, and the corresponding vector of 

resource availability results in a feasible solution. After updating PES2, we have PES2 = {(2,6)} 

and EP = {2}. The availability of resource a1 is increased by one unit, a1 = 2+1 = 3, and a2 is 

decreased by one unit, until the solution becomes infeasible or a lower bound for this resource 

type is reached. Thus we have,  

• (3,5,11) – feasible solution, PES2 = {(2,6),(3,5)} and EP = {2,3}. 

• (3,4,11) – feasible solution, PES2 = {(2,6),(3,4)} and EP = {2,3}.  

Note that a2 = b2, therefore a2 cannot be reduced anymore as it reached the lower bound value 

b2. This procedure is repeated for k = 3: 

• (2,11,4) – infeasible solution, then increase resource type 3 by one unit 

• (2,11,5) – infeasible solution, then increase resource type 3 by one unit 

• (2,11,6) – feasible solution, PES3 = {(2,6)} and EP = {2,3} (2 is already in EP) 

The procedure proceeds as described in the algorithm and it yields PES3 = {(2,6), (3,4)} and EP 

= {2,3}. 

Step 4: The first element in EP is 2, and from set PES2 we obtain a2 = 6, and from set 

PES3 we obtain a3 = 6, therefore, ES = {(2,6,6)} with cost: 44626521 =⋅+⋅+⋅ . The second 

element in EP is 3, thus, ES = {(3,4,4), (2,6,6)}, where (3,4,4) yields a cost of: 

31424531 =⋅+⋅+⋅ . Note that ES is sorted by increasing cost.  

Step 5: We start by selecting the first element of ES, (3,4,4). As this solution is 

infeasible, then the resource availabilities are increased, yielding the following resource vectors 

(see Figure 4): (4,4,4,32), (3,5,4,36), (3,4,5,33), where the first three numbers are the resource 
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availabilities and the last number in bold is the cost of the project. Since these elements do not 

belong to ES and they are efficient points, they can be added to ES = {(4,4,4,32), (3,4,5,33), 

(3,5,4,36), (2,6,6,44)}. The next element to be examined is (4,4,4,32), and it yields a feasible 

solution when the MMRCPSP is solved. Therefore, we generate solutions: (5,4,4,33), (4,5,4,37), 

and (4,4,5,34). Solution (4,5,4,37) is dominated by (3,5,4,36) and solution (4,4,5,34) is 

dominated by (3,4,5,33) and therefore, they are not included in ES={(3,4,5,33), (5,4,4,33), 

(3,5,4,36), (2,6,6,44)}. Following the order of the elements in ES, we examine (3,4,5,33), and 

we find out that it is infeasible, and the following solutions are generated (4,4,5,34), (3,5,5,38) 

(it is not added to ES because it is not an efficient point) and (3,4,6,35), thus, ES={(5,4,4,33), 

(4,4,5,34), (3,4,6,35), (3,5,4,36), (2,6,6,44)}. Now, we determine the makespan for (5,4,4,33), 

and it yields an infeasible solution, hence, set ES is updated, ES={(4,4,5,34), (6,4,4,34), 

(3,4,6,35), (3,5,4,36), (2,6,6,44)}. Next, we examine (4,4,5,34), which results in an infeasible 

solution, and the new set ES is given by ES={(6,4,4,34), (3,4,6,35), (5,4,5,35), (3,5,4,36), 

(2,6,6,44)}. The algorithm proceeds by determining the makespan for the cheapest solution, 

(6,4,4,34). This solution is also infeasible and ES={(3,4,6,35), (5,4,5,35), (7,4,4,35), (3,5,4,36), 

(6,5,4,39), (2,6,6,44)}. Finally, the solution (3,4,6,35) has a schedule that finishes before the 

project’s deadline, and therefore, this is an optimal vector of resource availabilities for the 

current deadline.  

 

Figure 4. Illustration of Step 5: infeasible solutions are marked with “I” and solutions that are 

not efficient points (dominated solutions) are marked with “D”. 

 

Step 6: Tradeoff curve: Solution (3,4,6,35) has a schedule that finishes at time instant 20, 

therefore, we update the deadline value to D = 19 and we start a new iteration. The lower bounds 

from the previous iteration are 4,4,2 321 === bbb . If we take ),,(),,( 321321 uubaaa =  and we 

solve an RCPSMM for D = 19, we obtain an infeasible solution, hence, 1b is increased to 31 =b . 
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We solve a RCPSMM for the vector of resource availabilities ),,3( 321 uub =  and we obtain a 

feasible solution, therefore value 3 is the new lower bound for resource type 1. We proceed by 

updating 2b , which is increased from 42 =b  to 62 =b , and 3b  is increased from 43 =b  to 63 =b . 

Set ES is updated and sorted, and the algorithm proceeds by determining the makespan for the 

next solution with the smallest cost, (3,6,6,45), which results in 15 (smaller than D = 19), and we 

add this point to the tradeoff curve. This step is repeated until the stop criterion is satisfied. 

 

4. Computational experiments 

 In this section, we present the computational results obtained by the combined algorithm 

presented in section 3. The experiments were performed on a PC Pentium 4, 2.6 GHz, 512 

Mbyte RAM. All procedures were coded in C++ language. The MMRACP and MMRCPSP share 

most input data and therefore it is relatively easy to adapt existing instances of the MMRCPSP 

to the MMRACP.  

We use Progen (Kolisch and Sprecher, 1996) to generate instances for the MMRCPSP 

and adapt them to the MMRACP. The network complexity (NC) and resource factor (RF) are 

two important input parameters to Progen. NC controls the average number of immediate 

successors of an activity. RF, which ranges between 0 and 1, controls the percentage of resource 

types required by an activity. For example, if RF = 1, every activity in the project requires all m 

types of resources, while RF = 0 indicates that activities do not require any type of resources. 

To complete the construction of a problem instance, it is also necessary to determine a 

completion time for the project. This deadline is computed as: nEFDFD ⋅= , where DF is the 

deadline factor and nEF  is the earliest finishing time for the project. The minimum and 

maximum deadlines Dmin and Dmax are obtained by setting DF = 1.0 and DF = 1.5, respectively. 

For each instance, costs ck are real numbers drawn from the uniform distribution U[1,10], and 
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the duration of the activities are integer values sorted and rounded from the uniform distribution 

U[1,10]. 

 During the search, if the algorithm does not generate all tradeoff points for the specified 

deadline range, the search is interrupted after reaching 3,600 seconds. The parameters used to 

generate the test instances are: 

• RF: 0.25, 0.5, 0.75 and 1.0 

• NC: 1.5, 1.8 and 2.1 

• n = 15, m = 4, Mj = 3, j = 1,…,n. 

 We have also tested two types of objective functions: 

• Linear: ��
==

=
m

k
kk

m

k
kk acaC

11

)(  

• Nonlinear: ��
==

=
m

k
kk

m

k
kk acaC

1

2

1

)(  

For each objective function, we generated instances for all RF and NC values, that is, a 

test set of 1234 =×  problem instances. In order to assess the quality of the combined algorithm, 

we have also solved the instances using the modeling language GAMS (version 2.0.10.0) 

(Brooke et al., 1998) and the solver CPLEX (version 7.0) with default parameter settings. To 

solve model (1)-(6) with the nonlinear cost function in GAMS/CPLEX, we transformed it into a 

linear model by adding binary variables: 

�
�
� =

=
otherwise. ,0

project for the available   typeof resources ),...,2,1( are  thereif ,1
 

kLll
z k

kl  

where Lk is an upper bound on the amount of type k resource. 
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subject to (2), (3), (4), (5), (6), and       (13) 
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l
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==�
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       (14) 

 { } kkl Llmkz ,...,1,,...,1,1,0 ==∈       (15) 
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In this formulation, (12) is equivalent to the quadratic cost function defined before, and 

restrictions (2)-(6) are defined in Section 2. Restrictions (14) guarantee that for each resource 

type k, only one value of zkl is equal to 1, and restrictions (15) define the binary variables zkl. 

 

Table 2. Computational times (in seconds) for the linear model 

 

Table 3. Computational times (in seconds) for the non-linear model 

 

Tables 2 and 3 compare the computational runtimes (in seconds) of the combined 

algorithm to GAMS/CPLEX for the linear and non-linear models, respectively. Note in Table 2 

that the combined algorithm solves more instances (11 out of 12) than GAMS/CPLEX (6 out of 

12) within the time limit of 3,600 seconds. The algorithm is faster than GAMS/CPLEX as the 

RF value increases, that is, as the activities require more types of resources and the problem 

becomes more constrained.  

Regarding Table 3, the combined algorithm solved 11 (out of 12) instances within the 

time limit, while GAMS/CPLEX solved only 4 instances. The algorithm is faster in all test 

instances of Table 3. In most examples, the computational times increase with the RF values. By 

comparing Tables 2 and 3, it is interesting to note that GAMS/CPLEX has a worse performance 

when solving a non-linear model than solving a linear model, due to the increase in the number 

of variables of model (12)-(15).  

Figure 5 shows a graph of the time/cost tradeoff curve for one of the examples of Table 2 

with 15 activities, 4 resources, RF = 0.5, NC = 1.5. The initial deadline Dmin and the maximum 

deadline Dmax values were set to 19 and 28, respectively. Note that the greatest decrease of cost 

occurs for the smallest deadlines values, from 19 to 21. For D > 24, we can observe that the cost 

values seem to converge. The tradeoff curves of other examples of the Tables have a similar 
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behavior. These curves are interesting as they provide the decision maker with a quantitative 

tradeoff analysis between the project deadline and the resource availability cost. 

 

Figure 5. Graph illustrating the time/cost tradeoff for an instance in Table 2. 

 

5. Conclusions 

 In this note we combine two known exact algorithms and show how they can be used to 

generate time/cost tradeoff curves for the multiple mode resource availability cost problem 

(MMRACP). The method can handle linear and non-linear non-decreasing cost functions of the 

resource availabilities, assuming that the resources are renewable. To the best of our knowledge, 

there are no exact methods to solve the MMRACP in the literature. The algorithm combines the 

exact algorithm presented in Demeulemeester (1995) to solve the RACP, and the branch-and-

bound method presented in Sprecher and Drexl (1998) to solve the different MMRCPSPs 

involved in the procedure. The project scheduling model becomes more general and realistic as 

it considers multiple modes to execute the activities, obviously at the expense of an increase in 

the number of decision variables.  

The test results showed that the combined algorithm is computationally feasible to 

generate time/cost tradeoff curves for problems of a moderate size. It is worth noting that this 

algorithm can only be dealt with in situations where it is reasonable to consider the resource 

availabilities as integer numbers and in relatively small amounts. As mentioned, time/cost 

tradeoff curves are interesting as they provide the decision maker with a quantitative tradeoff 

analysis between the project deadline and the required resource availability costs. 

The solutions obtained by the combined algorithm were compared to the ones of 

software GAMS/CPLEX, as we did not find other exact methods for the MMRACP in the 

literature. The algorithm was faster than GAMS/CPLEX in 18 (out of 24) test instances, while 
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GAMS/CPLEX was faster than the algorithm in 4 (out of 24) instances. In particular, the 

algorithm is faster than GAMS/CPLEX as the activities require more types of resources and the 

problem becomes more constrained. The computational results were mostly encouraging for the 

test instances with non-linear cost function, in which the combined algorithm was always faster 

than GAMS/CPLEX. Therefore, we believe that the algorithm is a fine starting point for the 

development of more efficient exact approaches to the MMRACP. An interesting perspective for 

future research is the extension of the method to deal with non-renewable resources.  
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Figure 1. Precedence relations for example 1. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Gantt diagram for example 1 

 
 
 
 

 
Step 1: Set D = Dmax. Generate a lower bound }{min , jikijk rb = , for each resource type 

 k = 1,..., m. 
Step 2: Lower bound kb  is improved for each resource type k = 1,..., m. 
Step 3: For each resource type k = 2,...,m, create sets PESk and EP. 
Step 4: Create set ES from set PESk. 
Step 5: Select a candidate solution a with the smallest cost from ES. If the solution is 
feasible, then go to Step 6, as an optimal solution was found. Otherwise, generate m 
candidate solutions by increasing the resources of the candidate solution a by one unit. 
Include the generated solutions in ES if they are efficient points. Repeat Step 5.  
Step 6: Tradeoff curve. Update the deadline by decreasing it: 1−← DD . If D < Dmin, 
stop. Update the lower bounds for this new deadline value. Update set ES and go to Step 
5.  

Figure 3. Pseudo code of the combined algorithm 
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Figure 4. Illustration of Step 5: infeasible solutions are marked with “I” and solutions that are 

not efficient points (dominated solutions) are marked with “D”. 
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Figure 5. Graph illustrating the time/cost tradeoff for an instance in Table 2. 
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Table 1. Input data for example 1 
Activity 

j 
Execution 

mode 
i 

Duration 
dji 

Resource 
1 

rji1 

Resource 
2 

rji2 

Resource 
3 

rji3 
1 M1 = 1 1 0 0 0 0 
2 M2 = 1 1 5 1 2 3 
3 M3 = 1 1 5 1 2 3 

1 5 3 1 1 4 M4 = 2 
2 10 1 1 1 

5 M5 = 1 1 5 1 3 2 
6 M6 = 1 1 5 1 3 2 
7 M7 = 1 1 0 0 0 0 

 

 

 

 

Table 2. Computational times (in seconds) for the linear model 

NC RF GAMS/CPLEX Combined 
Algorithm 

0.25 44.62 590.98 
0.50 454.85 531.67 
0.75 - 2756.25 

1.5 

1.00 - 518.84 
0.25 53.27 42.20 
0.50 184.12 381.36 
0.75 2645.84 1695.06 

1.8 

1.00 - 1955.74 
0.25 17.86 64.73 
0.50 - 42.47 
0.75 - 2064.28 

2.1 

1.00 - - 
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Table 3. Computational times (in seconds) for the non-linear model 

NC RF GAMS/CPLEX Combined 
Algorithm 

0.25 1080.21 583.22 
0.50 1678.24 442.19 
0.75 - 2097.55 

1.5 

1.00 - 469.84 
0.25   31.49 
0.50 2501.06 418.39 
0.75 - 1209.13 

1.8 

1.00 - 1529.72 
0.25 327.09 36.74 
0.50 - 37.13 
0.75 - 1303.69 

2.1 

1.00 - - 
 
 


