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Statins may offer protective effects in sepsis through anti-inflammatory, mitochondrial pro-
tection and other actions. We thus evaluated the effects of simvastatin on survival, organ
and mitochondrial function, tissue and plasma ubiquinone levels and liver transcriptom-
ics in a 3-day rat model of sepsis. Comparisons of rat plasma simvastatin and ubiquinone
levels were made against levels sampled in blood from patients with acute lung injury
(ALI) enrolled into a trial of statin therapy. Animals received simvastatin by gavage either
pre- or post-induction of faecal peritonitis. Control septic animals received vehicle alone.
Seventy-two-hour survival was significantly greater in statin pre-treated animals (43.7%)
compared with their statin post-treated (12.5%) and control septic (25%) counterparts
(P < 0.05). Sepsis-induced biochemical derangements in liver and kidney improved with
statin therapy, particularly when given pre-insult. Both simvastatin pre- and post-treatment
prevented the fall in mitochondrial oxygen consumption in muscle fibres taken from septic
animals at 24 h. This beneficial effect was paralleled by recovery of genes related to fatty
acid metabolism. Simvastatin pre-treatment resulted in a significant decrease in myocar-
dial ubiquinone. Patients with ALI had a marked variation in plasma simvastatin acid levels;
however, their ubiquinone/low-density lipoprotein (LDL) cholesterol ratio did not differ re-
gardless of whether they were receiving statin or placebo. In summary, despite protective
effects seen with statin treatment given both pre- and post-insult, survival benefit was only
seen with pre-treatment, reflecting experiences in patient studies.

Introduction
Despite decades of research, no specific intervention has clearly demonstrated patient outcome improve-
ment for sepsis-induced multi-organ dysfunction. Observational cohort studies report survival bene-
fit in septic patients on long-term statin therapy [1–3]. However, recent prospective randomized tri-
als found no benefit following either introduction [4–9] or continuation of statins [10], either in pa-
tients with sepsis and/or the acute respiratory distress syndrome (ARDS). Opinions on the utility of
statins in sepsis still remain divided. Some argue that differences reported in observational studies
are epiphenomenal and simply reflect a healthier, middle-class population demographic who are more
aware of health issues and have fewer co-morbidities [11]. Data in favour of statins are more compel-
ling when given as pre-treatment. In septic murine models, simvastatin pre-treatment markedly im-
proved survival and organ function compared with placebo controls [12,13]. Post-insult treatment also
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improved survival times, albeit less impressively [14]. In healthy volunteers pre-treated with simvastatin, there
was attenuated pulmonary inflammation induced by inhaled endotoxin [15]. In patients undergoing oesophagec-
tomy, simvastatin pre-treatment reduced systemic inflammation and epithelial and endothelial cell injury [16].

Mitochondrial dysfunction is postulated to be an important pathophysiological mechanism underlying
multi-organ failure in sepsis [17]. A strong association is described between disease severity, mitochondrial dysfunc-
tion and outcome in both clinical and experimental studies [18,19]. Mitochondrial biogenesis and functional recovery
preceded clinical improvement in a murine model of sepsis [20], whereas inadequate biogenesis prognosticated for
non-survival in patients [21].

Statins have pleiotropic effects through inhibition of the mitochondrial enzyme, 3-hydroxy-3-methylglutaryl
(HMG)-CoA reductase. This is an important regulatory step in the synthesis of both cholesterol and ubiquinone
[22]. In man the major ubiquinone species is coenzyme Q10, whereas in rats the major species is coenzyme Q9 [23].
Statins may have an impact both positively and negatively upon mitochondrial function [24]. Their antioxidant and
anti-inflammatory properties may offer protection while inhibitory effects on ubiquinone production may be detri-
mental [25]. Apart from being an important antioxidant, ubiquinone acts as an integral electron carrier within the
mitochondrial electron transport chain [25]. The statin-induced fall in ubiquinone is a putative explanation of its
main side effects, namely muscle pains, myopathy and rhabdomyolysis [26]. Indeed, we recently reported rapid im-
provements in myopathy and rhabdomyolysis with ubiquinone therapy in a patient who had taken a major statin
overdose [27]. These effects on mitochondria may be potentially compounded in critical illness as statin metabolism
is significantly impaired, leading to 10- to 20-fold rises in plasma statin levels following a single dose of atorvastatin
compared with healthy controls [28].

We thus sought to investigate the effects of simvastatin in a long-term (3-day), fluid-resuscitated rat model of
sepsis assessing both pre- and post-treatment with monitoring of survival, organ and mitochondrial function, tissue
ubiquinone levels and liver transcriptomics, as statins particularly target the liver. To assess the potential relevance to
patients, comparison of plasma simvastatin and ubiquinone levels were made against levels sampled in blood from
patients with acute lung injury (ALI) enrolled in a study randomized to receive statin or placebo [5].

Materials and methods
All experiments were performed according to local ethics committee (University College London) and Home Of-
fice (U.K.) guidelines under the 1986 Scientific Procedures Act. Adult male Wistar rats (approximate body weight
300 g) were housed for 7 days prior to experimentation. Under a brief period of isoflurane anaesthesia and analgesia
with subcutaneous buprenorphine (Vetergesic R©, Reckitt Benckiser, Hull, Humberside) 0.05 mg/kg, the right carotid
artery and left jugular vein were instrumented with 0.96 mm outer diameter polyvinyl chloride tubing tunnelled
subcutaneously to emerge at the nape of the neck. The catheters, enabling blood sampling and drug/fluid delivery,
were then mounted on to a swivel-tether system allowing the rat, on recovery from anaesthesia, to have unimpeded
movement in its cage and free access to food and water.

Catheters were continuously flushed with heparinized normal saline. Mean arterial blood pressure was measured
and recorded continuously using a P23XL transducer (Viggo-Spectramed, Oxnard, CA, U.S.A.), with a 16-channel
Powerlab system and Chart 5.0 acquisition software (AD Instruments, Chalgrove, Oxon).

Twenty-four hours after instrumentation, sepsis was induced by intraperitoneal injection of faecal slurry (3 ml/kg,
preparation obtained from human slurry suspended in normal saline) [29]. Two hours later, fluid was infused through
the central venous catheter using a 1:1 solution of colloid and 5% glucose. This was administered at a rate of 10 ml/kg
per h for the next 24 h, and halved on successive days until termination of the study at 72 h post-induction of sepsis.
Rats were monitored closely with those showing signs of distress (severity score >4) being culled prematurely [19].

In vivo animal studies
Simvastatin (Sigma–Aldrich, Gillingham, Dorset) was prepared freshly every morning as a 4 mg/ml solution by dis-
solving 24 mg of simvastatin in 8.3% ethanol drug vehicle. The drug vehicle constituted 1 ml of 0.1 M sodium hydrox-
ide, 4.5 ml of PBS and 500 μl of ethanol adjusted to pH 7.4 with 0.1 M hydrochloric acid. Animals were randomized
to receive 20 mg/kg simvastatin or vehicle given twice daily by oral gavage. This dose was determined from a phar-
macokinetic study (results not shown) using different doses (10 mg/kg once daily, 20 mg/kg once daily and 20 mg/kg
twice daily) of simvastatin in sham-operated and septic animals. The blood ethanol level was checked in six animals
16 h after the last gavage.

A 72-h survival study was performed using three groups (n = 16 per group) of animals randomized to receive
(i) simvastatin 20 mg/kg twice daily started 3 days before sepsis (sepsis + statin pre-treatment), (ii) simvastatin
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20 mg/kg twice daily started 6 h post-sepsis (sepsis + statin post-treatment), but with vehicle alone given for 3 days
prior, and (iii) vehicle throughout (sepsis + vehicle). Plasma concentrations of simvastatin and its main active meta-
bolite, simvastatin acid, were measured 24 h after sepsis, using liquid chromatography–mass spectrometry as previ-
ously described [30], in both sepsis + simvastatin groups and in a third group of healthy non-septic animals given
the same dose of simvastatin as statin pre-treatment animals. The lower limits of quantification for simvastatin and
simvastatin acid were 0.04 and 0.05 ng/ml respectively.

In a further set of experiments (n = 8 per group), animals were killed at 24 h after sepsis. A control group
of healthy näıve rats (no sepsis, no simvastatin) was added to the three groups described above for the survival
study. Prior to killing, animals were anaesthetized with isoflurane. Right soleus muscle was removed and transferred
into a plastic Petri dish containing ice-cold biopsy-preserving solution (containing 2.77 mM CaK2EGTA, 7.23 mM
K2EGTA, 5.7 mM Na2ATP, 6.56 mM MgCl2·6H2O, 20 mM taurine, 15 mM Na2-phosphocreatine, 20 mM imidazole,
0.5 mM dithiothreitol and 50 mM MES monohydrate at pH 7.1). This fluid allows storage of muscle with no signific-
ant impairment of mitochondrial integrity over a few hours [31]. Left soleus muscle, heart and liver were promptly
immersed in liquid nitrogen then stored at − 80 ◦C for later use. Plasma was separated and also stored at − 80 ◦C for
later batch analysis.

Ex vivo measurement of mitochondrial oxygen consumption
Small fibre bundles (10 mg) of the right soleus muscle were cut and manually teased apart with sharp-ended scissors
and forceps. Fibres were then permeabilized with 50 μg of saponin in 2 ml of isolating medium (same composition
as biopsy-preserving solution) for 20 min on ice with mild stirring. Bundles were then washed three times in ice-cold
respiratory medium (0.5 mM EGTA, 3 mM MgCl2·6H2O, 60 mM K-lactobionate, 20 mM taurine, 10 mM KH2PO4,
20 mM HEPES, 110 mM sucrose and 1 g/l BSA at pH 7.1) to remove saponin and metabolites. A Clark-type oxygen
electrode connected to a sealed chamber thermostatically maintained at 37 ◦C (Rank Brothers, Bottisham, Cambs)
was used to determine muscle oxygen consumption. The electrode measures pO2 within the solution, with tissue
oxygen consumption calculated from the rate of decrease in pO2, corrected for drift, and expressed as picomoles of
oxygen/ml/second/mg of tissue dry weight. Spontaneous drift rate (oxygen consumption by the electrode) was calcu-
lated from the output recorded in tissue-free solution over 15 min. The solution within the chamber was constantly
stirred using a magnetic stirrer, with addition of substrates and inhibitors via injection through the chamber lid seal.
A two-point calibration of the electrode was first performed at 0 and 210 μM in 1 ml of air-saturated respiratory
medium at 37 ◦C. Glutamate (10 mM) and malate (5 mM) substrates were injected into the chamber followed by oxy-
genation of the medium to 250 μM. Muscle fibres were then immediately placed into the chamber and the lid was
sealed. ADP (5 mM), succinate (5 mM), cytochrome c (8 μmol/ml) and oligomycin (10 μg/ml) were then added at
2-min intervals. An increase in oxygen consumption >10% after cytochrome c injection indicates a problem with
permeabilization, in which case that particular study was abandoned. All experiments were performed in triplicate
at oxygen concentrations >100 μM.

Tissue ubiquinone
Concentrations of coenzyme Q9 in heart, liver and muscle were measured in the 24 h samples and sham + simvast-
atin group, by high-performance liquid chromatography (HPLC) with an UV detection at 275 nm [32]. Unfortunately,
liver coenzyme Q9 levels could not be determined due to interfering peaks on the HPLC chromatogram.

Plasma biochemistry and cytokines
Biochemistry tests measured on 24-h plasma samples included urea, creatinine, liver function tests, creatine kinase,
triglyceride, total and high-density lipoprotein (HDL) cholesterol (measured by The Doctors Laboratory, London).
Low-density lipoprotein (LDL) cholesterol was calculated by the Friedewald equation [33]. Plasma levels of inter-
leukin (IL)-6, interleukin-10 (IL-10) and interferon-γ (IFN-γ ) were measured by multiplex technology using a MIL-
LIPLEXMAP Rat Cytokine Magnetic Bead Panel (Millipore, Billerica, MA, U.S.A.).

Liver transcriptomics
Total RNA was extracted from frozen liver tissue of rats from näıve, sepsis + simvastatin pre-treatment, sepsis +
simvastatin post-treatment and simvastatin + vehicle (20 mg each) groups with RNeasy isolation kit (Qiagen, Hilden,
Germany) according to the manufacturer’s instructions. RNA integrity was determined using an Agilent 2100 Bioana-
lyzer (Agilent Technologies, Mississauga, ON, Canada) and a Nanodrop 2000 spectrophotometer (Thermo Scientific);
only high quality RNAs were used for microarray analysis.
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Complementary RNA was generated using Low Input Quick Amp Labelling kits (Agilent Technologies) following
the manufacturer’s instructions. Either oligo-dT primer or a random primer/oligo-dT primer mixture (WT primer)
was used for first strand synthesis. An in vitro transcription for synthesis of cRNA labelled with cyanine 3-CTP
was performed after second strand synthesis. Gene Expression Hybridization Kits (Agilent Technologies) were used
according to the manufacturer’s instructions. Six hundred nanograms of cRNA were hybridized on an 8x60K microar-
ray at 65 ◦C for 17 h. Fluorescence signals on microarrays were detected by a SureScan Microarray Scanner (Agilent
Technologies) at a resolution of 3 μ for SurePrint G3 Gene Expression Microarrays, generating a 20 bit TIFF file.

Critically ill patient samples
Blood samples collected from critically ill patients enrolled into the hydroxymethylglutaryl-CoA reductase inhibition
with simvastatin in acute lung injury to reduce pulmonary dysfunction (HARP)-1 study [5] were used to measure
plasma coenzyme Q10 levels. In brief, this was a randomized, placebo-controlled trial of simvastatin in 60 patients
with ALI. Patients received either placebo or 80 mg/day simvastatin until cessation of mechanical ventilation or a max-
imum of 14 days. Patients on statin treatment before hospital admission were excluded. This study demonstrated that
the simvastatin therapy group had reduced levels of inflammatory cytokines in bronchoalveolar lavage fluid. Plasma
samples were obtained at enrolment (prior to the intervention) and at days 3 and 7 post-intervention. Simvastatin acid
was measured with the same methodology as previously described [30]. Ethics Committee approval and patient/next
of kin consent were obtained for the study and blood sampling (trial registered with www.controlled-trial.com IS-
RCTN70127774). Samples were stored at − 80 ◦C and ubiquinone measured as described above.

Statistical analysis
Data are expressed as median (25–75% interquartile range [IQR]). Survival was compared between groups
by Wilcoxon testing. Statistical significance among groups was tested with non-parametric Kruskal–Wallis or
Mann–Whitney tests with a Bonferroni correction for multiple comparisons. Statistical analysis was performed using
SAS version 9 (SAS institute Inc., Cary, NC, U.S.A.).

Microarray data were obtained from the SurePrint G3 8x60K Agilent platform. Analysis was performed using
R software (http://www.r-project.org/) version 3.2 and Bioconductor packages [34]. Raw data were subjected to
pre-processing and quantile normalization including quality control and background correction. Differentially ex-
pressed genes were filtered according to microarray quality control criteria [35] by median averaged 2-fold change
(log2FC >1) and FDR-adjusted P-values (<0.05 using the Wilcoxon–Mann–Whitney U test).

Contrasts between all four groups (naı̈ve, sepsis + simvastatin pre-treatment, sepsis + simvastatin post-treatment
and sepsis + vehicle) by log2 fold changes (LFC) were investigated, with particular focus on differences between
sepsis + simvastatin pre-treatment and sepsis + simvastatin post-treatment samples. Biological pathway and
categorical enrichment analysis were conducted for each gene list of contrasts: analysis was performed by using
Gene Answers [36] and DAVID [37] applied to KEGG [38] and Gene Ontology [39] using Benjamini–Hochberg
FDR-adjustment of P-values. Paired similarity of integrative transcriptomic and metabolic (clinical) features were
assessed using both (non)-linear (Spearman) Pearson correlations.

Results
Plasma simvastatin acid level (Figure 1)
The concentration of active simvastatin acid in sham-operated control animals was 0.8 [0.7–1.2] ng/ml, while that of
simvastatin (parent lactone form) was below the limit of quantification in most samples. Simvastatin acid levels were
significantly elevated in both sepsis + simvastatin pre-treatment (40 [23–53] ng/ml) and post-treatment (15 [2–18]
ng/ml) groups (P < 0.001). Blood ethanol was undetectable in all groups.

Survival study (Figure 2)
At 72 hours after induction of sepsis, survival was 43.7%, 25% and 12.5% for the sepsis + statin pre-treatment, sepsis
+ vehicle and sepsis + statin post-treatment groups respectively (P < 0.05).

Muscle and heart coenzyme Q9 levels (Figure 3)
Muscle coenzyme Q9 levels were not significantly affected by simvastatin and/or sepsis. Sepsis was associated with a
non-significant increase in myocardial coenzyme Q9 (1117 [1052–1384] compared with 961 [794–973] pmol/mg
protein for näıve animals). Simvastatin pre-treatment, however, resulted in a significant decrease in myocardial
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Figure 1. Plasma simvastatin acid levels in septic and sham animal groups

Animals received 4 days of treatment in sepsis + simvastatin pre-treatment and sham + simvastatin groups, and one dose of simvastatin

in the sepsis + simvastatin post-treatment group; *P < 0.05 compared with sham + simvastatin.

Figure 2. Kaplan–Meier survival curves in statin-treated and non-treated septic animals

Animals received 3 days pre-treatment of simvastatin or vehicle (post-treatment and vehicle groups). After sepsis induction, animal received

either simvastatin (pre- and post-treatment groups) or vehicle until 72 h; P < 0.05, Wilcoxon test.

coenzyme Q9 to 698 [504–907] pmol/mg protein (P < 0.05). Coenzyme Q9 levels were not measured in the sepsis
+ statin post-treatment group.

Biochemistry and cytokine levels
Sepsis induced biochemical derangements in liver, kidney and muscle at 24 h, with a general trend towards im-
provement with statin therapy, particularly when given pre-insult (Table 1). Sepsis also decreased plasma lipid levels
(except LDL cholesterol) but these were not significantly affected by statin treatment (except for triglyceride). The
sepsis-induced rise in IL-6 and IL-10 was not significantly reduced with statin treatment (Figure 4).
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Table 1 Biochemistry data, 24 h after the onset of sepsis

Sepsis + vehicle Sepsis + statin Sepsis + statin

Naı̈ve (n = 7) (n = 10) pre-treatment (n = 9) post-treatment (n = 8)

Aspartate transaminase (IU/l) 88 [81–104] 138* [76–267] 85 [82–94] 100 [76–128]

Alanine transaminase (IU/l) 28 [25–38] 54 [47–57] 34† [26–35] 31 [29–32]

Urea (mmol/l) 5.9 [5.4–6] 6.8 [6.1–7.8] 5.4 [5.1–5.8] 6.3 [5.9–6.8]

Creatinine (μmol/l) 20 [18–21] 32* [25–33] 25† [24–27] 35 [27–39]

creatine kinase (IU/l) 293 [247–475] 364 [250–1352] 430 [367–475] 276 [241–485]

Triglyceride (mmol/l) 1.1 [0.7–1.1] 0.55 [0.4–0.9] 0.4
*† [0.3–0.4] 0.5 [0.4–0.6]

Total cholesterol (mmol/l) 2.6 [2.4–2.9] 1.35* [1.2–1.6] 1* [1–1.3] 1.5 [1.4–1.6]

HDL cholesterol (mmol/l) 1.6 [1.3–1.6] 0.55* [0.33–0.68] 0.5* [0.4–0.6] 0.7 [0.6–0.9]

LDL cholesterol (mmol/l) 0.46 [0.3–1] 0.49 [0.4–0.7] 0.4 [0.3–0.4] 0.6 [0.5–0.7]

*P < 0.05 compared with Naı̈ve †P < 0.05 compared with sepsis + vehicle.

Figure 3. Skeletal muscle and myocardial coenzyme Q9 levels sampled at 24 h in naı̈ve, statin-treated shams and

statin-treated and non-treated septic animals

Sham + simvastatin and sepsis + simvastatin received 4 days of treatment.

Ex vivo mitochondrial oxygen consumption (Figure 5)
In permeabilized isolated muscle fibres, mitochondrial oxygen consumption with glutamate and malate as sub-
strate (complex I-driven respiration) was significantly lower in sepsis + vehicle tissue compared with muscle taken
from naı̈ve animals (P < 0.05). Oxygen consumption was restored to naı̈ve levels by both simvastatin pre- and
post-treatment. A similar relationship between the four groups was seen on addition of ADP to assess total OX-
PHOS (respiratory) capacity of the mitochondria. Addition of succinate (complex II-driven respiration) maintained
a similar profile, although the lower value of oxygen consumption in the sepsis + vehicle group was no longer stat-
istically significant compared with naı̈ve tissue. No difference was noted between groups after addition of the ATP
synthase inhibitor, oligomycin, which was given to assess the leak (uncoupled) component of OXPHOS capacity.

Liver transcriptomics
Differentially expressed genes were both qualitatively and quantitatively higher in livers taken from sepsis + sim-
vastatin pre-treatment compared with sepsis + simvastatin post-treatment rats (compared with sepsis + vehicle)
(Supplementary Figure S1A). The overlap of features up-regulated by statin treatment in sepsis strongly enriched ster-
oid biosynthesis-associated categories (Supplementary Figure S1B and S1C). Both pre- and post-simvastatin treated
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Figure 4. Plasma cytokine levels in statin-treated and non-treated septic animals

Cytokines were measured 24 h after the onset of sepsis.

Figure 5. Ex vivo muscle mitochondrial oxygen consumption sampled at 24 h in naı̈ve animals, statin-treated shams, and

statin-treated and non-treated septic animals
*P < 0.05 sepsis + vehicle compared with other groups; §P < 0.05 sepsis + simvastatin post-treatment compared with naı̈ve; $P < 0.05

sepsis + vehicle compared with sepsis + simvastatin post-treatment and naı̈ve rats

groups showed activation of transcripts from cholesterol biosynthesis-associated enzymes, including complete cover-
age of steroid biosynthesis and terpenoid backbone synthesis harbouring strongly correlating features (e.g. HMG-CoA
reductase in Supplementary Figure S1D).

Pre-treated livers, however, demonstrated greater changes for the majority of fatty acid-related genes (Supplement-
ary Figure S1C). The main differences between pre- and post-sepsis treatment mapped to fatty acid biosynthesis and
similar KEGG categories (Supplementary Figure S2A), with mitigation of sepsis-induced effects in pre-treated com-
pared with näıve (non-septic) liver (Supplementary Figure S2B). Among those genes, acyl-CoA oxidase 1 palmitoyl
and fatty acid desaturase 2 were differentially induced in pre- and post-insult statin-treated septic livers (Supplement-
ary Figure S2B). One of those mapped to ‘mitochondria’ included family member 6, elongation of long chain fatty
acids (ELOVL6) (Supplementary Figure S2C; P < 0.05 without multiple test correction).

c© 2017 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society. 753



Clinical Science (2017) 131 754–758
DOI: 10.1042/CS20160802

Table 2 Plasma ubiquinone and ubiquinone/LDL cholesterol ratio in patients randomized to re-
ceive simvastatin or placebo

Baseline Day 3 Day 7

Placebo Simvastatin Placebo Simvastatin Placebo Simvastatin

(n = 28) (n = 25) (n = 19) (n = 19) (n = 16) (n = 17)

Coenzyme Q10 550 596 526 695 747* 597

(μmol/l) [344–795] [374–782] [364–826] [541–917] [595–1315] [456–896]

LDL cholesterol 1.26 1.1 1.23 0.95 1.68 0.65

(mmol/l) [0.92–1.74] [0.76–1.28] [0.89–1.73] [0.72–1.28] [1.09–2.05] [0.46–1.06]

Coenzyme Q10:LDL 346 513 600 641 755 704

cholesterol ratio [269–612] [359–740] [228–795] [518–910] [3136870] [426–1428]

*P < 0.05 compared with baseline

Pearson correlation of metabolic and clinical data showed strongly linked concentration changes of cholesterol
and LDL (Supplementary Figure S3A) as well as urea and the transferases. These were complementary to tran-
scriptomic data from matching samples by linear association (Supplementary Figure S3B), with overall moderate
metabolic-transcriptomic similarities, supported by Spearman correlation (Supplementary Figure S3C).

Patient results
Of the 60 patients included in the present study, 42 patients survived to intensive care unit (ICU) discharge. The
median (standard error) length of stay was 16 (3.2) days and median (standard error) days of mechanical ventila-
tion was 15 (2.5). Patients receiving simvastatin showed marked variation in plasma simvastatin acid levels, (median
0.74 ng/ml, range 0–95 ng/ml). Three had no evidence of simvastatin acid at day 3, likely related to malabsorption.
This variation is likely to represent the pharmacokinetic heterogeneity critically ill patients exhibit, including variable
absorption, metabolism and excretion [25].

Patients treated with placebo demonstrated a significant rise in plasma coenzyme Q10 over the 7-day period
(550–747 μmol/l, P = 0.025) (Table 2). However, statistical significance was lost when these values were adjusted
for LDL cholesterol, a marker of plasma lipoprotein status (Table 2), which is the major carrier of coenzyme Q10 in
the circulation [22]. No change in coenzyme Q10 levels were seen in those treated with simvastatin (596–597 μmol/l).
Similar results were seen in patients with paired samples at baseline and day 7 of treatment.

Patients who died within their ICU stay and had undergone repeat blood sampling (n = 9) demonstrated a fall in
plasma coenzyme Q10/LDL cholesterol ratio. The opposite was seen in those survivors in whom repeated samples
were taken (P = 0.1). Baseline ubiquinone levels were associated neither with mortality nor with days of mechanical
ventilation.

Discussion
Statins have pleiotropic actions that may be of overall benefit to patients with sepsis. They exert an anti-inflammatory
effect in part by inhibiting the mevalonate pathway through inhibition of HMG-CoA reductase. Mevalonate is a
precursor not just of cholesterol, but also of dolichol and ubiquinone. Inhibiting the dolichol pathway may res-
ult in repressed major histocompatibility complex class II and nuclear factor-κB (NF-κB) expression, induction of
haem-oxygenase and direct alteration of leucocyte–endothelial cell interactions [24,40,41]. Statins can also modulate
the immune response through inhibitory effects on Toll-like receptor 4, the NLRP3-inflammasome and endothelial
activation, activation of the sirtuin-1 pathway [42] and augmented antioxidant defences [43].

On the other hand, inhibition of the ubiquinone pathway may be responsible for some of the deleterious effects
of statins, such as myositis or rhabdomyolysis [44]. Ubiquinone is a powerful intracellular antioxidant and an in-
tegral component of the mitochondrial respiratory chain. Very low levels of ubiquinone have been associated with
statin-induced rhabdomyolysis [27] and, possibly, cardiac dysfunction [45,46]. Statin pharmacokinetics are signific-
antly altered in the critically ill due to changes in protein binding, hepatic metabolism and renal excretion, resulting
in significantly higher plasma levels than those found in the general population [28].

We, therefore, investigated the impact of simvastatin, and the timing of its administration, on survival, inflammat-
ory response and mitochondrial function, including coenzyme Q9 levels in a 3-day, fluid-resuscitated, rat model of
severe sepsis. We also examined the impact of simvastatin on plasma coenzyme Q10 levels in critically ill patients
(many of whom had sepsis) enrolled into the HARP trial that was examining the impact of statins in ALI.
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Simvastatin acid was detectable in the plasma of both animals and patients demonstrating drug absorption.
Pre-treatment produced significantly higher plasma levels compared with post-treatment; this may reflect impaired
absorption during faecal peritonitis and/or that plasma simvastatin levels had yet to reach steady state. The patient
data demonstrated marked variability in simvastatin levels although sampling was not related to the timing of dose.
Indeed, very high levels of simvastatin were observed in patients compared with those found in the general, healthy
population [28]. This probably reflects markedly altered and highly variable pharmacokinetics during critical illness.
The patient samples also showed that simvastatin therapy was not associated with significant alterations in plasma
coenzyme Q10 levels (as a ratio to LDL cholesterol) compared with patients receiving placebo. Again, there was wide
variation between individuals, making it difficult to analyse potential trends in a relatively small cohort. The simvast-
atin course in the present study was short; it remains unclear whether a more prolonged or pre-morbid course would
have had a different effect on the ubiquinone pool. It is also unclear how the plasma pool reflects the levels seen in
vital organs; however, our animal data would suggest tissue levels are maintained.

The survival benefit afforded by statin treatment was associated with reduced plasma IL-6 and IL-10 levels, more
so with statin pre-treatment, albeit these did not reach statistical significance. These results support evidence that
simvastatin is immunomodulatory. Based on the hepatic transcriptomic analyses performed in our septic rats, stat-
ins caused a conserved up-regulation of cholesterol biosynthesis-related genes. This was a dominant and specific
effect paralleled in the septic response of the rats. These effects were more pronounced in pre-treated compared with
post-treated animals (Supplementary Figure S1A). In particular, the beneficial effects of statin pre-treatment related to
improved mitochondrial function, and were paralleled by recovery of gene ontologies related to fatty acid metabolism.
Of note, plasma cholesterol levels fall in sepsis, the magnitude of which is associated with a worse prognosis [47,48].
Intriguingly, statin therapy failed to modify cholesterol levels in our model, nor did they affect muscle coenzyme Q9
levels, despite its mechanism of action inhibiting the rate-limiting enzyme in the synthetic pathway of cholesterol
and ubiquinone/Q9. This lack of effect may relate to decreased utilization, for example, ubiquinone is an important
anti-oxidant [25], so decreased oxidative stress may spare its consumption. Furthermore, a clear link exists between
lipid metabolism and systemic inflammation [49]. Lipoproteins neutralize endotoxin and are considered important
regulators of the host immune response [49].

Timing of treatment and/or dosing of statins may be crucial in sepsis. The outcome improvement reported in obser-
vational studies of septic patients on long-term statin therapy [1–3] has not been reflected in prospective randomized
trials where statins were commenced after ICU admission [4,6–10]. For example, the recent HARP-2 study of patients
with ARDS, from which we obtained blood samples for ubiquinone measurement, reported no significant outcome
benefit with statin treatment commenced within 48 h of presentation [5]. It is not possible to say whether the survival
benefit in the pre-treatment group relates to the timing of treatment or to a required plasma level that is not reached
in the post-treatment animal groups. In many of the ARDS patients, statin levels were often low or even unrecord-
able in some patients, suggestive of poor absorption of the oral medication, or excessive in others suggesting delayed
metabolism. This heterogeneity complicates assessment of the drug’s efficacy. Studies should ideally be repeated with
an intravenous formulation with monitoring of plasma levels. However, we are unaware of any such preparation.

Sepsis was associated with significantly reduced oxygen consumption in skeletal muscle when compared with näıve
controls. The lack of reversal by addition of glutamate/malate, ADP or succinate suggests impairment within the
mitochondrial respiratory chain. In the present study, the fall in skeletal muscle oxygen consumption could be entirely
prevented by addition of simvastatin. Though a direct protective effect cannot be excluded, this finding reflects the
reduced inflammatory load and likely lower concentrations of reactive species that are known to inhibit mitochondrial
respiration [50]. We previously demonstrated that sepsis is associated with mitochondrial dysfunction in both animals
and patients and that the degree of dysfunction is associated with adverse outcomes [18,19,21]. Direct cause and effect
has yet to be demonstrated. This may explain the disconnection between improved oxygen consumption and lack of
impact on survival in statin post-treated animals. Alternatively, organ failure may be too pronounced despite late
salvage to modify outcome.

Skeletal muscle coenzyme Q9 levels were preserved in all groups. Myocardial coenzyme Q9 levels were, however,
elevated in the untreated septic rats; this may reflect an adaptive response to the oxidant stress of severe sepsis.
Pre-treatment with simvastatin was associated with significantly lower myocardial coenzyme Q9 levels compared
with untreated septic animals. These findings may indicate lesser need for the cell to adapt due to the lower intensity
of the inflammatory response, or an inability to increase coenzyme Q9 as production of its precursor, mevalonate
may have been limited by simvastatin. Though higher plasma levels of simvastatin may have a greater impact on the
inflammatory cascade and potentially less impairment of the respiratory chain, this may be offset by impaired syn-
thesis of coenzyme Q9, a vital component of the chain. This warrants further work to determine whether addition of
exogenous coenzyme Q9 is beneficial.
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Conclusions
In summary, simvastatin treatment had anti-inflammatory effects (which reflect those reported in multiple other
studies) and protected muscle mitochondrial respiration in a long-term fluid-resuscitated rat faecal peritonitis model.
However, outcome benefit was only seen in animals commencing statin treatment pre-insult. Ongoing planned trials
are investigating the role of simvastatin in preventing ARDS in patients undergoing oesophagectomy who are at high
risk of ARDS.

Clinical perspectives
• Statins have pleiotropic actions that may be of overall benefit to patients with sepsis. This may

include protection of mitochondria, dysfunction of which has been implicated in organ dysfunction.

• While pre- and post-treatment with statins protected mitochondrial function, survival benefit was
only seen in septic animals commencing statin treatment pre-insult, reflecting experiences in patient
studies.
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