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Abstract

Balanced truncation is one of the most common model reduction schemes. In this note, we present a survey
of balancing related model reduction methods and their corresponding error norms, and also introduce some new
results. Five balancing methods are studied: (1) Lyapunov balancing, (2) Stochastic balancing (3) Bounded real
balancing, (4) Positive real balancing and (5) Frequency weighted balancing. For positive real balancing, we
introduce a multiplicative-type error bound. Moreover, for a certain subclass of positive real systems, a modi£ed
positive-real balancing scheme with an absolute error bound is proposed. We also develop a new frequency-
weighted balanced reduction method with a simple bound on the error system based on the frequency domain
representations of the system gramians. Two numerical examples are illustrated to verify the ef£ciency of the
proposed methods.

1 Introduction

Direct numerical simulation of dynamical systems has been a successful means for studying complex physical
phenomena. In this paper, we will examine linear time invariant dynamical systems in state space form:

G(s) :
{

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

⇔ G(s) :=
[

A B

C D

]
⇔ G(s) : s= C(sI − A)−1B + D (1.1)

where A ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n, D ∈ R

p×m. We note that by abuse of notation, both the underlying
dynamical system and its transfer function are denoted by G(s). However, for clarity in the transfer function
notation we will use “

s=” instead of only “=”. In many applications, such as circuit simulation, or time dependent
PDE control problems, n is quite large, while the number of inputs m and outputs p usually satis£es m, p � n. In
these large-scale settings, the system dimension makes the computation infeasible due to memory, time limitations
and ill-conditioning. One approach to overcoming this is through model reduction. The goal is to produce a
low dimensional system that has similar response characteristics as the original system with far lower storage
requirements and evaluation time. The resulting reduced model might be used to replace the original system as a
component in a larger simulation or it might be used to develop a low dimensional controller suitable for real time
applications.

The model reduction problem we are interested in can be stated as follows: Given the linear dynamical system
G(s) in (1.1), £nd a reduced order system Gr(s)

Gr(s) :
{

ẋr(t) = Arxr(t) + Bru(t)
yr(t) = Crxr(t) + Dru(t)

⇔ Gr(s) :=
[

Ar Br

Cr Dr

]
(1.2)

∗This work was supported in part by NSF through Grants DMS-9972591, CCR-9988393 and ACI-0082645.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357289928?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


where Ar ∈ R
r×r, Br ∈ R

r×m, Cr ∈ R
p×r, Dr ∈ R

p×m, with r << n such that the following properties are
satis£ed:

1. The approximation error ‖y − yr‖ is small, and there exists a global error bound.

2. System properties, like stability, passivity, are preserved.

3. The procedure is computationally ef£cient.

One model reduction scheme that is well grounded in theory and most commonly used is the so-called Balanced
Model Reduction £rst introduced by Mullis and Roberts [31] and later in the systems and control literature by
Moore [30]. To apply balanced reduction, £rst the system is transformed to a basis where the states which are
dif£cult to reach are simultaneously dif£cult to observe. This is achieved by simultaneously diagonalizing the
reachability and the observability gramians, which are solutions to the reachability and the observability Lyapunov
equations. Then, the reduced model is obtained by truncating the states which have this property. We will call this
the Lyapunov balancing method. When applied to stable systems, Lyapunov balanced reduction preserves stability
[36] and provides a bound on the approximation error [13], i.e. satis£es 1. and 2. above. For small-to-medium scale
problems, Lyapunov balancing can be implemented ef£ciently. However, for large-scale settings, exact balancing
is expensive to implement because it requires dense matrix factorizations and results in a computational complexity
of O(n3) and a storage requirement of O(n2); hence do not satisfy 3. above. In this case, approximate balanced
reduction is an active research area which aims to obtain an approximately balanced system in a numerically
ef£cient way; see, for example, [23], [5], [6], [34], [35] and the references therein.

Besides the Lyapunov balancing method, other types of balancing exist such as stochastic balancing, bounded
real balancing, positive real balancing, LQG balancing and frequency weighted balancing. The stochastic balanc-
ing method1 was £rst proposed by Desai and Pal [12] for balancing stochastic systems and later generalized by
Green [19],[20]. The relative error bound for stochastic balancing is due to [19]. Unlike the Lyapunov balancing
method, the stochastic balancing algorithm requires solving one Lyapunov and one Riccati equation. A closely
related balancing method is positive real balancing [12] which is applied for model reduction of positive real (pas-
sive) systems, an important subclass of dynamical systems. The positive real balancing method can be viewed as
the stochastic balancing method applied to the spectral factor of the given passive system and requires solving two
positive real Riccati equations. Another method which also requires solving two Riccati equations, is bounded real
balancing which is applied to the bounded real systems. This method, together with the absolute error bound, is
£rst introduced by Opdenacker and Jonckheere in [33]. LQG balancing, also referred as the closed loop balancing
£rst introduced by Jonckheere and Silverman [24], is mainly used for reduced order controller design and will not
be included in this paper.

All the balancing techniques mentioned above try to approximate the full-order model G(s) over all frequen-
cies. However, in many applications one is only interested in a given frequency interval. In these cases the
frequency weighted balanced reduction is used which tries to reduce the error between G(s) and Gr(s) over the
speci£ed frequency range, i.e. the weighted error. Several ways of weighted balancing have been introduced in the
literature. Lyapunov balanced reduction was extended to the frequency weighted balanced reduction by Enns [13].
The method allowed the use of both input and output weighting, but in case of a two sided weighting, stability
is not guaranteed. To overcome the stability problem Lin and Chiu [28] proposed a new technique which uses
only strictly proper weighting functions. Later their method was modi£ed by Sreeram et al. [37] to allow proper

1Originally stochastic balancing was introduced as a spectral factor based algorithm, i.e. given a positive real function G, the method
approximates the spectral factor V of Φ where Φ = V V ∼ = G + G∼ which results in solving two Riccati equations. Later the method
is generalized and the stochastic balanced reduction is de£ned as approximating V given V , which results in solving one Lyapunov and
one Riccati equation, see [43], [44],[40],[10]. In this note, by stochastic balancing, we mean the latter which only requires that the original
model is square and invertible. We will discuss the former version of the stochastic balancing, which requires solving two Riccati equations,
under the name positive real balancing. These issues will be clari£ed throughout the text.
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weighting functions. In [27] and [37], error bounds for these techniques were introduced. On the other hand, re-
cently Wang et al. [39] introduced a new frequency weighted balancing method as a modi£cation to Enns’ method.
The method guarantees stability and yields a simple error bound. In [43], Zhou proposed a self-weighted balanced
reduction technique using Enns’ method where the output weighting is the inverse of the transfer function G(s).
Stability results and relative and multiplicative error bounds were also introduced in [43].

All these frequency weighted balancing methods need input and output weights Wi(s) and Wo(s) which are
usually not explicitly speci£ed, and try to £nd a reduced order model G r(s) which minimizes the weighted error
‖Wo(G − Gr)Wi‖H∞ . However, often, the original problem is to approximate G(s) over a frequency interval
[ w1, w2 ] and no input or output weights are given. Gawronski and Juang [16] introduced another type of weighted
balanced reduction where for a given frequency band [ w1, w2 ], the construction of the weights are avoided simply
by using the frequency domain representation of the reachability and observability gramians. Although the method
works quite ef£ciently in practice, stability is not guaranteed and no error bound exists. Similarly to their band-
limited frequency weighted balancing method, Gawronski and Juang [16] introduced also a time-limited balancing
method where the gramians are computed over a £nite time interval [ t1, t2 ]. The impulse response of the resulting
reduced model is expected to match that of the original model over [ t1, t2 ]. Even though it is not a frequency
weighted method, this method will also be examined.

In this paper, we £rst present a survey of the balancing related model reduction methods with the corresponding
error bounds whenever they exist. At this stage, we refer the reader to Ober’s paper [32]. In addition, we introduce
a multiplicative-type error bound for positive real balancing. Based on this error result, we propose a modi£ed
positive real balanced truncation with an absolute error bound for a certain subclass of positive real systems. We
then turn our attention to weighted balanced reduction and introduce a new algorithm. The method, which is a
modi£cation of Gawronski and Juang algorithm, guarantees stability and yields a simple error bound.

In the sequel, we will assume that the full-order model G(s) in (1.1) is asymptotically stable2 and minimal3.
The rest of the paper is organized as follows: Section 2 examines Lyapunov balancing followed by a study of

stochastic balancing in Section 3. Then we review the bounded real and positive real balancing methods in Sections
4 and 5, respectively. Section 5.1 introduces a multiplicative-type error for positive real balancing followed by a
modi£ed positive real balancing method developed in Section 5.2. Section 6 surveys the frequency weighted
balanced reduction method and presents a new weighted balancing scheme. A comparison of proposed methods
with the current methods is presented through numerical examples in Section 7. Section 8 contains conclusions.

2 Lyapunov Balancing Method

Let G(s) =
[

A B

C D

]
∈ R

(n+p)×(n+m) be the to-be-reduced model as de£ned in (1.1). Closely related to this

system are two continuous time Lyapunov equations

AP + PA
T

+ BB
T

= 0, A
T Q + QA + C

T
C = 0. (2.1)

Under the assumptions that G(s) is asymptotically stable and minimal, the above equations have unique sym-
metric positive de£nite solutions P,Q ∈ R

n×n, called the reachability and observability gramians, respectively.
The square roots of the eigenvalues of the product PQ are the so-called Hankel singular values σi(G(s)) of the
system G(s):

σi(G(s)) =
√

λi(PQ).

It is easy to see that, σi(G(s)) are basis independent. In many cases, the eigenvalues of P,Q as well as the Hankel
singular values σi(G(s)) decay very rapidly; see [7] for details.

2G(s) in (1.1) is called asymptotically stable if �(λi(A)) < 0, and is called stable if �(λi(A)) ≤ 0 where �(λ) denotes the real part
of λ.

3G(s) in (1.1) is called minimal if the pair (A, B) is reachable and the pair (C, A) is observable.
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De£nition 2.1 [30] The reachable, observable and stable system G(s) is called Lyapunov-balanced if

P = Q = Σ = diag(σ1Im1 , · · · , σqImq), (2.2)

where σ1 > σ2 > · · · > σq > 0, mi, i = 1, · · · , q are the multiplicities of σi, and m1 + · · · + mq = n.

The balanced basis has the property that the states which are dif£cult to reach are simultaneously dif£cult to
observe. Hence, a reduced model is obtained by truncating the states which have this property, i.e. those which
correspond to small Hankel singular values σi.

Theorem 2.1 [36, 13] Let the asymptotically stable and minimal system G(s) have the following Lyapunov bal-
anced realization:

G(s) =
[

Ab Bb

Cb Db

]
=

⎡⎣ A11 A12

A21 A22

B1

B2

C1 C2 D

⎤⎦
with P = Q = diag(Σ1, Σ2) where

Σ1 = diag(σ1Im1 , · · · , σkImk
) and Σ2 = diag(σk+1Imk+1

, · · · , σqImq).

Then the reduced order model Gr(s) =
[

A11 B1

C1 D

]
obtained by truncation is asymptotically stable, minimal

and satis£es

‖G(s) − Gr(s)‖H∞ ≤ 2 (σk+1 + · · · + σq). (2.3)

Equality holds if Σ2 = σqImq .

Lyapunov balanced truncation as outlined above can be applied to any G(s) which is asymptotically stable and
minimal. For an application of Lyapunov balancing to unstable and non-minimal systems, see [44],[11], [26],[38]
and the references therein.

3 Stochastic Balancing Method

Let G(s) =
[

A B

C D

]
∈ R

(n+p)×(n+m) be asymptotically stable and minimal with two additional properties,

namely (i) G(s) is square, i.e. m=p, and (ii) det(D) �= 0. Let W (s) be a minimal phase left spectral factor of
G(s)G∼(s), i.e., W∼(s)W (s) s= G(s)G∼(s) where G∼(s) : s= GT (−s). A realization of W (s) can be computed
as

W (s) =
[

A BW

CW DT

]
with

BW := PCT + BDT , and CW := D−1(C − BT
WX )

where P is the reachability gramian of G(s), i.e. P solves AP + PAT + BBT = 0 and X is the solution to the
Riccati equation

ATX + XA + (C − BT
WX )T (DDT )−1(C − BT

WX ) = 0.

Balanced stochastic realization of G(s) is obtained by balancing P and X .
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De£nition 3.1 [20, 45] The asymptotically stable, minimal, square and non-singular system G(s) is called stochas-
tically balanced if

P = X = diag(µ1It1 , · · · , µqItq). (3.1)

where µ1 > µ2 > · · · > µq > 0, ti, i = 1, · · · , q are the multiplicities of µi, and t1 + · · · + tq = n.

It turns out that µi are Hankel singular values of the stable part of the so-called phase matrix (W∼(s))−1G(s).

Theorem 3.1 [19] Let the asymptotically stable, minimal, square and non-singular system G(s) have the follow-
ing stochastic balanced realization:

G(s) =
[

As Bs

Cs Ds

]
=

⎡⎣ A11 A12

A21 A22

B1

B2

C1 C2 D

⎤⎦
with det(D) �= 0 and Ps = Xs = diag(Γ1, Γ2) where

Γ1 = diag(µ1It1 , · · · , µkItk) and Γ2 = diag(µk+1Itk+1
, · · · , µqItq).

Then the reduced order model Gr(s) =
[

A11 B1

C1 D

]
obtained by truncation is asymptotically stable, minimal

and satis£es

∥∥∥(G(s))−1 (G(s) − Gr(s))
∥∥∥
H∞

≤
q∏

i=k+1

1 + µi

1 − µi
− 1 (3.2)

∥∥∥(Gr(s))
−1 (G(s) − Gr(s))

∥∥∥
H∞

≤
q∏

i=k+1

1 + µi

1 − µi
− 1 (3.3)

In addition, if G(s) is minimum phase, Gr(s) is minimum phase as well.

Stochastic balanced truncation can be applied to all asymptotically stable dynamical systems which are square and
nonsingular. For application of stochastic balancing to singular systems, see [40] and [18]. It was pointed out in
[40] that stochastic balanced truncation yields a uniformly good approximant over whole frequency range instead
of small absolute errors. Also, Zhou [43] showed that for minimal phase systems, stochastic balanced truncation
is the same as self-weighted balanced truncation where the output weighting is given by G−1(s). This issue will
be discussed in Section 6.3 in more detail.

4 Bounded Real Balancing

An important class of dynamical systems is the class of bounded real systems. These are systems which are
stable and whose transfer function is bounded by one on the imaginary axis. This class of systems is used in
parameterizing all stabilizing controllers of a system such that the closed-loop satis£es an H∞ constraint [32, 17].

De£nition 4.1 The asymptotically stable system G(s) =
[

A B

C D

]
is called bounded real if

I − DT D ≥ 0 and I − G∼(jw)G(jw) ≥ 0, for ∀w ∈ R.

It is called strictly bounded real if the above inequalities are strict where G(s) s= C(sI − A)−1B + D.
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Here, we will examine only strictly bounded real systems. Hence, in the sequel, by bounded real, we mean strictly
bounded real.

De£ne RC := I − DT D. Then G(s) is bounded real if and only if there exists a Y = YT > 0 such that

ATY + YA + CT C + (YB + CT D)R−1
C (YB + CT D)T = 0. (4.1)

Any solution Y of (4.1) lies between two extremal solutions, i.e. 0 < Ymin ≤ Y ≤ Ymax. Ymin is the unique
solution to (4.1) such that A + BR−1

C (BTY + DT C) is asymptotically stable. De£ne RB := I − DDT . Then a
dual Riccati equation

AZ + ZAT + BBT + (ZCT + BDT )R−1
B (ZCT + BDT )T = 0. (4.2)

is obtained where Z = ZT > 0. As in the case for (4.1), any solution Z of (4.2) lies between two extremal
solutions, i.e. 0 < Zmin ≤ Z ≤ Zmax. (4.1) and (4.2) are called the bounded real Riccati equations of the system
G(s).

Lemma 4.1 [32] If Y = YT > 0 is a solution to (4.1), then Z = Y−1 is a solution to (4.2). Hence Zmin = Y−1
max

and Zmax = Y−1
min.

A bounded real balanced representation [33] is obtained by balancing (i.e., simultaneously diagonalizing) Ymin

and Y−1
max = Zmin.

De£nition 4.2 [33] A bounded real system G(s) is called bounded real balanced if

Ymin = Zmin = Y−1
max = Z−1

max = diag(ξ1Il1 , · · · , ξqIlq)

where 1 ≥ ξ1 > ξ2 > · · · > ξq > 0, li, i = 1, · · · , q are the multiplicities of ξi, and l1 + · · · + lq = n.

We will call ξi the bounded real singular values of G(s).

Theorem 4.1 [33] Let the asymptotically stable, minimal, bounded-real system G(s) have the following bounded
real balanced realization:

G(s) =
[

Abr Bbr

Cbr Dbr

]
=

⎡⎣ A11 A12

A21 A22

B1

B2

C1 C2 D

⎤⎦
with I − DT D > 0 and Ymin = Zmin = diag(Ξ1, Ξ2) where

Ξ1 = diag(ξ1Il1 , · · · , ξkIlk) and Ξ2 = diag(ξk+1Ilk+1
, · · · , ξqIlq).

Let a reduced order model Gr(s) =
[

A11 B1

C1 D

]
be obtained by truncation. Also let W̄ (s) and V̄ (s) be the

stable minimum phase spectral factors of I − G∼(s)G(s) and I − G(s)G∼(s), respectively, i.e., W̄∼(s)W̄ (s) s=
I − G∼(s)G(s) and V̄ (s)V̄ ∼(s) s= I − G(s)G∼(s). Similarly de£ne W̄r(s) and V̄r(s) for Gr(s). Then Gr(s) is
asymptotically stable, minimal, bounded real balanced and satis£es

max

{∥∥∥∥ G(s) − Gr(s)
W̄ (s) − W̄r(s)

∥∥∥∥
H∞

,

∥∥∥∥ G(s) − Gr(s)
V̄ (s) − V̄r(s)

∥∥∥∥
H∞

}
≤ 2

q∑
i=k+1

ξi. (4.3)

(4.3) states that if 2
∑q

i=k+1 ξi is small, not only G(s) and Gr(s) are close, but also the reduced spectral factors
W̄r(s) and V̄r(s) are guaranteed to be close, respectively, to the full order spectral factors W̄ (s) and V̄ (s).
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5 Positive Real Balancing

Another important class of dynamical systems is the class of positive real (passive) systems. In a physical sense,
positive realness means that the energy produced by the system can never exceed the energy received by it. Electric
circuits are one class of positive real dynamical systems.

De£nition 5.1 The asymptotically stable system G(s) =
[

A B

C D

]
∈ R

(n+p)×(n+m), is called positive real if

m = p, DT + D ≥ 0 and G∼(jw) + G(jw) ≥ 0, for ∀w ∈ R,

and is called strictly positive real if the above inequalities are strict where G(s) s= C(sI − A)−1B + D.

In the sequel, we will examine only strictly positive real systems, and hence, positive real will mean strictly positive
real.

G(s) is positive real if and only if there exists a K = KT > 0 such that

ATK + KA + (KB − CT )(D + DT )−1(KB − CT )T = 0. (5.1)

As in the bounded real case, a dual Riccati equation

AL + LAT + (LCT − B)(D + DT )−1(LCT − B)T = 0, (5.2)

is obtained where L = LT > 0. (5.1) and (5.2) are the so-called positive real Riccati equations of G(s).

Corollary 5.1 [32] Any solutions K and L of, respectively, (5.1) and (5.2) lie between two extremal solutions, i.e.
0 < Kmin ≤ K ≤ Kmax and 0 < Lmin ≤ L ≤ Lmax. If K = KT > 0 is a solution to (5.1), then L = K−1 is a
solution to (5.2). Hence Kmin = L−1

max and Kmax = L−1
min.

Analogously to the bounded real case, a positive real balancing transformation is obtained by balancing the mini-
mal solutions Kmin and Lmin to (5.1) and (5.2), respectively.

De£nition 5.2 [12, 32] A positive real system G(s) is called positive real balanced if

Kmin = Lmin = K−1
max = L−1

max = diag(π1Is1 , · · · , πqIsq),

where 1 ≥ π1 > π2 > · · · > πq > 0, si, i = 1, · · · , q are the multiplicities of πi, and s1 + · · · + sq = n.

We will call πi the positive real singular values of G(s).
The Moebius transformation, denoted by M, of a square bounded-real system H(s), is de£ned as

H(s) M
−→ G(s) s= (I − H(s))−1(I + H(s)). (5.3)

It is well known that G(s) in (5.3) is positive real. M is a bijection with inverse

G(s)
M−1


−→ H(s) s= (G(s) − I)(G(s) + I)−1. (5.4)

If G(s) is a positive real system, H(s) in (5.4) is a square bounded real system. The following lemma lists the
important properties of the Moebius transformation:
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Lemma 5.1 [32] Given the square bounded real system H(s) =
[

Aψ Bψ

Cψ Dψ

]
, let G(s) be obtained by the

Moebius transformation applied on H(s) as in (5.3). Then G(s) is positive real and a state space realization for
G(s) is given by

G(s) =
[

A B

C D

]
=

[
Aψ + Bψ(I − Dψ)−1Cψ

√
2Bψ(I − Dψ)−1√

2(I − Dψ)−1Cψ (I − Dψ)−1(I + Dψ)

]
. (5.5)

Similarly, given a positive real system G(s) =
[

A B

C D

]
, let H(s) be obtained by applying M−1 on G(s) as in

(5.4). Then H(s) is a square bounded real system with the state-space realization

H(s) =
[

Aψ Bψ

Cψ Dψ

]
=

[
A − B(I + D)−1C

√
2B(I + D)−1√

2(I + D)−1C (D − I)(D + I)−1

]
. (5.6)

Moreover, K = KT > 0 is a solution to the positive real Riccati equation

ATK + KA + (KB − CT )(D + DT )−1(KB − CT )T = 0,

if and only if K is a solution to the bounded real Riccati equation

AT
ψK + KAψ + CΨT CΨ + (KBψ + CT

ψ Dψ)(I − DT
ψDψ)−1(KBψ + CT

ψ Dψ)T = 0.

where Aψ, Bψ, Cψ and Dψ are as in (5.6). Hence, H(s) is bounded-real balanced with bounded real gramians Ξ
if and only if G(s) = M(H(s)) is positive real balanced with positive real gramians Π = Ξ.

Theorem 5.1 [12] Let the asymptotically stable, minimal, positive real system G(s) have the following positive
real balanced realization:

G(s) =
[

Apr Bpr

Cpr Dpr

]
=

⎡⎣ A11 A12

A21 A22

B1

B2

C1 C2 D

⎤⎦ (5.7)

with D + DT > 0 and Kmin = Lmin = diag(Π1, Π2) where

Π1 = diag(π1Is1 , · · · , πkIsk
) and Π2 = diag(πk+1Isk+1

, · · · , πqIsq).

Let the reduced order model Gr(s) =
[

A11 B1

C1 D

]
obtained by truncation. Then Gr(s) is asymptotically stable,

minimal and positive real balanced.

It is clear that the error results of the stochastic balancing can be employed for positive-real balancing. However,
in that case the bounds will be in terms of the spectral factors of G(s), not in terms of G(s); that is, we will have
bounds on the error ‖V −1(V − Vr)‖∞ where G + G∼ = V ∼V and Gr + G∼

r = V ∼
r Vr. It is the goal of the next

section to obtain such a bound in terms G(s) and Gr(s).

5.1 A multiplicative-type error bound for positive real balancing

In this section, we will introduce a multiplicative-type error bound for the positive real balanced reduction in terms
of G(s) and Gr(s). The following theorem is the £rst step toward this goal:
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Theorem 5.2 Given the asymptotically stable positive real system G(s) =
[

A B

C D

]
, the reduced order model

Gr(s), obtained by positive real balanced truncation as de£ned in Theorem 5.1, satis£es

‖(DT + G(s))−1 − (DT + Gr(s))−1‖H∞ ≤ 2 ‖R‖2
q∑

i=k+1

πi, (5.8)

where Π = diag(π1Is1 , · · · , πqIsq), R2 := (D + DT )−1.

Proof: We will assume that G(s) is in the positive real balanced basis as given in (5.7). Hence the following two
Riccati equations hold:

AΠ + ΠAT + (ΠCT − B)(D + DT )−1(ΠCT − B)T = 0 (5.9)

AT Π + ΠA + (ΠB − CT )(D + DT )−1(ΠB − CT )T = 0 (5.10)

It is easy to see that (5.9) and (5.10) can be written as

(A − BRRC)︸ ︷︷ ︸
=:Â

Π + Π(A − BRRC)T + ΠCT R RC︸︷︷︸
=:Ĉ

Π + BR︸︷︷︸
=:B̂

RBT = 0 (5.11)

(A − BRRC)T Π + Π(A − BRRC) + ΠBRRBT Π + CT RRC = 0 (5.12)

It follows from De£nition 4.2 that the system Ĝ(s) =

[
Â B̂

Ĉ 0

]
is bounded real balanced with bounded real

gramian Π. Partition Ĝ(s) as

Â =

[
Â11 Â12

Â21 Â22

]
, B̂ =

[
B̂1

B̂2

]
, Ĉ =

[
Ĉ1 Ĉ2

]
Π =

[
Π1

Π2

]
,

where Π1 = diag(π1Is1 , · · · , πkIsk
) and Π2 = diag(πk+1Isk+1

, · · · , πqIsq), and de£ne the bounded real reduced

system Ĝr(s) :=

[
Â11 B̂1

Ĉ1 0

]
. Then it follows from Theorem 4.1 that

‖Ĝ(s) − Ĝr(s)‖H∞ ≤ 2
q∑

i=k+1

πi. (5.13)

Since ‖ R (Ĝ(s) − Ĝr(s) (−R) ‖H∞ ≤ ‖R‖2 ‖Ĝ(s) − Ĝr(s)‖H∞ , (5.13) leads to

‖R(Ĝ(s) − Ĝr(s))(−R)‖H∞ = ‖RĜ(s)(−R)︸ ︷︷ ︸
s
=:Θ(s)

−RĜr(s)(−R)︸ ︷︷ ︸
s
=:Θr(s)

‖H∞ ≤ 2 ‖R‖2
q∑

i=k+1

πi.

A realization for Θ(s) and Θr(s) can be obtained as

Θ(s) =
[

A − BR2C −BR2

R2C 0

]
and Θr(s) =

[
A11 − B1R

2C1 −B1R
2

R2C1 0

]
.

Since ‖Θ(s) − Θr(s)‖H∞ = ‖ (Θ(s) + R2) − (Θr(s) + R2) ‖H∞ , we obtain∥∥∥∥ [
A − BR2C −BR2

R2C R2

]
−

[
A11 − B1R

2C1 −B1R
2

R2C1 R2

] ∥∥∥∥
H∞

≤ 2 ‖R‖2
q∑

i=k+1

πi.

9



It is clear that[
A − BR2C −BR2

R2C R2

]
=

[
A B

C R−2

]−1

and
[

A11 − B1R
2C1 −B1R

2

R2C1 R2

]
=

[
A11 B1

C1 R−2

]−1

Recall that R−2 = D + DT . Hence, one obtains

∥∥ (DT + G(s))−1 − (DT + Gr(s))−1
∥∥
H∞

≤ 2 ‖R‖2
q∑

i=k+1

πi. (5.14)

This completes the proof.

Remark 5.1 We note that (5.14) is equivalent to

‖(DT + G(s))−1(G(s) − Gr(s))(DT + Gr(s))−1‖H∞ ≤ 2 ‖R‖2
q∑

i=k+1

πi. (5.15)

(5.15) is indeed a frequency weighted bound of the error system G(s) − Gr(s) where the input and the output
weights are (DT + G(s))−1 and (DT + Gr(s))−1, respectively.

Theorem 5.2 leads to the following multiplicative-type error result for the positive real balanced reduction. Note
that, as mentioned above, this bound is in terms of G(s) and Gr(s), not in terms of the spectral factors.

Lemma 5.2 Given the asymptotically stable, minimal and positive real system G(s) =
[

A B

C D

]
, let Gr(s) be

obtained by positive real balanced truncation as de£ned in Theorem 5.1. The following error bound holds:∥∥∥ (
DT + Gr(s)

)−1
(G(s) − Gr(s))

∥∥∥
H∞

≤ 2 ‖R‖2 ‖DT + G(s)‖H∞

q∑
i=k+1

πi (5.16)

where R2 = (D + DT )−1.

Proof: Directly follows from Theorem 5.2.
We state (5.16) as a multiplicative-type error bound rather than a multiplicative error bound because of having
the term of DT + Gr(s) instead of Gr(s) only. However, one can easily see that in terms of G(s) + DT and
Gr(s) + DT it is a multiplicative error result, namely∥∥∥ (

DT + Gr(s)
)−1 (

(G(s) + DT ) − (Gr(s) + DT )
) ∥∥∥

H∞
≤ 2 ‖R‖2 ‖DT + G(s)‖H∞

q∑
i=k+1

πi. (5.17)

5.2 A modi£ed positive real balancing method with an absolute error bound

In this section, we will introduce a modi£ed positive real balancing method for a certain subclass of positive real
systems. Then based on Theorem 5.2, we will derive an absolute error bound for this reduction method.

De£nition 5.3 Let G(s) =
[

A B

C D

]
be an asymptotically stable and minimal positive real system and R2 =

(D +DT )−1 > 0. De£ne FG(s) :=
[

A − BR2C −BR2

R2C 0

]
. By D we denote the set of all positive real systems

G(s) such that FG(jw) + F∼
G (jw) > −R2, i.e.

D :=
{
G(s) : G(s) is positive real and FG(jw) + F∼

G (jw) > −R2
}

10



Remark 5.2 1. It is easy to see that FG(s) + R2 s= (G(s) + DT )−1 and consequently FG(s) + R2 is positive
real. In the above de£nition we require that FG(s)+ R2

2 be positive real as well. Therefore, another way of stating

De£nition 5.3 is that D is a family of positive real systems for which FG(s) + R2

2 is also positive real.

2. The condition FG(jw) + F∼
G (jw) > −R2 is not satis£ed for all positive real G(s). For example take G(s) s=

1 + 1
s+p where p is a positive number. The above condition is satis£ed for all p > 0.5. Simulations suggest that

FG(jw) + F∼
G (jw) > −R2 is not a severe restriction.

Throughout the next section, positive real systems will refer to systems belonging to the family D.

5.2.1 Modi£ed positive real balanced truncation

Given the positive real system G(s), de£ne the dynamical system H(s) with the corresponding D-term DH as

DT
H + H(s) s= (DT + G(s))−1. (5.18)

Note that DT
H + H(s) is positive real even if G(s) does not belong to D. A state-space representation of H(s) is

easily computed as

H(s) =
[

AH BH

CH DH

]
=

[
A − BR2C −BR2

R2C R2/2

]
. (5.19)

Since G ∈ D, by De£nition 5.3, H(s) is positive real. Then we apply the positive real balanced truncation of
Section 5 to H(s). Let H(s) have positive real gramians

K̄min = N̄min = Π̄ = diag(π̄1Is1 , · · · , π̄qIsk
, π̄k+1Isk+1

, · · · , π̄qIsq).

Let Hr(s) denote the reduced positive real system obtained by keeping £rst k positive real singular values π̄i

of H(s). Hr(s) is the intermediate reduced model. We then compute the £nal reduced order model Ḡr(s) =[
Ār B̄r

C̄r D̄r

]
from Hr(s) using the relationship

D̄r + Ḡr(s)
s= (DT

H + Hr(s))−1. (5.20)

It is easy to show that by construction D̄r = D. Now we state the main result of this section:

Theorem 5.3 Given the positive real system G(s) ∈ D, let Ḡr(s) be obtained by the modi£ed positive real
balanced truncation method introduced above. Then Ḡr(s) is asymptotically stable, positive real and satis£es

‖G(s) − Ḡr(s) ‖H∞ ≤ 2‖R−1‖2
q∑

i=k+1

π̄i. (5.21)

Proof: Asymptotic stability and positive realness follow by construction. We only need to prove the error bound.
Since Hr(s) is obtained from H(s) by positive real balanced truncation, Theorem 5.2 yields

‖(DT
H + H(s))−1 − (DT

H + Hr(s))−1‖H∞ ≤ 2 ‖RH‖2
q∑

i=k+1

π̄i (5.22)

where RH := (DH +DT
H)−2 = R−1. Then noticing that by construction, we have (DT

H +H(s))−1 s= DT +G(s)
and (DT

H + Hr(s))−1 s= DT + Gr(s), the desired result (5.21) follows.

11



By Theorem 5.3, we are able to approximate a positive real system G(s) by a reduced order positive real
system with an absolute error bound on the H∞ norm of the error if G(s) ∈ D. This error result is analogous to
the error result (2.3) of the Lyapunov balancing and (4.3) of the bounded real balancing methods. In Section 7,
through a numerical example, we compare the above modi£ed positive real balanced truncation with the positive
real balanced truncation of Section 5. Also, πi and π̄i will be compared in terms of their decay rates. The example
illustrates that if G(s) ∈ D, the proposed method is an alternative to positive real balancing.

6 Frequency Weighted Balanced Truncation

The balancing methods introduced above try to approximate the full order model G(s) over all frequencies. How-
ever, in many applications one is only interested in a certain frequency range. This problem leads to the so-called
frequency weighted balancing method. Given some input weighting Wi(s) and output weighting Wo(s), the prob-
lem becomes to compute a reduced order model so that the weighted error ‖ Wo(s)(G(s) − Gr(s))Wi(s) ‖H∞ is
small. The frequency weighted balanced reduction methods of Enns [13], Lin and Chiu [28], Wang et al. [39] and
Zhou [43] are the most common approaches used to tackle this problem.

Although the frequency weighted reduction problem is stated as reducing ‖ Wo(s)(G(s) − Gr(s))Wi(s) ‖H∞ ,
we want to mention that the input and output weightings Wi(s) and Wo(s) are often £ctitious quantities unless
they are speci£ed by the user. In many cases, the original problem is to approximate G(s) over a frequency interval
[ w1, w2 ] and no input and output weighting is given. Then to use the frequency weighted methods mentioned,
one has to construct weights to re¤ect this frequency range. Choosing the weights is a problem in itself. To
remedy this situation, Gawronski and Juang [16] introduced another type of weighted balanced reduction method
where for a given frequency band [ w1, w2 ], the construction of the weights is avoided by using the frequency
domain representation of the gramians. This method has not been recognized in the literature as much as the other
methods. We will propose a frequency weighted balancing method as a modi£cation to Gawronski and Juang’s
method. With the modi£cation, we will guarantee asymptotic stability and provide a simple error bound. We note
that our modi£cation to Gawronski and Juang’s method is analogous to Wang’s et al. modi£cation [39] to Enns’
[13] and Lin and Chiu’s [28] method. Below we will also review Gawronski and Juang’s time limited balancing
method.

Let G(s) =
[

A B

C D

]
, Wi(s) =

[
Ai Bi

Ci Di

]
, and Wo(s) =

[
Ao Bo

Co Do

]
be the state space representations

of the original model G(s), the input weight Wi(s) and the output weight Wo(s). Assuming there is no pole-zero
cancellation, the minimal state-space realizations of G(s)Wi(s) and Wo(s)G(s) are given by

G(s)Wi(s) =
[

Āi B̄i

C̄i D̄i

]
=

⎡⎣ A BCi

0 Ai

BDi

Bi

C 0 DDi

⎤⎦ (6.1)

and

Wo(s)G(s) =
[

Āo B̄o

C̄o D̄o

]
=

⎡⎣ A 0
BoC Ao

B
0

DoC Co DoD

⎤⎦ . (6.2)

Let

P̄ =
[ P11 P12

PT
12 P22

]
, and Q̄ =

[ Q11 Q12

QT
12 Q22

]
, (6.3)

be the solutions to the following Lyapunov equations:

ĀiP̄ + P̄ĀT
i + B̄iB̄

T
i = 0 and ĀT

o Q̄ + Q̄Āo + C̄T
o C̄o = 0.

12



6.1 Enns’ frequency weighted method [13]

This method is based on the simultaneous diagonalization of P11 and Q11. Assume that P11 and Q11 are the
frequency weighted balanced gramians with

P11 = Q11 = diag(σ1In1 , · · · , σkInk
, σk+1Ink+1

, · · · , σqInq)

where ni are the multiplicities of σi with n1 + · · · + nq = n. In this balanced basis, let G(s) and the reduced
model Gr(s) be given by

G(s) =

⎡⎣ A11 A12

A21 A22

B1

B2

C1 C2 D

⎤⎦ , Gr(s) =
[

A11 B1

C1 D

]
(6.4)

where Gr(s) corresponds to largest k weighted singular values σi.

Theorem 6.1 [27] Given the asymptotically stable and minimal system G(s), let Gr(s) be obtained by Enns’
frequency weighted balanced truncation method as above. Assume that Gr(s) is asymptotically stable, which is
guaranteed if Wi = I or Wo = I . Then

‖ Wo(s)(G(s) − Gr(s))Wi(s) ‖H∞ ≤ 2
q∑

i=k+1

√
σ2

k + (αk + βk)σ
3/2
k + αkβkσk, (6.5)

where αk and βk denote the H∞ norms of transfer function which depends on Wo(s), Wi(s) and Grj (s), j =
1, · · · , k.

The computation of this upper bound is quite complex and requires evaluating many H∞ norms. For details on
the computation of αk and βk, see the original source [27].

6.2 Lin and Chiu’s frequency weighted balancing method [28]

Unlike Enns’ method where balancing is based on P11 and Q11, Lin and Chiu’s frequency weighted balancing
method is based on the simultaneous diagonalization of P̃ := P11 − P12P−1

22 P T
12 and Q̃ := Q11 − QT

12Q−1
22 QT

12.
Let P̃ and Q̃ be balanced as

P̃ = Q̃ = diag(σ̃1In1 , · · · , σ̃kInk
, σ̃k+1Ink+1

, · · · , σ̃qInq).

The reduced order model Gr(s) is obtained by truncation as in (6.4).

Theorem 6.2 [28, 37] Given asymptotically stable and minimal G(s), let Gr(s) be obtained by Lin and Chiu’s
frequency weighted balanced truncation as above. Then Gr(s) is stable and satis£es

‖ Wo(s)(G(s) − Gr(s))Wi(s) ‖H∞ ≤ 2
q∑

i=k+1

√
(σ̃2

k + αk + λk)(σ̃k + βk + ωk) (6.6)

where αk, βk, λk and ωk denote the H∞ norms of transfer function which depend on Wo(s), Wi(s) and Grj (s),
j = 1, · · · , k.

The computation of the upper bound is complex as in Enns’ method, see [28].
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6.3 Zhou’s self-weighted frequency weighted balancing method [43]

Zhou’s method is applicable to any asymptotically stable G(s) =
[

A B

C D

]
for which an asymptotically stable

right inverse G+(s) exists and D is full-rank. However, for simplicity, we will only discuss the case where G(s)
is square, nonsingular, i.e. det(D) �= 0, and G−1 is asymptotically stable, i.e. G(s) is minimum phase. Zhou’s
method is a special case of Enns’ method where

Wi(s) = I and Wo(s) = G−1(s) =
[

A − BD−1C −BD−1

D−1C D−1

]
.

Then Zhou’s frequency weighted gramians P11 and Q11 in (6.3) are the solutions to

AP11 + P11A
T + BBT = 0 and Q11(A − BD−1C) + (A − BD−1C)TQ11 + (D−1C)T (D−1C) = 0.

The self-weighted balanced realization is obtained by simultaneously diagonalizing P11 and Q11, i.e.,

P11 = Q11 = diag(σ1In1 , · · · , σkInk
, σk+1Ink+1

, · · · , σqInq). (6.7)

Theorem 6.3 [43] Let G(s) be an asymptotically stable, square, non-singular and minimum phase system. Also,
let Gr(s) be obtained by Zhou’s frequency weighted balanced truncation method. Then Gr(s) is asymptotically
stable, minimum phase and satis£es

∥∥(G(s))−1(G(s) − Gr(s))
∥∥
H∞

≤
q∏

i=k+1

(1 + 2σi

√
1 + σ2

i + 2σ2
i ) − 1 (6.8)

∥∥(Gr(s))−1(G(s) − Gr(s))
∥∥
H∞

≤
q∏

i=k+1

(1 + 2σi

√
1 + σ2

i + 2σ2
i ) − 1 (6.9)

Moreover, it was shown in [43] that if G(s) is square, asymptotically stable, nonsingular and minimum phase as in
the above theorem, then balancing P11 and Q11 is equivalent to balancing the gramians P and X in the stochastic
balancing case. Therefore, the following result holds:

Corollary 6.1 Let G(s) be a square, asymptotically stable, nonsingular and minimum phase system. Then the
self-weighted balanced realization of G(s) is also stochastically balanced. Hence Gr(s), obtained by Zhou’s
method, is stochastically balanced, minimum phase and asymptotically stable. In this case, σi in (6.7) and µi in
(3.1) are related by

µi =
σi√

1 + σ2
i

The above corollary states that, if G(s) is minimum phase, stochastic balancing can be obtained by solving two
Lyapunov equations avoiding the Riccati equation.

6.4 Wang’s et al. frequency weighted balancing method [39]

Given the setup in (6.1), (6.2) and (6.3), de£ne

XB := BCiP12 + PT
12CiT BT + BDiD

T
i BT and XC := Q12BoC + CT BT

o QT
12 + CT DT

o DoC.

Let XB = USUT and XC = V HV T be the eigenvalue decompositions of XB and XC where UUT = I ,
V V T = I , S = diag(s1, · · · , sn), H = diag(h1, · · · , hn) with | s1 |≥ · · · | sn |≥ 0 and | h1 |≥ · · · | hn ≥ 0. Let
rank(XB) := ι and rank(XC) := ν and de£ne

B̄ := Udiag(| s1 |1/2, · · · , | sι |1/2, · · · , 0, · · · , 0) and C̄ := diag(| h1 |1/2, · · · , | hν |1/2, · · · , 0, · · · , 0)V T .
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The frequency weighted gramians P̄ and Q̄ for Wang’s et al. approach are the solutions to the following two
Lyapunov equations:

AP̄ + P̄AT + B̄B̄T = 0 and AT Q̄ + Q̄A + C̄T C̄ = 0.

Let P̄ and Q̄ be balanced with

P̄ = Q̄ = diag(σ̄1In1 , · · · , σ̄kInk
, σ̄k+1Ink+1

, · · · , σ̄qInq).

Then Wang’s et. al reduced model Gr(s) is obtained by truncation as in (6.4). The following result holds.

Theorem 6.4 [39] Given G(s), let Gr(s) be obtained by Wang’s et. al frequency weighted balanced truncation
as above. Then Gr(s) is stable. In addition if

rank([ B B̄ ]) = rank(B̄) and rank([ CT C̄T ]) = rank(C̄T )

then Gr(s) is asymptotically stable and satis£es

‖ Wo(s)(G(s) − Gr(s))Wi(s) ‖H∞ ≤ 2‖Wo(s)L‖H∞‖KWi(s)‖H∞

q∑
i=k+1

σ̄i, (6.10)

where K := diag(| s1 |−1/2, · · · , | sι |−1/2, · · · , 0, · · · , 0)UT B and L := CV diag(| h1 |−1/2, · · · , | hν |−1/2

, · · · , 0, · · · , 0).

The assumptions rank([ B B̄ ]) = rank(B̄) and rank([ CT C̄T ]) = rank(C̄T ) are not always satis£ed. This
will be analyzed further in Section 6.6 where we make a similar assumption. It is clear that the error bound for
Wang’s et al. approach is simpler than those of Enns’ and Lin and Chiu’s methods.

6.5 Gawronski and Juang’s frequency weighted balanced reduction method [16]

Using Parseval’s relationship it follows that in the frequency domain, the reachability and observability gramians
P and Q, are given by

P =
1
2π

∫ +∞

−∞
H(w)BBT H∗(w)dw and Q =

1
2π

∫ +∞

−∞
H∗(w)CT CH(w)dw, (6.11)

where Hw := (jwI − A)−1 and H∗(w) := (−jwI − A∗)−1. For a given frequency band Ω = [ w1, w2 ],
Gawronski and Juang suggested to choose the frequency weighted gramians as

PΩ := P(w2) − P(w1) and QΩ := Q(w2) −Q(w1) (6.12)

where

P(w) =
1
2π

∫ +w

−w
H(w)BBT H∗(w)dw and Q(w) =

1
2π

∫ +w

−w
H∗(w)CT CH(w)dw. (6.13)

Note that P(w) and Q(w) are both positive de£nite. From BBT = −AP−PAT = (jwI−A)P+P(jwI−A)∗,
one obtains

P(w) =
1
2π

∫ +w

−w
(PH∗(w) + H(w)P)dw.

The £nal equation yields

P(w) = PS∗(w) + S(w)P (6.14)
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where

S(w) :=
1
2π

∫ +w

−w
H(w)dw =

j

2π
ln((jwI + A)(−jwI + A)−1) (6.15)

A similar argument leads to
Q(w) = S∗(w)Q + QS(w).

From the de£nitions of S(w) and P in (6.11) and (6.15), and the fact that H(w1)H(w2) = H(w2)H(w1) for any
w1, w2 ∈ R, follows that

S(w)P =
1

4π2

∫ +w

−w

∫ +∞

−∞
H(w)H(φ)BBT H∗(φ)dφdw =

1
2π

∫ +∞

−∞
H(φ)S(w)BBT H∗(φ)dφ. (6.16)

Plugging this into (6.14) gives

P(w) = PS∗(w) + S(w)P =
1
2π

∫ +∞

−∞
H(φ)Wc(w)H∗(φ)dφ, (6.17)

where Wc(w) := S(w)BBT +BBT S∗(w). Since A is asymptotically stable, P(w) is the solution to the Lyapunov
equation

AP(w) + P(w)AT + Wc(w) = 0.

Therefore, the weighted gramian PΩ in (6.12) is obtained by solving

APΩ + PΩAT + Wc(Ω) = 0, (6.18)

where Wc(Ω) := Wc(w2) − Wc(w1). A similar argument yields

ATQΩ + QΩAT + Wo(Ω) = 0, (6.19)

where Wo(Ω) := Wo(w2)−Wo(w1), and Wo(w) := S∗(w)CT C+CT CS(w). Hence the computations of PΩ and
QΩ require evaluating the logarithm in S(w) in addition to solving two Lyapunov equations. For small-to-medium
scale problems for which an exact balanced realization can be computed, S(w) can be ef£ciently computed as
well. However, for large-scale problems, this issue is still under investigation. But we note that computing an
exact solution to a Lyapunov equation in large-scale settings is an ill-conditioned problem itself. Therefore S(w)
can be computed whenever a balanced realization can be computed.

Gawronski and Juang’s frequency weighted method is obtained by balancing (simultaneously diagonalizing)
PΩ and QΩ, i.e., £nding a basis so that

PΩ = QΩ = diag(σn1In1 , · · · , σnqInq), (6.20)

where ni are the multiplicities of each singular value σi and n1 + · · · + nq = n. Then the reduced order model is
obtained by truncation. However, since Wc(Ω) and Wo(Ω) are not guaranteed to be positive de£nite, stability of
the reduced model cannot be guaranteed.

As seen from the above discussion, the construction of input and output weights is avoided by de£ning the
gramians over the speci£ed frequency range. A comparison with the other methods will be presented in Section 7.
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6.6 A modi£ed frequency weighted balanced truncation method

In this section, we will introduce a modi£cation to Gawronski and Juang’s and obtain a frequency balancing
method which guarantees stability and provides a simple error result.

Given the set-up in Section 6.5, let Wc(Ω) and Wc(Ω) have the following EVD:

Wc(Ω) := MΛMT = Mdiag(λ1, · · · , λn)MT (6.21)

Wo(Ω) := N∆NT = Ndiag(δ1, · · · , δn)NT , (6.22)

where MMT = NNT = In with | λ1 |≥ · · · | λn |≥ 0 and | δ1 |≥ · · · | δn ≥ 0. Since both Wc(Ω) and Wo(Ω)
are symmetric, such decompositions exist. Let ρ and  denote the ranks of, respectively, Wc(Ω) and Wo(Ω). Based
on these de£nitions, let

B̂ := Mdiag(| λ1 |1/2, · · · , | λρ |1/2, · · · , 0, · · · , 0) and (6.23)

Ĉ := diag(| δ1 |1/2, · · · , | δ� |1/2, · · · , 0, · · · , 0)NT . (6.24)

We now de£ne the modi£ed frequency weighted gramians P̄Ω and s Q̄Ω as the solutions to

AP̄Ω + P̄ΩAT + B̂B̂T = 0 and Q̄ΩA + AT Q̄Ω + ĈT Ĉ = 0. (6.25)

Then the modi£ed frequency weighted balancing is obtained by simultaneously diagonalizing P̄Ω and Q̄Ω, i.e. in
the balanced basis, we have

P̄Ω = Q̄Ω = diag(σ̄τ1Iτ1 , · · · , σ̄τqIτq)

where σ̄i are the modi£ed frequency-weighted singular values, τi are the multiplicities of σ̄i and τ1 + · · ·+τq = n.

Theorem 6.5 Let the asymptotically stable, minimal system G(s) have the following modi£ed frequency weighted
balanced realization:

G(s) =

⎡⎣ A11 A12

A21 A22

B1

B2

C1 C2 D

⎤⎦ , with P̄Ω = Q̄Ω = diag(σ̄τ1Iτ1 , · · · , σ̄τk
Iτk

, σ̄τk+1
Iτk+1

, · · · , σ̄τqIτq).

Let Gr =
[

A11 B1

C1 D

]
be obtained by truncation. Then Gr(s) is balanced and stable. If, in addition,

rank([ B B̂ ]) = rank(B̂) and rank([ CT ĈT ]) = rank(ĈT ) (6.26)

then Gr(s) is asymptotically stable, minimal and satis£es

‖ G(s) − Gr(s) ‖H∞ ≤ 2‖JB‖‖JC‖
q∑

i=k+1

σ̄i, (6.27)

where JB := diag(| λ1 |−1/2, · · · , | λρ |−1/2, · · · , 0, · · · , 0)MT B and JC := CNdiag(| δ1 |−1/2, · · · , | δ� |−1/2

, · · · , 0, · · · , 0).

Proof: The £rst part of the theorem is clear. By assumption (6.26), there exist JB and Jc such that B = B̂JB

and C = JCĈ. Asymptotic stability follows from the fact that the reachability of the pair (A, B) implies the
reachability of the pair (A, B̂) and the observability of the pair (C, A) implies the observability of the pair (Ĉ, A).
To prove the error bound, we proceed as follows:

‖G(s) − Gr(s)‖H∞ = ‖C(sI − A)−1B − C1(sI − A11)−1B1‖H∞ (6.28)

= ‖JC

(
Ĉ(sI − A)−1B̂ − Ĉ1(sI − A11)−1B̂1

)
JB‖H∞ (6.29)

≤ 2‖JB‖‖JC‖
q∑

i=k+1

σ̄i. (6.30)

This completes the proof of the Theorem.
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Remark 6.1 (1) Discussion on the assumption (6.26): Here we follow the steps of [39]. De£ne G(Z) := BZ +
ZT BT . Let G(Z) = MΛMT be the EVD of G(Z). Denote B̂ = M | Λ |1/2. It was shown in [39] that for almost
all Z ∈ C

r1×n, rank([ B B̂ ]) = rank(B̂). Notice that in our setup, Z = BT (S(w2)−S(w1))∗. Hence we expect
that our approach will apply in most of the cases. Indeed, during our simulations, the assumption has always been
satis£ed.
(2) Multiple Frequency bands Assume that we want to match G(s) over two frequency bands, namely [ w1, w2 ]
and [ w3, w4 ] where w1 < w2 < w3 < w4. Then the weighted reachability gramian is given by

PΩ = P(w2) − P(w1)︸ ︷︷ ︸
:=P12

+P(w4) − P(w3)︸ ︷︷ ︸
:=P34

.

Since P12 is the solution to AP12+P12A
T +Wc(Ω12) = 0 and P34 is the solution to AP34+P34A

T +Wc(Ω34) = 0
where Wc(Ω12) = Wc(w2)−Wc(w1) and Wc(Ω34) = Wc(w4)−Wc(w3), PΩ can be obtained as the solution to

APΩ + PΩAT + Wc(Ω) = 0,

where Wc(Ω) = Wc(Ω12) + Wc(Ω34). Hence the method allows the usage of multiple frequency bands without
an increase in the number of Lyapunov equations to be solved.
(3) Although the modi£ed method is a frequency weighted balancing algorithm, the above upper bound (6.30) in
Theorem 6.5 is an H∞ bound for the whole frequency range. Therefore, it might be pessimistic in some cases. If
one wants to get a tighter result, i.e. an upper bound for the error over the interval [ w1, w2 ], one can use

‖W (s)(G(s) − Gr(s))W (s)‖H∞ ≤ 2‖W (s)JC‖H∞‖JBW (s)‖H∞

q∑
i=1

σ̄i,

where W (s) is a perfect band-pass £lter with amplitude 1 over the frequency interval [ w1, w2 ]. We note that this
error bound has the same structure as the error bound (6.10) of Wang’s et al. method.

6.7 Connection to Enns’ Method

In this subsection we discuss the relationship between the frequency weighted balancing methods of Enns and

Gawronski and Juang. Let G(s) =
[

A B

C D

]
be the given model. Then the state equation is given by

ẋ(t) = Ax(t) + Bu(t).

De£ne Xu(s) as the transfer function from the input u(t) to the state x(t). It readily follows that Xu(s) is given
by Xu(s) s= (sI − A)−1B. Hence the reachability gramian P in the frequency domain is given by

P =
1
2π

∫ +∞

−∞
Xu(jw)Xu(jw)∗dw =

1
2π

∫ +∞

−∞
(jwI − A)−1BBT (jwI − A)−∗dw.

Now assume that there is an input weighting with impulse response wi(t) and the transfer function Wi(s). The
new state equation is given by

˙̄x(t) = Ax̄(t) + B(wi � u)(t)

where (�) denotes the convolution operator. Hence the input weighted input-to-state (from u(t) to x̄(t)) transfer
function X̄u(s) is given by

X̄u(s) s= (sI − A)−1BWi(s).
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Then the reachability gramian P̄ for the weighted system is computed as

P̄ =
1
2π

∫ +∞

−∞
X̄u(jw)X̄u(jw)∗dw. =

1
2π

∫ +∞

−∞
(jwI − A)−1BWi(jw)Wi(jw)∗BT (jwI − A)−∗dw.

Now let Wi(s) be a bandpass £lter over the frequency interval [ w1, w2 ] with an amplitude 1. Then we obtain

P̄ = PΩ =
1
2π

∫ −w1

−w2

(jwI − A)−1BBT (jwI − A)−∗dw +
1
2π

∫ w2

w1

(jwI − A)−1BBT (jwI − A)−∗dw.

This discussion reveals the connection between Enns’ and Gawronski and Juang’s frequency weighted balancing
methods. The latter is obtained from the former by choosing the Wi(s) and Wo(s) as the perfect bandpass £lters
over the frequency range of interest. However, the realizations of weights are never computed. We note that
an in£nite dimensional realization will be needed to obtain perfect band-pass £lters. Hence, in Enns’ method,
these band-pass £lters are approximated by low order bandpass £lters. The resulting Lyapunov equations have
dimension n + ni where ni is the order of Wi(s). In Section 7, we will show that as the order of the weightings
increases, i.e., as they get closer to perfect bandpass £lters, the two methods show similar behavior. Moreover,
since our modi£cation to Gawronski and Juang’s method is analogous to Wang’s modi£cation to Enns’ method,
we expect that our modi£ed method will yield close approximants to those of Wang’s method as the order of the
weights is increased. The simulations in Section 7.2 show this to be the case.

6.8 Gawronski and Juang’s balanced reduction method using time-limited gramians [16]

Next, we review the time-limited balanced reduction method of Gawronski and Juang [16] since it follows a very
similar approach to their frequency weighted balanced reduction method. In the time domain, the reachability
gramian P and observability gramian Q are given by

P =
∫ ∞

0
eAτBBT eAT τdτ and Q =

∫ ∞

0
eAT τCT CeAτdτ.

For a £nite time interval T = [ t1, t2 ], the time limited gramians are de£ned as

PT =
∫ t2

t1

eAτBBT eAT τdτ and QT =
∫ t2

t1

eAT τCT CeAτdτ. (6.31)

Let θc(t) :=
∫ t
0 eAτBBT eAT τdτ . It follows that (see [25, 16])

θc(t) = P − Sc(t)PSc(t)T where Sc(t) := eAt.

From the de£nition of PT in (6.31), one obtains

PT = θc(t2) − θc(t1) = Sc(t1)PSc(t1)T − Sc(t2)PSc(t2)T (6.32)

=
∫ ∞

0
eAτ

(
eAt1BBT eAT t1 − eAt2BBT eAT t2

)
︸ ︷︷ ︸

:=Vc(T )

eAT τdτ (6.33)

=
∫ ∞

0
eAτVc(T )eAT τdτ. (6.34)

A similar argument yields

QT =
∫ ∞

0
eAT τVc(T )eAτdτ. (6.35)
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where Vo(T ) := eAT t1CT CeAt1−eAT t2CT CeAt2 . Hence PT and QT are the solutions to the following Lyapunov
equations:

APT + PT AT + Vc(T ) = 0 and ATQT + QT A + Vo(T ) = 0.

It was suggested in [16] that time-limited balanced realization is obtained by balancing the time-limited gramians
PT and QT , i.e.

PT = QT = diag(σn1In1 , · · · , σnqInq).

A reduced model is then obtained by truncation. The impulse response of the reduced model is thus expected to
match that of the full order model in the time interval T = [ t1, t2 ], see [16]. However, as in the frequency
weighted case, the reduced model is not guaranteed to be stable. Below, we will modify the time limited gramians
and the corresponding model reduction scheme as we did in the frequency weighted case to guarantee stability.
We follow the same steps as in Section 6.6.

6.8.1 A modi£ed time-limited balanced truncation method

Given the set-up above, let

Vc(T ) := M̄ Λ̄M̄T = M̄diag(λ̄1, · · · , λ̄n)M̄T and Vo(T ) := N̄∆̄N̄T = N̄diag(δ̄1, · · · , δ̄n)N̄T (6.36)

be the EVD of Vc(T ) and Vo(T ) with M̄M̄T = N̄N̄T = In, | λ̄1 |≥ · · · | λ̄n |≥ 0 and | δ̄1 |≥ · · · | δ̄n |≥ 0.
De£ne ρ̄ := rank(Vo(T )) and ̄ := rank(Vc(T )). Let

BT := Mdiag(| λ̄1 |1/2, · · · , | λ̄ρ̄ |1/2, · · · , 0, · · · , 0) and (6.37)

CT := diag(| δ̄1 |1/2, · · · , | δ̄�̄ |1/2, · · · , 0, · · · , 0)NT . (6.38)

The modi£ed time-limited gramians P̄T and Q̄T are obtained as the solutions to

AP̄T + P̄T AT + BT BT
T = 0 and Q̄T A + AT Q̄T + CT

T CT = 0. (6.39)

Then we balance P̄T and Q̄T , i.e., £nd a basis such that

P̄T = Q̄T = diag(σ̄τ1Iτ1 , · · · , σ̄τqIτq),

where σ̄i are the modi£ed singular values, τi are the multiplicities of σi and τ1 + · · · + τq = n.

Corollary 6.2 Let the asymptotically stable, minimal system G(s) have the following modi£ed time-limited bal-
anced realization:

G(s) =

⎡⎣ A11 A12

A21 A22

B1

B2

C1 C2 D

⎤⎦ , with P̄T = Q̄T = diag(σ̄τ1Iτ1 , · · · , σ̄τk
Iτk

, σ̄τk+1
Iτk+1

, · · · , σ̄τqIτq).

Let Gr =
[

A11 B1

C1 D

]
be obtained by truncation. Then Gr(s) is balanced, stable and minimal. If, in addition,

rank([ B BT ]) = rank(BT ) and rank([ CT CT
T ]) = rank(CT

T ), (6.40)

Gr(s) is asymptotically stable, minimal and satis£es

‖ G(s) − Gr(s) ‖H∞ ≤ 2‖J̄B‖‖J̄C‖
q∑

i=k+1

σ̄i, (6.41)

where J̄B := diag(| λ̄1 |−1/2, · · · , | λ̄ρ̄ |−1/2, 0, · · · , 0)MT B and J̄C := CNdiag(| δ̄1 |−1/2, · · · , | δ̄�̄ |−1/2

, 0, · · · , 0).

Proof: Follows similarly to the proof of Theorem 6.5.
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6.9 Numerical issues in computing the balanced truncation

The various balancing transformations and the corresponding balanced reduction schemes discussed require bal-
ancing of the whole system G(s) followed by truncation. This is numerically inef£cient and ill-conditioned for
large-scale settings. Instead, below we will propose another implementation of balanced reduction which directly
obtains a reduced balanced system without balancing the whole G(s).

Let P and Q denote the gramians corresponding to the underlying balancing method. For all of the bal-
ancing methods studied above, P and Q and can be written as P = UU

T
and Q = LL

T
since both P and

Q are symmetric positive de£nite matrices. U and L are called square roots of the gramians P and Q re-
spectively. Let U

T
L = ZSY

T
be the singular value decomposition (SVD). It is easy to show that the sin-

gular values of U
T
L are the corresponding singular values of G(s), hence we have U

T
L = ZΣY

T
where

Σ = diag(σ1Im1 , σ2Im2 , . . . , σqImq), q is the number of distinct singular values with σmi > σmi+1 > 0, mi’s
is the multiplicity of σi, and m1 + m2 + · · · + mq = n. Let Σ1 = diag(σ1Im1 , σ2Im2 , . . . , σkImk), k < q,
r := m1 + · · · + mk and de£ne

W1 := LY1Σ
−1/2
1 and V1 := UZ1Σ

−1/2
1 ,

where Z1 and Y1 are composed of the leading r columns of Z and Y respectively. It is easy to check that W
T

1 V1 =
Ir and hence that V1W

T

1 is an oblique projector. We obtain a reduced model of order r by setting

Ar = W
T

1 AV1, Br = W
T

1 B, Cr = CV1.

Noting that PW1 = V1S1 and QV1 = W1S1 yields that the reduced model is balanced (of the appropriate type)
for any k ≤ q. The formulas above provide a numerically stable scheme for computing the reduced order model
based on a numerically stable scheme for computing the square roots U and L directly in upper triangular and
lower triangular form respectively. It is important to truncate Z, Σ, Y to Z1, Σ1, Y1 prior to forming W1 or V1. P
and Q are often found to have numerically low-rank compared to n. In most cases, the eigenvalues of P,Q as
well as the singular values σi(G(s)) decay rapidly. For a discussion on decay rates, see [7]. Therefore, it is also
important to avoid formulas involving the inverses of L or U as these matrices are typically ill-conditioned due to
this rapid decay of the eigenvalues of the gramians.

Due to this low-rank phenomenon, in large-scale settings, U and L are approximated by their low-rank versions
and approximate balancing is applied. We refer the reader to [23], [5], [6], [34], [35], [41] and the references therein
for further information on these issues.

7 Examples

7.1 An example on positive-real balancing

Consider a circuit, G(s) consisting of 50 sections interconnected in cascade; each section is as shown in Figure 1.
The input is the voltage V applied to the £rst section; the output is the current I of the £rst section. The order of the
overall system is n = 100. We apply 3 methods, namely (i) Positive real balanced reduction (PRBR) (ii) Modi£ed
positive real balanced reduction (MPRBR) and (iii) Lyapunov balanced reduction (LBR); and reduce the order to
k = 10. We note that G(s) belongs to the family D, hence allowing the usage of MPRBR. We £rst compute the
Hankel singular values σi, the positive real singular values πi and the modi£ed positive real singular values π̄i of
G(s). The largest 40 of the normalized4 singular values are shown in Figure 1-b. As the £gure illustrates, even
though the computation of these singular values are different, they all show a very similar decay behavior. Hence
each of these 3 sets of singular values reveals that the decay rate is fast, consequently G(s) is easy to approximate.
Finally, we note that the decay rates of πi and π̄i are almost the same.

4For better comparison, the highest singular values, i.e. σ1, π1 and π̄1 are normalized to 1.
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Figure 1: (a) One section of the circuit (b) Normalized singular values σi, πi and π̄i

The sigma plots of the reduced and error systems are depicted in Figure 2-a and 2-b respectively. Let Gb(s),
Gp(s) and Gm(s) denote the reduced models obtained by, respectively, LBR, PRBR and MPRBR. Figure 2-a
shows that all the reduced models approximate G(s) well. In order to compare them better, we examine the error
plot Figure 2-b. Figure 2-b reveals that Gm(s) and Gb(s) are very close to each other and they are both slightly
better than Gp(s). The error norms and corresponding upper bounds are tabulated in Table 1. As Table 1 illustrates,
the error bound (5.16) for Gp(s)+D and the absolute error bound (5.21) for Gm(s) are tight like the upper bound
(2.3) for Gb(s). The results indicate that when G(s) ∈ D, MPRBR is a promising alternative to PRBR.

Exact error Upper bound
‖G(s) − Gb(s)||H∞ 2.7 × 10−5 2.9 × 10−5

‖G(s) − Gm(s)||H∞ 3 × 10−5 3.5 × 10−5

‖G(s) − Gp(s)||H∞ 7.4 × 10−5

‖(DT + Gp(s))−1(G(s) − Gp(s))‖H∞ 5.9 × 10−6 1.4 × 10−5

‖(DT + G(s))−1 − (DT + Gp(s))−1‖H∞ 4.6. × 10−7 7.2 × 10−7

Table 1: Error norms and the corresponding upper bounds for the Circuit Example

7.2 An example of weighted balanced reduction

The full order model (FOM) describes the dynamics of a portable CD player and is single-input single-output of
order 120. The sigma plot of the FOM is shown in Figure 3-(a). First we choose w1 = 10 and w2 = 1 × 103

to match the maximum peak of the sigma plot. We reduce the order to k = 15 by applying (i) Gawronski
and Juang’s frequency weighted balanced truncation (GFBT), (ii) our modi£ed version of Gawronski and Juang’s
frequency weighted balanced truncation (MGFBT) and (iii) the unweighted Lyapunov balanced truncation (LBT).
Let Gf (s), Gmf (s) and Gb(s) denote the reduced order models obtained by using GFBT, MGFBT and LBT,
respectively. The sigma plots of the reduced and error systems are depicted in Figure 3-(a) and Figure 3-(b). As
Figure 3-(b) shows Gf (s) and Gmf (s) outperform Gb(s) in the chosen frequency interval, by matching the peak
of G(s) better than Gb(s). Furthermore, Gmf (s) and G(s) behave very similarly. Hence, for this example, our

22



10
−2

10
−1

10
0

10
1

10
2

−4

−2

0

2

4

6

8

10
Sigma plot of the FOM and reduced systems

freq (rad/sec)

S
in

g
u

la
r 

V
a

lu
e

s
 (

d
B

)

G    
G

p
  

G
m

G
b

10
−2

10
−1

10
0

10
1

10
2

−80

−75

−70

−65

−60

−55

−50

−45

−40

freq (rad/sec)
S

in
g

u
la

r 
V

a
lu

e
s
 (

d
B

)

Sigma plot of the error systems

G
p
−G  

G
m

−G
G

b
−G  

(a) (b)

Figure 2: σmax plot of the (a) reduced and (b) error systems of the circuit example

modi£cation to GFBT did not have a negative impact on the quality of approximation in the speci£ed region, on
the other hand it added asymptotic stability and resulted in an error bound. The H∞ errors and corresponding error
norms are tabulated in Table 2.

Exact error Upper bound
‖G(s) − Gb(s)||H∞ 4.23 × 10−2 2.36 × 10−1

‖G(s) − Gmf (s)||H∞ 3.84 × 10−2 3.40 × 10−1

‖G(s) − Gf (s)||H∞ 3.85 × 10−2

Table 2: Error norms and the corresponding upper bounds for the CD Player Example for w1 = 10 and w2 = 1 × 103

Figures 3-(a) and 3-(b) reveal that all the reduced models miss the ripples of G(s) between the frequencies
104 and 105 rad/sec. To match this part of the sigma plot, we choose w1 = 5 × 103 and w2 = 1 × 105. Figures
4-(a) and 4-(b) show the sigma plots of the resulting reduced systems and error systems. As expected, Gf (s) and
Gmf (s) match G(s) around the speci£ed interval and reproduce the ripples of the sigma plots. If we look at the
error plots Figures 4-(a), we see that over the selected frequency interval even though Gmf (s) matches G(s) quite
well, Gf (s) behaves better than Gmf (s). This is due to the fact that the modi£ed gramians are no longer the exact
frequency-limited gramians. With the modi£cation and the guaranteed stability, Gmf (s) performs slightly worse
than Gf (s) over [ w1, w2 ], however the over all response is better. We note that while Gmf (s) matches the peak
of the sigma plot over [ 10, 103 ] rad/sec, Gf (s) is far from G(s) over this range. The conclusion is that there is a
trade-off between guaranteed stability and performance in the speci£ed frequency interval. The same observation
is valid for Enns’ frequency weighted balanced truncation and Wang’s et al. modi£cation with guaranteed stability.

The H∞ norms and the upper bounds of the error systems are presented in Table 3. As the table shows,
the upper bound for ‖G(s) − Gmf (s)||H∞ is pessimistic for this example. As explained in Remark 6.1 (3), this
is because of the fact that although MFBT is a frequency weighted method, the bound is valid for the whole
frequency range.

Next, we examine the issues of Section 6.7, i.e. (i) the relationship between Gawronski and Juang’s fre-
quency weighted balancing method, GFBT, and Enns’ frequency weighted balancing method (EFBT), and also
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Figure 3: σmax plot of the (a) reduced and (b) error systems of the CD player example for w1 = 10 and w2 = 1 × 103

Exact error Upper bound
‖G(s) − Gb(s)||H∞ 4.23 × 10−2 2.36 × 10−1

‖G(s) − Gmf (s)||H∞ 1.45 × 100 1.70 × 101

‖G(s) − Gf (s)||H∞ 6.83 × 101

Table 3: Error norms and the corresponding upper bounds for the CD Player Example for w1 = 5 × 103 and w2 = 1 × 105

(ii) the relationship between our modi£ed version of Gawronski and Juang’s method, MGFBT, and Wang’s method
(WFBT). We choose w1 = 10 and w2 = 103 and apply these four methods to reduce to order k = 15. For EFBT
and WFBT, we take Wi(s) = Wo(s) as Butterworth band-pass £lters over the frequency band [ w1, w2 ]. We keep
increasing the order of the Butterworth £lter, denoted by nb and compare GFBT with EFBT and MGFBT with
WFBT as nb increases. The nb values we choose are: 4, 6, 10, 20, 40, 80, 100. Table 4 tabulates the numerical
results. In this table, the following notation is used:

E1 :=
‖PΩ − P11‖

‖PΩ‖ , E2 :=
‖QΩ −Q11‖

‖QΩ‖ , E3 :=
‖Gf (s) − Ge(s)‖H∞

‖Gf (s)‖H∞
,

E4 :=
‖P̄Ω − P̄‖
‖P̄Ω‖ , E5 :=

‖Q̄Ω − Q̄‖
‖Q̄Ω‖ , E6 :=

‖Gmf (s) − Gw(s)‖H∞
‖Gmf (s)‖H∞

.

where PΩ and QΩ are the gramians of GFBT, P11 and Q11 are the gramians of EFBT, P̄Ω and Q̄Ω are the
gramians of MGFBT, and P̄ and P̄ are the gramians of WFBT; and Gf (s), Gmf (s), Ge(s) and Gw(s) are the
reduced models obtained by GFBT, MGFBT, EFBT, and WFBT respectively. Note that all the error quantities
are chosen as relative errors. Table 4 clearly illustrates that as nb increases, i.e. as Wi(s) and Wo(s) become exact
band-pass £lters, EFBT converges to GFBT, and WFBT converges to MGFBT. For nb = 100, the corresponding
reduced systems are very close. This shows that using frequency limited gramians, we apply frequency weighted
balancing with weights being ideal band-pass £lters without computing them.
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Figure 4: σmax plot of the (a) reduced and (b) error systems of the CD player example for w1 = 5 × 103 and w2 = 1 × 105

E1 E2 E3 E4 E5 E6

nb = 4 8.84 × 10−3 3.27 × 10−2 4.93 × 10−5 3.72 × 10−3 1.44 × 10−2 3.42 × 10−5

nb = 6 1.90 × 10−3 6.74 × 10−3 2.45 × 10−5 1.16 × 10−3 1.80 × 10−3 1.46 × 10−5

nb = 10 4.74 × 10−4 5.16 × 10−4 9.00 × 10−6 5.25 × 10−4 2.04 × 10−3 6.87 × 10−6

nb = 20 1.11 × 10−4 6.93 × 10−5 2.15 × 10−6 1.29 × 10−4 5.04 × 10−4 1.87 × 10−6

nb = 40 2.75 × 10−5 1.67 × 10−5 5.29 × 10−7 3.21 × 10−5 1.23 × 10−4 4.39 × 10−7

nb = 80 1.22 × 10−5 7.4 × 10−6 2.32 × 10−7 1.42 × 10−5 5.49 × 10−5 1.92 × 10−7

nb = 100 4.39 × 10−6 2.66 × 10−6 8.27 × 10−8 5.12 × 10−6 1.97 × 10−5 6.90 × 10−8

Table 4: The relative errors between GFBT, MGFBT, EFBT, and WFBT related quantities

8 Conclusions

In this paper, we have presented a survey of balancing-related model reduction schemes and their corresponding
error norms, and also introduced some new results. For positive-real balancing, we introduced an error bound.
Also, for a certain subclass of positive real system, we proposed a modi£ed positive-real balancing scheme with an
absolute error bound. Moreover, a new frequency-weighted balanced reduction method with guaranteed stability
and H∞ bound on the error system is developed. Two numerical examples have illustrated the ef£ciency of the
proposed algorithms.
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