
INV ITED
P A P E R

Challenges and Opportunities
inMany-Core Computing
With increasing use of computers that employ many independent processing units,

commercial and technical-scientific software, as well as general-purpose

operating systems, will have to undergo fundamental changes.

By John L. Manferdelli, Naga K. Govindaraju, and Chris Crall

ABSTRACT | In this paper, we present some of the challenges

and opportunities in software development based on the

current hardware trends and the impact of massive parallelism

on both the software and hardware industry. We indicate some

of the approaches that can enable software development to

effectively exploit the many-core architectures. Some of these

include encapsulating domain-specific knowledge in reusable

components, such as libraries, integrating concurrency with

languages, and supporting explicit declarations to help compi-

lers and operating system schedulers. Tighter interaction

between software and underlying hardware is required to

build scalable and portable applications with predictable

performance and higher power-efficiency. Overall, many-core

computing provides us opportunities to enable new application

scenarios that support enhanced functionality and a richer

experience for the user on commodity hardware.

KEYWORDS | Compilers; many-core computing; operating

systems; parallel applications

I . INTRODUCTION

Over the last couple of decades, the computer industry has

been witnessing massive improvements in commodity

hardware and software technology. These changes have

often been foreshadowed by hardware and software

technology originating from high performance, scientific,

and enterprise computing research. More recently, the

demand for realism in games and the entertainment

industry has driven improvements in real-time physics,
artificial intelligence, and rendering effects, which in turn

have pushed the envelope for software industry standards,

such as the Microsoft DirectX application programming

interfaces (APIs), and commodity processors in PCs,

laptops, and consoles.

Innovation and advancement in scientific and enter-

prise communities have been fueled by the relentless,
exponential improvement in the capability of computer

hardware over the last 40 years. The driving force for much

of this improvement has been the ability to double the

number of microelectronic devices onto a constant area of

silicon at a nearly constant cost approximately every two

years. This exponential improvement in transistor count

every two years is widely referred to as Moore’s law.

Virtually every analytical technique from the scientific
community has become broadly deployed: operations

research, data mining, machine learning, compression

and encoding, signal analysis, imaging, mapping, simula-

tion of complex physical and biological systems, and

cryptography. These techniques have benefited education,

health care, and entertainment. The techniques also

enabled the worldwide delivery of cheap, effective, and

profitable services from eBay to Google.
In stark contrast to the scientific community, com-

mercial application software programmers have not, until

recently, had to grapple with massively concurrent

computer hardware. While Moore’s law continues to be

a reliable predictor of the aggregate computing power that

will be available to commercial software, we can expect

very little improvement in serial performance of general-

purpose CPUs. The increase in performance will come
instead from parallel computing. This will have a profound

effect on commercial software development. The program-

ming languages, compilers, operating systems (OSs), and

software development tools will all evolve, which will in

turn have an equally profound effect on computer and

computational scientists.

Manuscript received July 11, 2007; revised December 17, 2007.

The authors are with the Microsoft Corporation, Redmond, WA 98052 USA

(e-mail: jmanfer@microsoft.com; nagag@microsoft.com; ccrall@microsoft.com).

Digital Object Identifier: 10.1109/JPROC.2008.917730

808 Proceedings of the IEEE | Vol. 96, No. 5, May 2008 0018-9219/$25.00 �2008 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357289965?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

II . COMPUTER ARCHITECTURE:
WHAT HAPPENED?
Power dissipation in clocked digital devices is proportional

to the clock frequency, imposing a natural limit on clock

rates. While compensating scaling has enabled commercial
CPUs to increase clock speed by a factor of 4000 in the last

ten years, the ability of manufacturers to dissipate heat has

reached a physical limit. Leakage power dissipation gets

worse as gates get smaller because gate dielectric

thicknesses must proportionately decrease. As a result, a

significant increase in clock speed without expensive

cooling is not possible. This is the power wall confronting

serial performance, and significant clock-frequency in-
creases will not come without heroic measures or break-

throughs in materials technology.

Not only does clock speed appear to be limited but

also memory performance improvement increasingly lags

behind processor performance improvement. This intro-

duces growing memory latency barrier to computer

performance improvements. To attempt to improve the

average memory reference time to fetch or write
instructions or data, current architectures are increasing

cache sizes. For instance, the current high-end 65 nm

Intel Xeon 7000 series CPUs have 8 MB of L2 cache,

whereas a generation older high-end 90 nm Intel Xeon

processors have 4 MB L2 cache. The cache size has been

increased because cache misses are expensive, causing
delays of hundreds of (CPU) clock cycles. However, even

with the increased cache size, the decrease in memory

access latency has not kept pace with processor speeds.

The mismatch between memory speed and compu-

tation speed presents a memory wall to increase serial

performance.

In addition to the performance improvements that have

arisen from frequency scaling, hardware engineers have
also improved performance by speculative execution of

future instructions before the results of current instruc-

tions are known. This also requires hardware safeguards to

prevent potential errors from out of order execution.

Unfortunately, branches must be guessed to decide what

instructions to execute simultaneously. This is called

instruction-level parallelism (ILP). A big benefit of ILP is

that existing serial programs enjoy performance benefits
without any modification. But ILP improvements are

Fig. 1. The GeForce 8800 GTX GPU with 128 processors is well suited to execute data parallel algorithms.

Manferdelli et al. : Challenges and Opportunities in Many-Core Computing

Vol. 96, No. 5, May 2008 | Proceedings of the IEEE 809

difficult to forecast since the speculation success is
difficult to predict, and ILP causes a superlinear increase

in execution unit complexity and associated power

consumption without linear speedup in application

performance. For example, if the processor speculates

to execute the incorrect branch, then it must throw away

this part of the result. In addition, data dependencies

may prevent successive instructions from executing in

parallel, even if there are no branches. Serial perfor-
mance acceleration using ILP has stalled because of these

effects. This is the ILP wall.

Patterson from Berkeley has a formulaic summary of

the serial performance problem: The power wall þ the

memory wall þ the ILP wall ¼ a brick wall for serial

performance. Thus, the heroic line of development

followed by materials scientists and computer designers

to increase serial performance now yields diminishing
returns [4]. Computer architects have been forced to turn

to parallel architectures to continue to make progress.

Parallelism can be exploited by using the additional

transistors made possible by Moore’s law to add more

independent CPUs, data-parallel execution units, addi-

tional registers sets for hardware threads, bigger caches,

and more independent memory controllers to increase
memory bandwidth. For example, for high-performance

graphics workloads, the AMD Radeon 2900 GPU has

several memory controllers to provide a 512-bit memory

interface. This architecture has a peak memory band-

width of more than 100 GB/s. Computer architects can

also consider incorporating different types of execution

units, heterogeneous processors, which dramatically

improve certain specific computations. For example,
GPUs such as the NVIDIA 8800 GPU in Fig. 1 excel at

data parallelism, while streaming execution units can be

paired with local memory as in many early Cray machines

or the IBM Cell processor. Heterogeneity need not only

mean completely different abstract execution unit models

but may also include computation engines with the same

instruction set architecture but different performance and

power consumption characteristics. All of these take
advantage of dramatically higher on-chip interconnect

data rates.

For the foreseeable future, Moore’s law will continue

to grant computer architects ever more gates. The

challenge is to use them to deliver performance and

power characteristics fit for their intended purpose. Fig. 2

Fig. 2. Sample client, server, embedded chips with network-on-chip, in-order cores, PCIe controllers,

memory controllers, cache, and-out of-order cores.

Manferdelli et al. : Challenges and Opportunities in Many-Core Computing

810 Proceedings of the IEEE | Vol. 96, No. 5, May 2008

illustrates a few hardware design choices. In Fig. 2(a), a
client configuration might consist of two large out-of-order

cores (OoCs) incorporating all the ILP of current

processors to run existing programs together with many

smaller in-order cores (IoCs) for programs that can take

advantage of highly parallel algorithms. Why many IoCs

rather than correspondingly fewer of the larger OoCs?

The reason is that spending gates on out-of-order cores

can have poorer performance returns due to limited ILP
in typical programs and many of the execution units in

OoCs are usually idle for a significant fraction of the

program execution time. Alternatively, simple IoCs can

utilize the gates better on parallel software that can scale

with the number of cores. The Intel Terascale chip [9]

and the Xbox 360 CPUs [10] are examples of architec-

tures with IoC CPUs.

The server configuration in Fig. 2(b) incorporates
many more IoCs and a custom core (e.g., a cryptography

processor). Finally, multicore computers are beneficial

not just for raw performance but also for reliability and

power management. We believe embedded processors

could benefit from an architecture shift as illustrated in

Fig. 2(c).

III . PARALLEL SOFTWARE
DEVELOPMENT

While these new hardware architectures offer much more

computing power, it makes writing software that can fully

benefit from the hardware much harder.

In scientific applications, improved performance has

historically been achieved by having highly trained

specialists modify existing programs to run efficiently as
new hardware became available. In fact, even rewriting

existing programs in this environment was far too costly,

and most organizations focused the specialists on

rewriting small portions of the mission critical programs,

called kernels. In the good case, the mission-critical

applications spent 80% or 90% of their time in these

kernels and the kernels represented a few percent of the

application code. Thus making a kernel ten times faster
could mean a nearly 3–5� performance improvement.

Even so, this rewriting was time consuming, and

organizations had to balance the risk of introducing

subtle bugs into well-tested programs against the benefit

of increased speed at every significant hardware upgrade.

All bets were off if the organization did not have the

source code for the critical components.

In contrast, commercial vendors have been habituated
to a world where all existing programs get faster with each

new hardware generation. Software developers could

confidently build new innovative software that barely

ran on then-current hardware, knowing that it would run

quite well on the next-generation machine at the same

cost. This will no longer occur for serial codes, but the

goal of new software development tools must be to retain

this very desirable characteristic as we move into the era
of many-core computing. If we are successful, then

building your software with the new tools will allow it

to execute faster when new hardware adds additional

parallel computing power (e.g., an upgrade from a 32- to

128-core system).

In order to benefit from rapidly improving computer

performance and to retain the Bwrite once, run faster on

new hardware[paradigm, commercial and scientific
software must change to new software development and

system support mechanisms [1]. Software development

systems and supporting software must enable a significant

portion of the programming community to construct

parallel applications. Several complementary approaches

may help us achieve this.

1) Encapsulate domain-specific knowledge in reusable
parallel components. For most developers, the most
effective way to deploy concurrency without

needing to disturb the programming model is to

encapsulate concurrency together with domain

knowledge in common reusable library compo-

nents. This approach mirrors the use of numerical

and signal-processing kernels beloved by compu-

tational scientists such as ATLAS [5], LAPACK [6],

FFTW [7], and SPIRAL [8]. However, we must
move these types of libraries into the world of

general-purpose computing. This technique can

work very well, although use of multiple such

libraries in the same program requires better

synchronization and resource-management tech-

niques than are currently available.

2) Integrate concurrency and coordination into tradi-
tional languages. Current languages have little or
no support for expressing or controlling parallel-

ism. Instead, programmers must use libraries or

OS facilities. Other language features, like the use

of for/while loops and pointer-chasing, obscure

potential parallelism from the compiler. To build

parallel applications, we need to extend tradition-

al sequential languages with new features to allow

programmers to explicitly guide program decom-
position into parallel subtasks, as well as provide

atomicity and isolation when those subtasks

interact with shared data structures. Transactional

memory [2] shows promise here and also provides

a way towards composing independently devel-

oped software components.

3) Raising semantic level to eliminate explicit sequenc-
ing. Parallelism can be more effectively exploited
by avoiding procedural languages and using

domain-specific systems based on rules or con-

straints. Programming styles that are more

declarative specify intent rather than sequencing

of primitives and thus inherently permit parallel

implementations that leverage the concurrency

and transaction mechanisms of the system. SQL is

Manferdelli et al. : Challenges and Opportunities in Many-Core Computing

Vol. 96, No. 5, May 2008 | Proceedings of the IEEE 811

a common example of this. SQL is declarative
language that can be adapted by a query optimizer

to execute much faster on parallel hardware.

Another example is the MapReduce middleware

used for data analysis. The programmer uses map

and reduce functions to implement algorithms

while a runtime is used to execute the program on

distributed clusters [11], [13] or multicore CPUs

[12]. Similarly, DirectX 10 [15] is another
successful domain-specific declarative API for

graphics workloads.

To fully exploit parallelism, however, programmers

must understand the parallel execution model, develop

parallel algorithms, and be equipped with much better

tools to develop, test, and automatically tune performance

of parallel programs. This requires education as well as

software innovation. Compilers, which bridge between
intent-oriented features and the underlying execution

model of the system, must incorporate idioms to explicitly

identify parallel tasks as well as optimization techniques to

identify and schedule implicitly parallel tasks that the

compiler discovers [3]. Program analysis and testing are

difficult tasks in sequential programming and are much

harder in parallel programming. We must find mechan-

isms that contain concurrency and isolate threads and then
use these techniques to make testing more robust. We have

seen dramatic improvements in static analysis tools that

identify software defects, reduce test burden, and improve

reliability. These techniques are being extended to

incorporate identification of concurrency problems. De-

buggers must evolve from the low-level machine model

back to a more common and familiar model that allows a

developer to reason effectively about correctness. Finally,
the need for tools for performance analysis to help identify

bottlenecks will become crucial as we face the possibility

of orders of magnitude difference between optimized and

naBve algorithms.

IV. SYSTEM SOFTWARE ARCHITECTURE

New, many-core computers are more like data-centers-on-
a-chip than traditional computers. System software will

have to change to manage resources effectively on these

systems while decomposing and rationalizing the system

software function to provide more reliability and manage-

ability. General-purpose computer operating systems that

have not fundamentally changed since system and

application software separated with the advent of time

shared computers in the 1950s will change as much as
development tools.

To understand why, consider the following. Super-

computing applications are typically assigned dedicated

system-wide resources for each application run. This

allows applications to tune algorithms to available

resources. Knowledge of the actual CPU resources and

memory available to the application at runtime can be used

to drastically improve a sophisticated application’s perfor-
mance. Database systems do a good job of this now by

using facilities to allow the database to control its own

resources. In contrast, most commercial operating systems

time-multiplex the hardware resources to provide good

utilization of expensive resources. Older operating systems

also suffer from service, program, and device isolation

models, which are no longer appropriate but made perfect

sense given earlier assumptions:
1) Many current operating systems manage devices

with a uniform device driver model.1 If all such

drivers are in the same address space, this

simplifies I/O programming for applications and

optimizes performance but creates huge OS

kernels with management and security problems.

2) Time-shared operating systems model security

under a single authority (the root or administrator
accounts) who installs all software that is shared

or requires OS modification software and can

determine a uniform security and resource-

allocation policy across relatively simple user

programs. Today’s computers operate in multiple

trust domains, and different programs need

different levels of protection and security policies.

There are so many devices, and some are so
complex that no single authority can possibly

uniformly and safely manage them all. Right now,

a buggy device driver used by one program

jeopardizes all programs, while highly performant

applications using special hardware such as GPUs

prefer to manage the device directly without

incurring the sometimes catastrophic degradation

incurred by context switches in the OS.
3) Homogeneous operating systems are usually

designed for one of three modes of operation:

high throughput, high reliability, or high real-time

guarantees. General purpose OSs fall into the first

category, an OS designed to run a central phone

switch in a major location falls into the second,

and an entertainment or media device falls into

the third. It is difficult to design a single scheduler
that serves all three environments, but future

computers will have applications with all these

requirements running simultaneously.

4) Most general-purpose operating system config-

urations attempt to provide everything any

application could want. This approach has dra-

matically increased OS complexity by decreasing

utility and slowing down all application develop-
ment. For instance, specialized operating systems

for relational database systems are more scalable

for database workloads and exploit domain

knowledge that general-purpose operating sys-

tems do not [14].

1http://www.project-UDI.org/specs.html.

Manferdelli et al. : Challenges and Opportunities in Many-Core Computing

812 Proceedings of the IEEE | Vol. 96, No. 5, May 2008

5) Most operating systems, again to simplify
programming, have a chore-scheduling model in

which each independent thread of execution is

scheduled by the OS. This means that every chore

switch incurs an expensive context switch into the

kernel. The OS scheduler, which knows nothing

about the individual application, must guess

what’s best to do next. Historically, operating

systems may have given their applications 1 ms to
run before interrupting and rescheduling. Switch-

ing to another thread might have taken 100

instructions. On a 1 MIP machine, this means a

thread can run about 1000 instructions of useful

work, so system overhead is a very acceptable 10%.

On a very fast machine, a millisecond accounts for

a few million instructions. It is very hard to write

general-purpose programs where this quantum of
instructions yields a highly concurrent duty cycle.

This forces programs with high concurrency to

structure themselves into bigger, less parallel

subtasks or suffer catastrophic performance. One

solution is to let a runtime, linked into the

application, handle the vast majority of chore

switches without OS intervention. This kind of

runtime can have very detailed knowledge of the
actual hardware configuration and make resource

and scheduling decisions appropriately. Examples

of these include DirectX or OpenGL runtimes used

to run graphics programs.

Many-core operating systems (see Fig. 3) will incorpo-
rate a hypervisor, a small and very reliable component that

hosts many different operating systems or copies of the

same OS with different performance or security character-

istics. Hypervisors perform the relatively slowly changing

space sharing of resources. For example, a hypervisor might

simultaneously dedicate a core for long periods of time to a

multimedia OS partition/application combination and

assign I/O devices to it; host an older version of an OS
for compatibility; host a tightly controlled corporate

partition; host a game partition requiring strong perfor-

mance guarantees; and host a loosely controlled partition

for Web browsing, all on the same hardware [17]–[20].

Each partition can be sure of both performance and security

isolation, and one partition need not incur the perfor-

mance, reliability, or security characteristics of another.

A many-core system stack that includes hypervisors,
OS kernel, and user-mode runtime must effectively assign
resources securely and host concurrent operating environ-
ments. Machine-wide and OS health (root-kit detection,

OS stack), power management, and coarse hardware

resource allocation can be managed centrally while

insulating partitions from harmful effects of other

partitions. As with other software decomposition strate-

gies, this simplifies software construction. Coarse parti-
tioning also provides a good way to get coarse parallelism.

Applications running concurrently in separate trust

domains need the benefits of either rich operating

environments or specialized environments that provide

Fig. 3. Many-core system architecture.

Manferdelli et al. : Challenges and Opportunities in Many-Core Computing

Vol. 96, No. 5, May 2008 | Proceedings of the IEEE 813

specific guarantees (such as real-time scheduling). This
also provides a vehicle to stage new facilities while

retaining unmodified legacy environments. Each OS

partition can exercise finer resource control over its

resources in conjunction with its application mix. Within a

process, the application and supporting runtime in

conjunction with the OS can exert very fine grain control

over resources. Furthermore, the OS must include a better

asynchronous system API and lightweight native threads
(see [16]). Finally, the system stack must manage

heterogeneous hardware: general-purpose cores, GPUs,

vector units, and special cores such as encryption or

compression.

V. NEW APPLICATIONS

Can people use this much computing power? Yes.
Although the ultimate application mix is hard to forecast,

we can certainly envision applications and facilities that

can use this kind of computing power.

It is uncontroversial that servers (including home

servers) will benefit from many-core computing. Powerful

servers will also boost the need for powerful clients. With

cheap and ubiquitous sensors and natural language

processing, we can anticipate human/computer interfaces
that are environment aware, utilize a variety of input and

output modes (i.e., vision, speech, gesture, object recog-

nition), learn user behaviors, and offer suggestions or

possibly automatically manage some tasks for users.

Better data mining and modeling will provide business

intelligence and targeted customer service. Automated

medical imaging, diagnosis, and well-being monitoring will

be commonplace. High-level tools like MATLAB or Excel
when designed for parallelism will take advantage of

increased power and delegate processing across the network.

With terabyte disks, many-core systems will make

superb media library, capture, edit, and playback systems.

Film fans will be able to purchase, download, and view

protected feature films on opening day. Most printed

material and other media can be replaced with electronic

versions, accessed via a broadband connection, with vastly
improved search and cross-reference capabilities. These

machines can make virtual reality and realistic games, well,

real. Not only entertainment but also education will benefit

as realistic simulation and training experiences are built.

Today’s corporate servers will shrink to a few racks and

become highly resilient to failure. State check pointing and

load balancing will improve performance and reliability.
Damage from catastrophic failures is limited to a few

seconds of downtime and rollback. Provisioning, deploy-

ing, and administering these servers and applications are

simplified and automated.

Massively parallel computational grids built of com-

modity hardware already solve scientific problems like

computational chemistry, protein folding, and drug design.

Supercomputers already analyze nuclear events and water
tables and predict the climate and the economy. The power

of these systems and the reach of these techniques will

vastly improve with new hardware, and scientists will have

supercomputers under their desks. Moreover, scientific,

financial, and medical supercomputing are no longer small

market opportunities. More than 10% of servers are used

in scientific applications.

Classic computational techniques known in the scien-
tific community as the seven dwarves,2 including equation

solvers and adaptive mesh modeling, will help explore

regimes that will change our lives [4]. Already, many

world-class scientists are using advanced computational

techniques to explore potential cures for AIDS and cancer,

model hydrologic activity in agriculturally sensitive

regions, perform seismic modeling, and run virtual

laboratories for advanced physics. As in the past, use by
scientists will help illuminate the path for the rest of us.

VI. CONCLUSION

Programmable systems are playing an increasingly large

part in our lives and, in many ways, provide a worldwide

paradigm shift comparable in scope and benefit to the

appearance of cheap, mass market printing. Many-core
computers signal a shift in computer science, computa-

tional science, and classical commercial software that

marry the past advances of many knowledge workers as

well as provide avenues for qualitatively new advances. h

Acknowledgment

The authors are indebted to a number of colleagues at
Microsoft for insight and review of this material, including

C. Mundie, B. Smith, D. Callahan, J. Larus, J. Gray,

P. England, B. LaMacchia, M. Marr, B. Lloyd, and T. Hey.

REFERENCES

[1] J. Larus and H. Sutter, BSoftware and the
concurrency revolution,[ACM Queue, vol. 3,
no. 7, pp. 54–62, Sep. 2005.

[2] J. R. Larus and R. Rajwar, Transactional
Memory. San Rafael, CA: Morgan &
Claypool, 2006.

[3] R. Allen and K. Kennedy, Optimizing Compilers
for Modern Architectures. Amsterdam, The
Netherlands: Elsevier, 2002.

[4] K. Asanovic, R. Bodik, B. Catanzaro, J. Gebis,
P. Husbands, K. Keutzer, D. Patterson,
W. Plishker, J. Shalf, S. Williams, and
K. Yelick, BThe landscape of parallel
computing research: A view from Berkeley,[
UCB/EECS-2006-183, 2006.

[5] R. C. Whalley, A. Petitet, and J. Dongarra,
BAutomated empirical optimization of
software and the ATLAS project,[Parallel
Comput., vol. 27, no. 1–2, pp. 3–35, 2001.

[6] Z. Chen, J. Dongarra, P. Luszczek, and
K. Roche, BSelf adapting software for
numerical linear algebra and LAPACK for
clusters,[Parallel Comput., pp. 1723–1743,
2003.

2So named by Collela of LBL, these include the important
computational kernels for modeling and analysis.

Manferdelli et al. : Challenges and Opportunities in Many-Core Computing

814 Proceedings of the IEEE | Vol. 96, No. 5, May 2008

[7] M. Frigo, BA fast Fourier transform
compiler,[in Proc. PLDI 1999, 1999.

[8] M. Puschel, B. Singer, J. Xiong, J. Johnson,
D. Padua, M. Veleso, and R. W. Johnson,
BSpiral: A generator for platform-adapted
libraries of signal processing algorithms,[
Int. J. High Perform. Comput. Applicat., vol. 18,
no. 1, pp. 21–45, 2004.

[9] M. Azimi, N. Cherukuri, D. N. Jayasimha,
A. Kumar, P. Kundu, S. Park, I. Schoinas, and
A. S. Vaidya, BIntegration challenges and
tradeoffs for terascale architectures,[Intel
Technol. J., vol. 11, no. 3, 2007.

[10] J. Andrews and N. Baker, BXbox 360
system architecture,[IEEE Micro,
vol. 26, no. 2, pp. 25–37, 2006.

[11] J. Dean and S. Ghemawat, BMapReduce:
Simplified data processing on large clusters,[
in Proc. OSDI, 2004, pp. 137–150.

[12] C. Ranger, R. Raghuraman, A. Penmetsa,
G. Bradski, and C. Kozyrakis, BEvaluating
MapReduce for multi-core and multiprocessor
systems,[in Proc. HPCA 2007.

[13] H. Yang, A. Dasdan, R. Hsiao, and
D. S. Parker, BMap-reduce-merge: Simplified
relational data processing on large clusters,[
in Proc. ACM SIGMOD 2007.

[14] J. Gray, Notes on Data Base Operating
Systems, ser. Lecture Notes in Computer
Science. London, U.K.: Springer-Verlag,
1978, vol. 60, pp. 393–481.

[15] D. Blythe, BThe Direct3D 10 system,[in Proc.
ACM SIGGRAPH 2006, 2006.

[16] P. England, B. Lampson, J. Manferdelli,
M. Peinado, and B. Willman, BA trusted
open platform,[IEEE Computer, vol. 36, no. 7,
pp. 55–62, 2003.

[17] R. J. Adair, R. U. Bayles, L. W. Comeau, and
R. J. Creasy, BA virtual machine system for
the 360/40,[IBM Cambridge Scientific
Center, Cambridge, MA, Rep. 320-2007,
May 1966.

[18] P. Barham, B. Dragovic, K. Fraser, S. Hand,
T. Harris, A. Ho, R. Neugebauer, I. Pratt,
and A. Warfield, BXen and the art of
virtualization,[in Proc. ACM SOSP, 2003,
pp. 19–22.

[19] J. S. Hall and P. T. Robinson, BVirtualizing
the VAX architecture,[in Proc. ISCA, 1991,
pp. 380–389.

[20] E. C. Hendricks and T. C. Hartmann,
BEvolution of a virtual machine subsystem,[
IBM Syst. J., pp. 111–142, 1979.

ABOUT THE AUTHORS

John L. Manferdelli received the Bachelor’s

degree in physics from Cooper Union for the

Advancement of Science and Art, New York, and

the Ph.D. degree in mathematics from the

University of California, Berkeley.

He has been a Senior Researcher, Software

Architect, Product Unit Manager, General Man-

ager, and most recently a Distinguished Engineer

with Microsoft. His contributions include the

development of the next-generation secure com-

puting base technologies and the rights management capabilities

currently integrated into Windows, for which he was the original

architect. He also was with Microsoft Research and the SQL Server

Group. He joined Microsoft in February 1995 when it acquired his

company, Natural Language Inc., based in Berkeley. He is currently

General Manager of incubation in the CTO office. At Natural Language,

he was the Founder and, at various times, Vice President of R&D and

CEO. Other positions he has held include Staff Engineer with TRW Inc.,

Computer Scientist and Mathematician with Lawrence Livermore

National Laboratory, and Principal Investigator with Bell Labs. He

was also an Adjunct Associate Professor at Stevens Institute of

Technology and is an Affiliate Faculty Member at the University of

Washington.

Naga K. Govindaraju received the B.Tech. degree

in computer science from the Indian Institute of

Technology, Bombay, in 2001 and the M.S. and

Ph.D. degrees in computer science from the

University of North Carolina at Chapel Hill in

2003 and 2004, respectively.

He is a Senior Researcher in the Many-core

Technology Incubation Group, Microsoft Corpora-

tion. Before joining Microsoft, he was a Research

Assistant Professor in the Department of Computer

Science, University of North Carolina at Chapel Hill. His research focuses on

the design of efficient parallel algorithms to solve several computational

problems in computer graphics, databases, and high-performance comput-

ing. He has publishedmore than 40peer-reviewed articles inmajor graphics,

database, and HPC journals and conferences such as ACM SIGGRAPH, ACM

SIGMOD, and ACM SuperComputing. He has organized and presented

tutorials at ACM SIGGRAPH, ACM SuperComputing, Eurographics, VLDB,

and IEEE ICDE. He has also served on the program committees of many

conferences.

Dr. Govindaraju received the IEEE VR PRESENCE best paper award in

2005 and the Indy PennySort award in 2006 for designing the world’s

best reported performance/price sorting algorithm for large data-

management systems.

Chris Crall received the B.S. and M.S. degrees in

computer science from Iowa State University,

Ames, with an emphasis in operating systems

and networking.

He is a Group Program Manager with the

Incubation Team, Microsoft, under the Chief

Research and Strategy Officer, where he is

responsible for a team working on many-core

technologies. After graduation he spent 14 years

in product development with Hewlett-Packard. He

started as a Developer on TCP/IP networking, OSI networking and

network management, and later as an Architect for Internet security

products at HP. After HP, he joined Commerce One, an electronic

commerce company, as a Security Architect developing e-commerce

portal products. For the last five years, he has been a Program Manager

with Microsoft working on Windows security as well as many-core

incubation efforts.

Manferdelli et al. : Challenges and Opportunities in Many-Core Computing

Vol. 96, No. 5, May 2008 | Proceedings of the IEEE 815

