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Abstract

Balanced truncation is one of the most common model reduction schemes. In this note, we present a survey
of balancing related model reduction methods and their corresponding error norms, and also introduce some new
results. Five balancing methods are studied: (1) Lyapunov balancing, (2) Stochastic balancing (3) Bounded real
balancing, (4) Positive real balancing and (5) Frequency weighted balancing. For positive real balancing, we
introduce a multiplicative-type error bound. Moreover, for acertain subclass of positive real systems, amodi£ed
positive-real balancing scheme with an absolute error bound is proposed. We aso develop a new frequency-
weighted balanced reduction method with a simple bound on the error system based on the frequency domain
representations of the system gramians. Two numerical examples are illustrated to verify the effciency of the
proposed methods.

1 Introduction

Direct numerical simulation of dynamical systems has been a successful means for studying complex physical
phenomena. In this paper, we will examine linear time invariant dynamical systemsin state space form:

Gls) {zg; - éfsggigz((g & G(s) = [%‘%} o Gs) 2 C(I—A)'B+D (L)

where A € R™", B € R™*™, C € RP*" D € RP*™, We note that by abuse of notation, both the underlying
dynamical system and its transfer function are denoted by G(s). However, for clarity in the transfer function
notation we will use“=" instead of only “="". In many applications, such as circuit simulation, or time dependent
PDE control problems, n is quite large, while the number of inputs m and outputs p usually satisEesm, p < n. In
these large-scal e settings, the system dimension makes the computation infeasible due to memory, time limitations
and ill-conditioning. One approach to overcoming this is through model reduction. The goal is to produce a
low dimensional system that has similar response characteristics as the original system with far lower storage
requirements and evaluation time. The resulting reduced model might be used to replace the original system as a
component in alarger simulation or it might be used to develop alow dimensional controller suitable for real time
applications.

The model reduction problem we are interested in can be stated as follows. Given the linear dynamical system
G(s) in(1.1), £nd areduced order system G,.(s)

] .(t) = Apz,(t) + Bru(t) | A | B,
Grls) {ym = Coay(t)+ Dty & Or1)= [%W ] 2
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where A, € R™*", B, € R™*™, (. € RP*", D, € RP*™ with r << n such that the following properties are
satisEed:

1. The approximation error ||y — y,|| issmall, and there exists aglobal error bound.
2. System properties, like stability, passivity, are preserved.
3. The procedure is computationally efEcient.

One model reduction scheme that is well grounded in theory and most commonly used is the so-called Balanced
Model Reduction £rst introduced by Mullis and Roberts [31] and later in the systems and control literature by
Moore [30]. To apply balanced reduction, £rst the system is transformed to a basis where the states which are
difEcult to reach are simultaneously difEcult to observe. This is achieved by simultaneously diagonalizing the
reachability and the observahility gramians, which are solutionsto the reachability and the observability Lyapunov
equations. Then, the reduced model is obtained by truncating the states which have this property. We will call this
the Lyapunov balancing method. When applied to stable systems, Lyapunov balanced reduction preserves stability
[36] and provides abound on the approximation error [13], i.e. satisEes 1. and 2. above. For small-to-medium scale
problems, Lyapunov balancing can be implemented ef£ciently. However, for large-scale settings, exact balancing
isexpensive to implement becauseit requires dense matrix factorizations and resultsin acomputational complexity
of O(n3) and a storage requirement of O(n?); hence do not satisfy 3. above. In this case, approximate balanced
reduction is an active research area which aims to obtain an approximately balanced system in a numerically
efEcient way; see, for example, [23], [5], [6], [34], [35] and the references therein.

Besides the Lyapunov balancing method, other types of balancing exist such as stochastic balancing, bounded
real balancing, positive real balancing, LQG balancing and frequency weighted balancing. The stochastic balanc-
ing method® was £rst proposed by Desai and Pal [12] for balancing stochastic systems and later generalized by
Green [19],[20]. The relative error bound for stochastic balancing is due to [19]. Unlike the Lyapunov balancing
method, the stochastic balancing algorithm requires solving one Lyapunov and one Riccati equation. A closely
related balancing method is positive real balancing [12] whichis applied for model reduction of positive real (pas-
sive) systems, an important subclass of dynamical systems. The positive rea balancing method can be viewed as
the stochastic balancing method applied to the spectral factor of the given passive system and requires solving two
positivereal Riccati equations. Another method which also requires solving two Riccati equations, is bounded real
balancing which is applied to the bounded real systems. This method, together with the absolute error bound, is
£rst introduced by Opdenacker and Jonckheerein [33]. LQG balancing, also referred as the closed loop balancing
£rst introduced by Jonckheere and Silverman [24], is mainly used for reduced order controller design and will not
be included in this paper.

All the balancing techniques mentioned above try to approximate the full-order model G(s) over al frequen-
cies. However, in many applications one is only interested in a given frequency interval. In these cases the
frequency weighted balanced reduction is used which tries to reduce the error between G(s) and G, (s) over the
specif£ed frequency range, i.e. the weighted error. Several ways of weighted balancing have been introduced in the
literature. Lyapunov balanced reduction was extended to the frequency weighted balanced reduction by Enns[13].
The method allowed the use of both input and output weighting, but in case of a two sided weighting, stability
is not guaranteed. To overcome the stability problem Lin and Chiu [28] proposed a new technique which uses
only strictly proper weighting functions. Later their method was modi£ed by Sreeram et al. [37] to allow proper

10riginally stochastic balancing was introduced as a spectral factor based algorithm, i.e. given a positive real function G, the method
approximates the spectral factor V' of ® where ® = V'V~ = G + G™~ which results in solving two Riccati equations. Later the method
is generalized and the stochastic balanced reduction is defned as approximating V' given V', which results in solving one Lyapunov and
one Riccati equation, see [43], [44],[40],[10]. In this note, by stochastic balancing, we mean the latter which only requires that the origina
model is square and invertible. We will discussthe former version of the stochastic balancing, which requires solving two Riccati equations,
under the name positive real balancing. These issueswill be clarifed throughout the text.



weighting functions. In [27] and [37], error bounds for these techniques were introduced. On the other hand, re-
cently Wang et al. [39] introduced anew frequency weighted balancing method as amodi£cation to Enns' method.
The method guarantees stability and yields asimple error bound. In [43], Zhou proposed a self-weighted balanced
reduction technique using Enns’ method where the output weighting is the inverse of the transfer function G(s).
Stability results and relative and multiplicative error bounds were aso introduced in [43].

All these frequency weighted balancing methods need input and output weights W;(s) and W,(s) which are
usually not explicitly specifed, and try to £nd a reduced order model G ,.(s) which minimizes the weighted error
|\Wo(G — G,)W;|ln.,. However, often, the original problem is to approximate G(s) over a frequency interval
[ w1, wa ] @nd noinput or output weights are given. Gawronski and Juang [16] introduced another type of weighted
balanced reduction where for agiven frequency band [ w1, ws ], the construction of the weights are avoided simply
by using the frequency domain representation of the reachability and observability gramians. Although the method
works quite effciently in practice, stability is not guaranteed and no error bound exists. Similarly to their band-
limited frequency weighted balancing method, Gawronski and Juang [16] introduced also atime-limited balancing
method where the gramians are computed over a£nitetimeinterval [ ¢1, t2 ]. Theimpulse response of the resulting
reduced model is expected to match that of the original model over [ ¢, t, ]. Even though it is not a frequency
weighted method, this method will also be examined.

In this paper, we £rst present asurvey of the balancing related model reduction methods with the corresponding
error bounds whenever they exist. At this stage, we refer the reader to Ober’s paper [32]. In addition, we introduce
a multiplicative-type error bound for positive real balancing. Based on this error result, we propose a modi£ed
positive real balanced truncation with an absolute error bound for a certain subclass of positive real systems. We
then turn our attention to weighted balanced reduction and introduce a new algorithm. The method, which is a
modi£cation of Gawronski and Juang algorithm, guarantees stability and yields a simple error bound.

In the sequel, we will assume that the full-order model G(s) in (1.1) is asymptotically stable? and minimal3.

The rest of the paper is organized as follows. Section 2 examines Lyapunov balancing followed by a study of
stochastic balancing in Section 3. Then we review the bounded real and positivereal balancing methodsin Sections
4 and 5, respectively. Section 5.1 introduces a multiplicative-type error for positive real balancing followed by a
modi£ed positive real balancing method developed in Section 5.2. Section 6 surveys the frequency weighted
balanced reduction method and presents a new weighted balancing scheme. A comparison of proposed methods
with the current methods is presented through numerical examplesin Section 7. Section 8 contains conclusions.

2 Lyapunov Balancing Method

Let G(s) = { é g e RMtP)x(n+m) he the to-be-reduced model as defned in (1.1). Closely related to this

system are two continuous time Lyapunov equations
AP +PA" + BB =0, A'Q+QA+C C=0. (2.1)

Under the assumptionsthat G(s) is asymptotically stable and minimal, the above equations have unique sym-
metric positive deEnite solutions P, Q € R™*", caled the reachability and observability gramians, respectively.
The square roots of the eigenvalues of the product P Q are the so-called Hankel singular values o;(G(s)) of the
system G(s):

o:(G(s)) = VN(PQ).

Itiseasy to seethat, o;(G(s)) are basisindependent. In many cases, the eigenvalues of P, Q aswell asthe Hankel
singular values o;(G(s)) decay very rapidly; see[7] for details.

2G(s) in (1.1) is called asymptotically stable if $(\i(A)) < 0, and is called stable if R(\;(A)) < 0 where R(\) denotes the real part
of A.
3G(s) in(1.1) iscaled minimal if the pair (A, B) isreachable and the pair (C, A) is observable.
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De£nition 2.1 [30] The reachable, observable and stable system G(s) is called Lyapunov-balanced if
P =Q =Y =dag(o1lm,, ,0¢Im,), (2.2
whereo; > o9 > -+ >0, >0, m;,7=1,---,qarethemultiplicities of o;, and m; + - - - + my = n.

The balanced basis has the property that the states which are dif£cult to reach are ssmultaneously dif£cult to
observe. Hence, a reduced model is obtained by truncating the states which have this property, i.e. those which
correspond to small Hanke singular values o;.

Theorem 2.1 [36, 13] Let the asymptotically stable and minimal system G(s) have the following Lyapunov bal-

anced realization:
Ab Bb
G(s) = [ c, D, } =

withP = 9O = diag(El, 22) where

Ag1 Az By
¢ Gy | D

Air A By ]

¥y = diag(o1lmy, -+, 0klm,) and o = diag(oxy1lmy 1s > 0qlm,)-
Then the reduced order model G, (s) = [ fé,“ % } obtained by truncation is asymptotically stable, minimal
1
and satisEes
1G(s) = Gr(s)Hoo < 2(0h41+ -+ 0g). (23)

Equality holdsif X9 = o1, .

Lyapunov balanced truncation as outlined above can be applied to any G(s) which is asymptotically stable and
minimal. For an application of Lyapunov balancing to unstable and non-minimal systems, see [44],[11], [26],[38]
and the references therein.

3 Stochastic Balancing M ethod

LetG(s):[é ’

namely (i) G(s) is square, i.e. m=p, and (ii) det(D) # 0. Let W (s) be a minimal phase left spectral factor of
G(5)G™(s),i.e, W™(s)W(s) = G(s)G™(s) where G™~(s) := GT(—s). A realization of T (s) can be computed

By :=PCT + BDT, and Cy := D YC - BLX)

where P is the reachability gramian of G(s), i.e. P solves AP + PAT + BBT = 0 and X isthe solution to the
Riccati equation

] e RO +P)x(n+m) he asymptotically stable and minimal with two additional properties,

with

ATX + XA+ (C - BLx) Y (DDT)"Y(C - BL,x) =0.
Balanced stochastic realization of G(s) is obtained by balancing P and X'



De£nition 3.1 [20, 45] The asymptotically stable, minimal, square and non-singular systemG/(s) iscalled stochas-
tically balanced if

P=X= diag(MIItN T Mthq)‘ (31)
where jig > pg > -+ > pg > 0,t;,i=1,---, g arethemultiplicitiesof ;, and ¢y + - - - +t, = n.
It turns out that 11; are Hankel singular values of the stable part of the so-called phase matrix (W™~ (s))1G(s).

Theorem 3.1 [19] Let the asymptotically stable, minimal, square and non-singular system G(s) have the follow-
ing stochastic balanced realization:

A A | By
G(s) = { gs IB;S } =| Ao Ay | B
s ¢, C | D

with det(D) # 0 and Py = X = diag(I';, '2) where

[y = diag(paly,, -, predy,) and Ty = diag(ppr1ly, s Helt,)-

Then the reduced order model G,.(s) = [ jé,“ 5;1 } obtained by truncation is asymptotically stable, minimal
1
and satisEes
-1 1 + W
|G-, < [ -1 (32)
o i=k+1 Hi
q
— 14
| tew-aon|, < T 7245 -1 33)
* i=k+1 !

Inaddition, if G(s) isminimum phase, G, (s) is minimum phase as well.

Stochastic balanced truncation can be applied to all asymptotically stable dynamical systemswhich are square and
nonsingular. For application of stochastic balancing to singular systems, see [40] and [18]. It was pointed out in
[40] that stochastic balanced truncation yields a uniformly good approximant over whole frequency range instead
of small absolute errors. Also, Zhou [43] showed that for minimal phase systems, stochastic balanced truncation
is the same as self-weighted balanced truncation where the output weighting is given by G—(s). Thisissue will
be discussed in Section 6.3 in more detail.

4 Bounded Real Balancing

An important class of dynamical systems is the class of bounded real systems. These are systems which are
stable and whose transfer function is bounded by one on the imaginary axis. This class of systems is used in
parameterizing all stabilizing controllers of a system such that the closed-loop satisEes an H ., constraint [32, 17].

De£nition 4.1 The asymptotically stable system G(s) = [%‘%] is called bounded real if

I-DTD >0 and I — G~ (jw)G(jw) >0, for Yw € R.

It is called strictly bounded real if the above inequalities are strict where G(s) = C(sI — A)™'B + D.
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Here, we will examine only strictly bounded real systems. Hence, in the sequel, by bounded real, we mean strictly
bounded real.
Defne R¢ := I — DTD. Then G(s) isbounded real if and only if thereexistsa) = YT > 0 such that

ATY + YA+ CTC+ (YB+ CTD)RN(YB+ CTD)T = 0. (4.1)

Any solution Y of (4.1) lies between two extremal solutions, i.e. 0 < Vmin < YV < Vmax- Vmin 1S the unique
solution to (4.1) such that A + BR;'(BTY + DT'C) isasymptotically stable. Defne Ry := I — DD”. Thena
dual Riccati equation

AZ + ZAT + BBT + (20" + BD) R (2CT + BDT)T =0. (4.2)

is obtained where Z = 27 > 0. Asin the case for (4.1), any solution Z of (4.2) lies between two extremal
solutions, i.e. 0 < Znin < Z < Zhax (4.1) and (4.2) are called the bounded real Riccati equations of the system
G(s).

Lemma4.1l [32] If Y = YT > 0isasolutionto (4.1), then Z = Y~ ! isa solution to (4.2). Hence Zi, = VoL
and Zpax = Vot

A bounded real balanced representation [33] is obtained by balancing (i.e., simultaneously diagonalizing) YVmin
and yil = Zmin-

max

De£nition 4.2 [33] A bounded real system GG(s) is called bounded real balanced if

Vunin = Zumin = Vinax = Zmnax = diag(1ly,, -+, &11,)
wherel > & > & > - > & >0,0;,i=1,---,qarethemultiplicitiesof &, and [; + - - - + [; = n.
We will call &; the bounded real singular values of G(s).

Theorem 4.1 [33] Let the asymptotically stable, minimal, bounded-real system G(s) have the following bounded
real balanced realization:

An A | B

A T B T
G(s) = [ b b ] = | Ay Axn | B
ObT DbT Cl 02 ‘ D

with I — DTD > 0 and Yiin = Zmin = diag(Z1, Z2) Where
gy = diag(&§1dyy, -+, &k ly,) and Zp = diag(&ka1ly, 155 &g, )-

An | By
Ci | D
stable minimum phase spectral factors of I — G~ (s)G(s) and I — G(s)G™(s), respectively, i.e., W~ (s)W (s)
I —G~(8)G(s)and V(s)V™(s) = I — G(s)G™~(s). Smilarly defne W,.(s) and V;.(s) for G..(s). Then G,.(s) is
asymptotically stable, minimal, bounded real balanced and satisEes

-— { H G(s5) = Gr(s)
W (s) = Wy (s)

Let a reduced order model G,.(s) = [ ] be obtained by truncation. Also let W (s) and V (s) be the

S

V(s) = Vi(s)

Y

' G(s) — Gr(s) '

} <2 i &i- (4.3)
Hoo

HHoc i=k+1

(4.3) states that if 237, ., & issmall, not only G(s) and G.(s) are close, but also the reduced spectra factors
W,(s) and V,.(s) are guaranteed to be close, respectively, to the full order spectral factors W (s) and V' (s).
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5 Positive Real Balancing

Another important class of dynamical systemsis the class of positive real (passive) systems. In a physical sense,
positive realness meansthat the energy produced by the system can never exceed the energy received by it. Electric
circuits are one class of positive real dynamical systems.

Defnition 5.1 The asymptotically stable system G/(s) = [ é f) ] e R(m+p)x(n+m) is called positive real if

m=p, DT + D >0 and G~(jw) + G(jw) >0, for Vw € R,
and is called strictly positive real if the above inequalities are strict where G (s) = C(sI — A)~'B + D.

Inthe sequel, wewill examine only strictly positivereal systems, and hence, positivereal will mean strictly positive
real.
G(s) ispositivereal if and only if there existsa X = KT > 0 such that

ATK + KA+ (KB - 0T (D + DTy"Y(kB - cT)T =o. (5.1)
Asin the bounded real case, adual Riccati equation

AL+ LAT + (T — B)Y(D + D)y (et — BT =, (5.2)
is obtained where £ = £7 > 0. (5.1) and (5.2) are the so-called positive real Riccati equations of G(s).

Corollary 5.1 [32] Any solutions /C and L of, respectively, (5.1) and (5.2) lie between two extremal solutions, i.e.
0 < Kmin <K < Kpax and 0 < Lpin < L < Loax. 1K = KT > 0isasolutionto (5.1), then £ = K~ lisa
solution to (5.2). Hence Kyin = L2k, and Koy = L1

max min”

Analogously to the bounded real case, a positive real balancing transformation is obtained by balancing the mini-
mal solutions KCpin and Ly to (5.1) and (5.2), respectively.

De£nition 5.2 [12, 32] A positivereal system G(s) is called positive real balanced if

K:min = ﬁmin = IC_l - E_l

max max — diag(ﬂllsla T 777qu,1)7
wherel > 7y > mg > - > 7wy > 0,s5,1=1,---,qgarethemultiplicitiesof 7;, and s + - - - + 54 = n.

We will cal 7; the positive real singular values of G(s).
The Moebius transformation, denoted by M, of a square bounded-real system H (s), is defned as

H(s) L G(s) < (I — H(s))™ (I + H(s)). (5.3)

Itiswell known that G(s) in (5.3) is positivereal. M isabijection with inverse

M1 .
G(s)— H(s) = (G(s) = I)(G(s) + )~ L. (5.4)

If G(s) isapositive real system, H(s) in (5.4) is a square bounded real system. The following lemma lists the
important properties of the M oebius transformation:



Lemmab5.1 [32] Given the square bounded real system H(s) = #‘%} let G(s) be obtained by the
L Y
Moebius transformation applied on H (s) asin (5.3). Then G(s) is positive real and a state space realization for

G(s) isgiven by

G(s) = [ A|B } _ { Ay + By(I = Dy)"'Cy | V2By(I — Dy)™! } 5
C ‘ D ﬁ([ — Dw)ilcw ‘ (I — Dw)il(I—F Dw) ) '

N . .. A B . . -1 .
Smilarly, given a positive real system G(s) = ol let H(s) be obtained by applying M~ on G(s) asin
(5.4). Then H (s) isa sguare bounded real system with the state-space realization

H<S>_{A¢Bw}_[A—B(I+D)1C V2B(I + D)™ ] (5.6)
"L Cy|Dy | [ Ve2(I+D)'C |(D-D(D+I)T T '

Moreover, K = K7 > 0 isa solution to the positive real Riccati equation
ATK + KA+ (KB —-CT)(D + DTy Y (kB - cT)T =0,
if and only if XC is a solution to the bounded real Riccati equation
ALK + KAy + CUTCy + (KBy + C Dy)(I — DjDy) " (KBy + Cj; Dy)" = 0.

where Ay, By, Cy, and D, areasin (5.6). Hence, H (s) is bounded-real balanced with bounded real gramians =
if and only if G(s) = M(H (s)) is positive real balanced with positive real gramiansII = =.

Theorem 5.1 [12] Let the asymptotically stable, minimal, positive real system G(s) have the following positive
real balanced realization:

Agr Az | By
¢, C; | D

(5.7)

Apr | Bpr }

An A | B
G(S) B |: Opr Dpr

with D + DT > 0and Kmin = Lmin = diag(Hl, Hg) where

Iy = diag(mi Is,, - - -, mils, ) and Iy = diag(mpy11s - mgls,).

k+10 "

Let the reduced order model G, (s) = [ fé}l % } obtained by truncation. Then G,.(s) isasymptotically stable,
1

minimal and positive real balanced.

It is clear that the error results of the stochastic balancing can be employed for positive-real balancing. However,
in that case the bounds will be in terms of the spectral factors of G(s), not in terms of G(s); that is, we will have
bounds on the error |[V=1(V — V,)||c Where G + G~ = V™V and G, + G = V'V, Itisthe goal of the next
section to obtain such abound in terms G(s) and G, (s).

5.1 A multiplicative-type error bound for positivereal balancing

In this section, we will introduce amultiplicative-type error bound for the positive real balanced reduction in terms
of G(s) and G, (s). Thefollowing theorem isthe £rst step toward this goal:



4|8 ],the reduced order model

Theorem 5.2 Given the asymptotically stable positive real system G(s) = { 1D

G, (s), obtained by positive real balanced truncation as defned in Theorem 5.1, satisfes
(5.8)

q
I(DT +G(s)) ™ = (DT + Go()) lre <2IRIP D mi,
i=k+1

whereIT = diag(mi I, , - - -, mgls,), R? := (D + D7)~
Proof: We will assumethat G(s) isin the positive real balanced basis as given in (5.7). Hence the following two

(5.9)

Riccati equations hold:
ATl +11AT + (nc” — B)(D + DT~ Y(11c” - B)T =
AT+ TTA + (UB - T (D + DT)y"Y(1B - cT)T = (5.10)
It iseasy to seethat (5.9) and (5.10) can be written as
_ _ T T T _
(A— BRRC)II+1I(A—- BRRC)" +1IC* R RC 11+ BRRB* = 0 (5.11)
=C —:B
=0 (5.12)

—A
(A— BRRC)™TI +1I(A — BRRC) + IBRRB™TI + CTRRC
Al B
clo

6—[6*1 62} H:[Hl HQ]’

is bounded real balanced with bounded real

It follows from De£nition 4.2 that the system @(s) =

gramian I1. Partition G(s) as
A:ll A:l?
Agr Ago

whereIl; = diag(m[sl, s ,Wklsk) and II, = diag(ﬁk+1fsk+1, ..

A | By
Ci | 0O

Since|| R(G(s) — G,(s) (~R) | < |RI?G(s) — Gr(s)|3.e, (5.13) leadsto

~

) Y

B,
By

A\:

-, mqls,), and de£ne the bounded real reduced

. Then it follows from Theorem 4.1 that

system G,.(s) :=

q
IG(s) = Gr(8)lma <2 Y i (5.13)

i=k+1

IR(G(s) = Gr())(—R) e = I| RG(5)(—R) = RGy(s)(—R) e < 2RI DY m
s i=k+1
=:0,(s)

2:0(s)

A redlization for ©(s) and ©,(s) can be obtained as
Ay — BIR?Cy | -B|R? ]

A— BR*C | —-BR?
O(s) = [ RC | 0 ] and ©r(s) = { RCy | 0
Since |0(s) — 0,(3)|ln., = || (©(s) + R%) — (©,(s) + R?) | .., weobtain
Ay — B1R2Cy | =B R? g
}—{ - RZCI’ : RIQ } ‘ < 2| R|? Z -
1 Hoo i=k+1

A— BR*C | -BR?
R’C | R?



It isclear that

A—BRQC—BRZ}:[A B

g [Au-BRC [ -BR ] _[Au| B ]
RC | R? C|R™

R*Cy | R* | | Ci|R?

Recall that R~2 = D + D'. Hence, one obtains

q
| (DT +G(s))™" = (D" +Gp(9) ™" |, <2IRIP D i (5.14)
i=k+1

This completes the proof. [
Remark 5.1 We notethat (5.14) is equivalent to

q
I(DT +G(5))H(G(s) = Gr()(DT + Gr(s)) Hlre < 2IRIP Y i (5.15)
i=k+1

(5.15) is indeed a frequency weighted bound of the error system G(s) — G,(s) where the input and the output
weightsare (DT + G(s))~! and (DT + G,.(s)) ™!, respectively.

Theorem 5.2 leads to the following multiplicative-type error result for the positive real balanced reduction. Note
that, as mentioned above, thisbound isin terms of G(s) and G..(s), not in terms of the spectral factors.

Lemma 5.2 Given the asymptotically stable, minimal and positive real system G(s) = [ g g } let G, (s) be

obtained by positive real balanced truncation as defned in Theorem 5.1. The following error bound holds:

q
-1
| (07 +6o5) " (G = Grlo)) [, <2 IR DT+ Gs)lw Do (5.16)
o i=k+1
where R? = (D + DT)~1,
Proof: Directly follows from Theorem 5.2. |
We state (5.16) as a multiplicative-type error bound rather than a multiplicative error bound because of having

the term of DT + G,.(s) instead of G,.(s) only. However, one can easily see that in terms of G(s) + D' and
G.(s) + DT itisamultiplicative error result, namely

q
-1
| 7 +6) ™ (@) + D) = (@) + D) | 2RI IDT+ GOl - 7 (B1D)
o i=k+1

5.2 A modifed positivereal balancing method with an absolute error bound
In this section, we will introduce a modi£ed positive real balancing method for a certain subclass of positive real
systems. Then based on Theorem 5.2, we will derive an absolute error bound for this reduction method.
Defnition 5.3 Let G(s) = [ g g } be an asymptotically stable and minimal positive real system and R? =

A— BR*C | -BR?
RC | 0
G(s) suchthat Fg(jw) + F5 (jw) > —R?,i.e

(D+DT)~! > 0. Defne F(s) = [ . By D we denote the set of all positive real systems

D := {G(s) : G(s) is positive real and Fg(jw) + Fg (jw) > —RQ}

10
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Remark 5.2 1. Itiseasy to see that Fiz(s) + R? = (G(s) + DT)~! and consequently F;(s) + R? is positive
real. In the above deEnition werequirethat Fo(s) + R; be positive real aswell. Therefore, another way of stating
De£nition 5.3 isthat D is a family of positive real systems for which F;(s) + %2 isalso positive real.

2. The condition Fg(jw) + Fg (jw) > —R? isnot satised for all positive real G(s). For example take G(s) =

1+ M where p is a positive number. The above condition is satisEed for all p > 0.5. Smulations suggest that

Fe(jw) + F5 (jw) > —R? isnot a severe restriction.

Throughout the next section, positive real systems will refer to systems belonging to the family D.

5.2.1 Modifed positivereal balanced truncation
Given the positive real system G(s), defne the dynamical system H (s) with the corresponding D-term Dy as

DY+ H(s) 2 (DT +G(s))7 . (5.18)

Note that D, + H (s) is positive real even if G(s) does not belong to D. A state-space representation of H (s) is
easily computed as

(5.19)

H(s) = A |Bu ] [ A-— BR*C | —BR?
L Cu|Du ] R’C | R?)2

Since G € D, by De£nition 5.3, H(s) is positive real. Then we apply the positive real balanced truncation of
Section 5to H(s). Let H(s) have positive real gramians

Komin = Nmin =11 = diag(71 L, , - -+, Tg Ly, 1 lsy o5 Tgls,)-

et H,(s) denote the reduced positive real system obtained by keeping £rst & positive real singular values 7;
H (s). Hy(s) is the intermediate reduced model. We then compute the £nal reduced order model Gr(s) =
g ?) } from H,(s) using the relationship

Dy +Gy(s) = (Dfy + Hy(s)) " (5.20)
It is easy to show that by construction D, = D. Now we state the main result of this section:

Theorem 5.3 Given the positive real system G(s) € D, let G,(s) be obtained by the modifed positive real
balanced truncation method introduced above. Then G.(s) is asymptotically stable, positive real and satisfes

q
1G(s) = Gr(8) I < 2IR7H? D 7 (5.21)

i=k+1

Proof: Asymptotic stability and positive realness follow by construction. We only need to prove the error bound.
Since H,(s) isobtained from H (s) by positive real balanced truncation, Theorem 5.2 yields

q
I(DF + H(s)™" = (D} + Hy(s) i < 2Rl D 7 (5.22)
i=k+1

where Ry := (Dy +D%)~2 = R~'. Then noticing that by construction, we have (D%, + H(s))~™' £ DT +G(s)
and (D}, + H,(s))~' £ DT + G,(s), the desired resuilt (5.21) follows. N
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By Theorem 5.3, we are able to approximate a positive real system G(s) by a reduced order positive rea
system with an absolute error bound on the H, norm of the error if G(s) € D. This error result is analogous to
the error result (2.3) of the Lyapunov balancing and (4.3) of the bounded real balancing methods. In Section 7,
through a numerical example, we compare the above modi£ed positive real balanced truncation with the positive
real balanced truncation of Section 5. Also, 7r; and 7; will be compared in terms of their decay rates. The example
illustrates that if G(s) € D, the proposed method is an alternative to positive real balancing.

6 Frequency Weighted Balanced Truncation

The balancing methods introduced above try to approximate the full order model G(s) over al frequencies. How-
ever, in many applications one is only interested in a certain frequency range. This problem leads to the so-called
frequency weighted balancing method. Given some input weighting W;(s) and output weighting W,(s), the prob-
lem becomes to compute a reduced order model so that the weighted error || W, (s)(G(s) — G(s))Wi(s) [l IS
small. The frequency weighted balanced reduction methods of Enns[13], Lin and Chiu [28], Wang et al. [39] and
Zhou [43] are the most common approaches used to tackle this problem.

Although the frequency weighted reduction problem is stated asreducing || W, (s)(G(s) — Gr(8))Wi(s) [l
we want to mention that the input and output weightings W;(s) and W,(s) are often £ctitious quantities unless
they are speci£ed by the user. In many cases, the original problem isto approximate G(s) over afrequency interval
[ w1, we | and no input and output weighting is given. Then to use the frequency weighted methods mentioned,
one has to construct weights to recect this frequency range. Choosing the weights is a problem in itself. To
remedy this situation, Gawronski and Juang [16] introduced another type of weighted balanced reduction method
where for a given frequency band | w;, ws |, the construction of the weights is avoided by using the frequency
domain representation of the gramians. This method has not been recognized in the literature as much as the other
methods. We will propose a frequency weighted balancing method as a modi£cation to Gawronski and Juang’'s
method. With the modi£cation, we will guarantee asymptotic stability and provide a simple error bound. We note
that our modi£cation to Gawronski and Juang's method is analogous to Wang's et al. modi£cation [39] to Enns
[13] and Lin and Chiu’s [28] method. Below we will also review Gawronski and Juang’s time limited balancing

method.
Let G(s) = {%‘i}m(s) = ’éf g’ },and Wo(s) = { go go ] be the state space representations

of the original model G(s), the input weight TV;(s) and the output weight W, (s). Assuming thereis no pole-zero
cancellation, the minimal state-space realizations of G(s)W;(s) and W,(s)G(s) are given by

il A BC; | BD;
G(s)W;(s) = [ - DZ- ] = 0 A B, (6.1)
ne C 0 | DD;
and
= _ A 0 B
WO(S)G(S)Z[AO gf)}: B,C A, | 0 62)
oe | D,C C, | D,D
Let
= P Pi2 = Q11 Q12
P = , and Q = , 6.3
{ Ply Pa ] and Q [ of, 9m ] (63

be the solutions to the following Lyapunov equations:

AP +PAT + BBY =0 and ALQ+ QA, + CTC, = 0.
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6.1 Enns frequency weighted method [13]

This method is based on the simultaneous diagonalization of P;; and Q1;. Assume that P;; and Q;; are the
frequency weighted balanced gramians with

P11 = Qu1 = diag(o1ln,, -+ 0xlnys k1l g5 0gln,)

where n; are the multiplicities of o; with ny + --- + n, = n. In this balanced basis, let G(s) and the reduced

model G, (s) be given by
L Gils) = [’%ﬂ%} (6.4

A A | B
G(S) = A21 A22 BQ
where G, (s) corresponds to largest k& weighted singular values o;.

¢, C; | D

Theorem 6.1 [27] Given the asymptotically stable and minimal system G(s), let G,.(s) be obtained by Enns
frequency weighted balanced truncation method as above. Assume that G,.(s) is asymptotically stable, which is
guaranteed if W; = I or W, = I. Then

q
| Wo(s)(G(s) = Gr()Wils) I3, <2 ) \/0;3 + (ak + Br)oy + anfron, (6.5)
1=k+1

where oy, and 3, denote the ., norms of transfer function which depends on W,(s), W;(s) and G, (s), j =
1,k

The computation of this upper bound is quite complex and requires evaluating many H., norms. For details on

the computation of «, and 3y, see the original source [27].

6.2 Linand Chiu'sfrequency weighted balancing method [28]

Unlike Enns’ method where balancing is based on P1; and Qq3, Lin and Chiu's frequency weighted balancing
method is based on the simultaneous diagonalization of P := Py — P1o Py Pl and Q := Q11 — 91,95, 9%
Let P and Q be balanced as

75 — Q — diag(a-llnla e 75'kInk,5'k+IInk+1a e a5qInq)-
The reduced order model G.(s) isobtained by truncation asin (6.4).

Theorem 6.2 [28, 37] Given asymptotically stable and minimal G(s), let G,-(s) be obtained by Lin and Chiu’'s
frequency weighted balanced truncation as above. Then G,.(s) is stable and satisEes

| Wo()(G(s) = Gr(s))Wils) Il <2 ) \/(5;3 +ak + M) (0k + Br + wi) (6.6)
i=k+1

where a, (1, Ax and wy, denote the ., norms of transfer function which depend on W,(s), Wi(s) and G, (s),
j=1,--, k.

The computation of the upper bound is complex asin Enns' method, see [28].
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6.3 Zhou's self-weighted frequency weighted balancing method [43]

A|B
C|D
right inverse G (s) existsand D isfull-rank. However, for simplicity, we will only discuss the case where G(s)
is square, nonsingular, i.e. det(D) # 0, and G~ is asymptotically stable, i.e. G(s) is minimum phase. Zhou's
method is a specia case of Enns' method where

Zhou's method is applicable to any asymptotically stable G(s) = [ } for which an asymptotically stable

B 1| pp-1
Wi(s)=1  and WO(S)zal(s):[A BD'C | -BD ]

p-'c | D!
Then Zhou's frequency weighted gramians P11 and Q1; in (6.3) are the solutions to
APy +PnAT + BBT =0 and Q1 (A—BD'C)+ (A-BD'C)' 9y + (D 'C)(D71C) = 0.
The self-weighted balanced realization is obtained by simultaneously diagonalizing P;1 and 911, i.€,,
P = Qu =diag(oiln,, -+, 0xdny, Okp1dng s -5 0gln,)- (6.7)

Theorem 6.3 [43] Let G(s) be an asymptotically stable, square, non-singular and minimum phase system. Also,
let G, (s) be obtained by Zhou's frequency weighted balanced truncation method. Then G,.(s) is asymptotically
stable, minimum phase and satisEes

q

1(G(s) MG (s) = Gr())l. < JI (1 +200/1+02+207) -1 (6.8)
i=k+1

1(Gr(9) MG (s) = Gr()) 5. < ] (14 200y/1 402 +207) — 1 (6.9)
i=k+1

Moreover, it was shown in [43] that if G(s) issgquare, asymptotically stable, nonsingular and minimum phase asin
the above theorem, then balancing P11 and Q11 is equivalent to balancing the gramians P and X" in the stochastic
balancing case. Therefore, the following result holds:

Corollary 6.1 Let G(s) be a square, asymptotically stable, nonsingular and minimum phase system. Then the
self-weighted balanced realization of G(s) is also stochastically balanced. Hence G, (s), obtained by Zhou's
method, is stochastically balanced, minimum phase and asymptotically stable. In this case, o; in (6.7) and p; in
(3.1) arerelated by

%

Wi = —F/——
\/1+0i2

The above corollary states that, if G(s) is minimum phase, stochastic balancing can be obtained by solving two
Lyapunov equations avoiding the Riccati equation.
6.4 Wang'set al. frequency weighted balancing method [39]
Given the setup in (6.1), (6.2) and (6.3), deEne
Xp := BC;Pys + PLCiT' BT + BD;DI' BT and X¢ := Q12B,C + BT oL, + c"DI'D,C.

Let Xp = USUT and X¢ = VHVT be the eigenvalue decompositions of X and X where UUT = 1,
VVT =1,8 = diag(s1,---,sp), H = diag(h1,-- -, hp) With | 51 |> - | s, |[>0and| hy |[> --- | hy, > 0. Let
rank(Xp) := ¢ andrank(X¢) := v and defne

B :=Udiag(] sy |V2,--+,| s, |V2,---,0,---,0) and C := diag(] hy |V2,---,| by [VY2,---,0,---,0)VT.
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The frequency weighted gramians P and Q for Wang's et al. approach are the solutions to the following two
Lyapunov equations.
AP +PAT + BBT =0 and ATQ+ QA+ CTC =0.

Let P and Q be balanced with
75 = Q = diag(61[n17 T )a-klnk)6-k+1-[nk+17 e aannq)‘
Then Wang's et. al reduced model G,(s) is obtained by truncation asin (6.4). The following result holds.

Theorem 6.4 [39] Given G(s), let G,.(s) be obtained by Wang's et. al frequency weighted balanced truncation
asabove. Then G,.(s) is stable. In addition if

rank([ B B]) =rank(B) and rank([CT CT]) = rank(CT)

then G,-(s) isasymptotically stable and satisEes

q
| Wo(s)(G(5) = Gr())Wi(s) llyq,, < 2IWo() Ll IKWi()ll3 D 53 (6.10)
i=k+1
where K := dlag(| 51 |_1/27 B | Sy |_1/27 T 707 e 7O)UTB and L := Cleag(| hl |_1/27 B | hl/ |_1/2

o--,0,---,0).

The assumptions rank([ B B |) = rank(B) and rank([ CT C7']) = rank(C”) are not always satisfed. This
will be analyzed further in Section 6.6 where we make a similar assumption. It is clear that the error bound for
Wang's et al. approach is simpler than those of Enns' and Lin and Chiu’s methods.

6.5 Gawronski and Juang'sfrequency weighted balanced reduction method [16]

Using Parseval’s relationship it follows that in the frequency domain, the reachability and observability gramians
P and Q, are given by
1 +o00 1 400

P=— H(w)BBTH*(w)dw and Q= —

* T
o | o | H*(w)C” CH(w)dw, (6.11)

where H,, := (jwl — A)~' and H*(w) := (—jwl — A*)~!. For a given frequency band Q = [w;, ws],
Gawronski and Juang suggested to choose the frequency weighted gramians as

Pq :=P(wz) — P(wi) and Qg := Q(wz) — Q(w) (6.12)

where

1 [t 1 [t
P(w) = — / H(w)BBTH*(w)dw and Qw) = - H*(w)CTCH (w)dw.  (6.13)

Note that P (w) and Q(w) are both positive defnite. From BBT = —AP —PAT = (jwl — A)P+P(jwl — A)*,
one obtains N
1 w
P(w) / (PH(w) + H(w)P)duw.

:% Y

The £nal equation yields
P(w) = PS*(w) + S(w)P (6.14)
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where

+w ;
S(w) := L H(w)dw = 237 In((jwl 4+ A)(—jwl + A)™1) (6.15)
A similar argument leads to
Qw) = 5% (w)Q + QS (w).
From the de£nitions of S(w) and P in (6.11) and (6.15), and the fact that H (wq)H (w2) = H(w2)H (w;) for any
wy, we € R, followsthat

s@P= 5 [ [ Hw@BE E Gasae = o [ H@SW@BE (05 (610
w = 47T2 " - w w = o - w . .
Plugging thisinto (6.14) gives
+oo
P(w) = PS*(w) + S(w)P = % B H(p)We(w)H* (p)do, (6.17)

where W, (w) := S(w)BBT + BBT S*(w). Since A isasymptotically stable, 7 (w) isthe solution to the Lyapunov
equation
AP(w) + P(w) AT + W, (w) = 0.

Therefore, the weighted gramian P, in (6.12) is obtained by solving
APq + PoAT + W,(Q) =0, (6.18)
where W, (2) := W,(ws2) — We(wq). A similar argument yields
ATQq + QAT + W,(Q) =0, (6.19)

where W, (Q) := W, (wa) —W,(wy), and W, (w) := S*(w)CTC+CTC'S w). Hence the computations of Pg, and
Qq, require evaluating the logarithmin .S (w) in addition to solving two Lyapunov equations. For small-to-medium
scale problems for which an exact balanced realization can be computed, S(w) can be effciently computed as
well. However, for large-scale problems, this issue is till under investigation. But we note that computing an
exact solution to a Lyapunov equation in large-scale settings is an ill-conditioned problem itself. Therefore S(w)
can be computed whenever a balanced realization can be computed.

Gawronski and Juang's frequency weighted method is obtained by balancing (simultaneously diagonalizing)
Pq and Qq, i.e., £nding abasis so that

Pa = Qq = diag(on, Iny, -+, onyIn,), (6.20)

where n; are the multiplicities of each singular value o; and ny + - - - 4+ n, = n. Then the reduced order model is
obtained by truncation. However, since W.(€2) and W, (2) are not guaranteed to be positive defnite, stability of
the reduced model cannot be guaranteed.

As seen from the above discussion, the construction of input and output weights is avoided by defning the
gramians over the specif£ed frequency range. A comparison with the other methods will be presented in Section 7.
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6.6 A modifed frequency weighted balanced truncation method

In this section, we will introduce a modi£cation to Gawronski and Juang’'s and obtain a frequency balancing
method which guarantees stability and provides asimple error result.
Given the set-up in Section 6.5, let W,.(€2) and W.(£2) have the following EVD:
We(Q) := MAMT = Mdiag(\y, -, A\)MT (6.21)
Wo(Q) := NANT = Ndiag(éy,---,6,)NT, (6.22)
where MMT = NNT = I, with| Ay [>--- | A, |[>0and | §; |> --- | 6, > 0. Since both W,.(22) and W,(Q)
are symmetric, such decompositions exist. Let p and o denote the ranks of, respectively, W, (£2) and W, (£2). Based
on these defnitions, let

B = Mdiag(| A [Y2,--,| A\, [Y2,---,0,---,0) and (6.23)
C = diag(] & [Y2,---,|6, Y% --,0,---,0)NT. (6.24)

We now defne the modi£ed frequency weighted gramians Pq, and s O, as the solutions to
APo + PoAT + BBT =0 and QoA+ ATQq + CTC = 0. (6.25)

Then the modi£ed frequency weighted balancing is obtained by simultaneously diagonalizing Pq, and Qq, i.e. in
the balanced basis, we have

759 = QQ = diag(a'nlfu e ,5'771[771)
where ¢; are the modi£ed frequency-weighted singular values, 7; arethe multiplicitiesof o; and 71 + - - - + 7, = n.

Theorem 6.5 Let the asymptotically stable, minimal system G(s) have the following modi£ed frequency weighted
balanced realization:

An A | B B B
G(S) = Ao Ao By , with Pg = Qq :diag(&TlL—l,-'-,5TkITk,5TkHITkH,---,57—(1]7—(1).
C, C | D
Let G, = [ fé}l % ] be obtained by truncation. Then G,.(s) is balanced and stable. If, in addition,
1
rank([ B B|) =rank(B) and rank([CT C7T]) = rank(C7) (6.26)
then G.(s) isasymptotically stable, minimal and satisEes
q
1 G(s) = Gr(8) Iy < 201l D i, (6.27)
i=k+1
where Jp := diag(| Ay |7Y2,---, | A\, [TY2,--,0,---,0)MT B and Jo := CNdiag(| 61 |7Y/2,---,] 6, |71/?

,o,0,004,0).

Proof: The £rst part of the theorem is clear. By assumption (6.26), there exist J and J,. such that B = BJg
and C = JoC. Asymptotic stability follows from the fact that the reachability of the pair (A, B) implies the
reachability of the pair (A, B) and the observability of the pair (C, A) implies the observability of the pair (C, A).
To prove the error bound, we proceed as follows:

1G(s) = Gr(s)lles = |IC(sT — A)"'B = Ci(sT — A1) "Bl (6.28)
= o (C(sT = A7 B = Cr(sT = An) ™' Br) Tl (6.29)
q
< 2JsllJell ) b (6.30)
i=k+1

This completes the proof of the Theorem.
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Remark 6.1 (1) Discussion on the assumption (6.26): Here we follow the steps of [39]. Defne G(Z) := BZ +
ZTBT . Let G(Z) = MAM™ bethe EVD of G(Z). Denote B = M | A |*/2. It was shown in [39] that for almost
all Z € C"*", rank([ B B]) = rank(B). Noticethat in our setup, Z = BT (S(ws) — S(w;))*. Hence we expect
that our approach will apply in most of the cases. Indeed, during our simulations, the assumption has always been
satisEed.

(2) Multiple Frequency bands Assume that we want to match G(s) over two frequency bands, namely [ w1, ws |
and [ ws, wy | Wherew; < wa < ws < wy. Then the weighted reachability gramian is given by

Pa = P(wsz) — P(wr) + P(ws) — P(ws) .
=P12 :=Pa4

Since Py, isthesolutionto AP +P1o AT +W,(Q12) = 0 and Pa4 isthesolution to APy +P3 AT +W,(Q34) = 0
where W, (Q12) = We(ws) — We(wq) and W,(Qs34) = We(wy) — We(ws), Pq can be obtained as the solution to

APq 4+ PoAT + W,.(Q) =0,

where W,.(2) = W.(Q12) + W.(Q34). Hence the method allows the usage of multiple frequency bands without
an increase in the number of Lyapunov equations to be solved.

(3) Although the modi£ed method is a frequency weighted balancing algorithm, the above upper bound (6.30) in
Theorem 6.5 is an H, bound for the whole frequency range. Therefore, it might be pessimistic in some cases. If
one wants to get a tighter result, i.e. an upper bound for the error over theinterval [ wq, w2 ], one can use

IW(5)(G(5) = Gr())W ()., < 2IW (5) el TEW (8) I3t Y T
=1

where W (s) is a perfect band-pass £lter with amplitude 1 over the frequency interval [ wy, ws |. We note that this
error bound has the same structure as the error bound (6.10) of Wang's et al. method.

6.7 Connection to Enns Method
In this subsection we discuss the relationship between the frequency weighted balancing methods of Enns and
Gawronski and Juang. Let G(s) = [%‘%] be the given model. Then the state equation is given by

#(t) = Az(t) + Buf(t).

Defne X, (s) asthe transfer function from the input «(¢) to the state z(¢). It readily follows that X, (s) is given
by X, (s) = (sI — A)~'B. Hence the reachability gramian P in the frequency domain is given by

1 [T

1 [t
P = 5 Xu(jw) Xy (jw) dw = 2/ (jwl — A)"'BBT (jwl — A)™*dw.
77 T J oo

—00

Now assume that there is an input weighting with impulse response w;(¢) and the transfer function W;(s). The
new state equation is given by
Z(t) = AZ(t) + B(w; xu)(t)

where (x) denotes the convolution operator. Hence the input weighted input-to-state (from w(t) to z(t)) transfer
function X, (s) isgiven by

Xu(s) = (sI — A1 BW;(s).
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Then the reachability gramian P for the weighted system is computed as

+oo +oo
P = 2i / X)X (jw)* dw. = 21/ (jwI — A)~ BW;(jw)Wi (jw)* BT (jwl — A)~*dw.
T T J_oo

Now let WW;(s) be abandpass £lter over the frequency interval [ w1, ws | with an amplitude 1. Then we obtain

—w1 w2
P="Pg= ;ﬂ/ (jwl — A)"'BBT (jwl — A)™*dw + 21/ (jwl — A)"'BBT (jwl — A)"*dw.
—w2 w1

This discussion reveals the connection between Enns' and Gawronski and Juang's frequency weighted balancing
methods. The latter is obtained from the former by choosing the W;(s) and W,(s) as the perfect bandpass £lters
over the frequency range of interest. However, the realizations of weights are never computed. We note that
an infnite dimensional realization will be needed to obtain perfect band-pass £lters. Hence, in Enns' method,
these band-pass £lters are approximated by low order bandpass £lters. The resulting Lyapunov equations have
dimension n + n; where n; is the order of W;(s). In Section 7, we will show that as the order of the weightings
increases, i.e., as they get closer to perfect bandpass £lters, the two methods show similar behavior. Moreover,
since our modi£cation to Gawronski and Juang’s method is analogous to Wang's modi£cation to Enns' method,
we expect that our modi£ed method will yield close approximants to those of Wang's method as the order of the
weightsisincreased. The simulations in Section 7.2 show this to be the case.

6.8 Gawronski and Juang's balanced reduction method using time-limited gramians[16]

Next, we review the time-limited balanced reduction method of Gawronski and Juang [16] since it follows avery
similar approach to their frequency weighted balanced reduction method. In the time domain, the reachability
gramian P and observability gramian Q are given by

o0 [o¢]
P = / eA"BBTeA " dr  and Q= / eATTC'TC'eATdT.
0 0
For a£nitetimeinterval T = [ t1, to |, thetime limited gramians are defned as

to to
Pr = / eA"BBTeA Tdr and Qp = / AT TCT AT dr. (6.31)

t1 t1

Let 0.(t) := [) eA"BBTeA dr. It follows that (see[25, 16])

0.(t) =P — S.(t)PS.(t)T where S.(t) := e,

From the de£nition of Pr in (6.31), one obtains

Pr = Octa) — Oc(tr) = Se(t1)PSe(t1)" — Se(ta)PSe(t2)” (6.32)
_ / A (eAtlBBTeAT“ - eAt2BBTeATt2) AT dr (6.33)

O =Vi(T)
_ /0 T ATy e T ar (6.34)

A similar argument yields

Op = / A TVAT) e dr (6.35)
0
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where V,(T) := e 1CT CeAtt — eAT20T CeAt2, Hence Py and Qr are the solutions to the following Lyapunov
equations:
APrp + PrAT + V(T) =0 and AT Qr + QrA+ V,(T) = 0.

It was suggested in [16] that time-limited balanced realization is obtained by balancing the time-limited gramians
Pr and O, i.e
Pr = Qr = diag(on, Iny, -+, OngIn,)-

A reduced model is then obtained by truncation. The impulse response of the reduced model is thus expected to
match that of the full order model in the time interval T = [ 1, t2 |, See [16]. However, as in the frequency
weighted case, the reduced model is not guaranteed to be stable. Below, we will modify the time limited gramians
and the corresponding model reduction scheme as we did in the frequency weighted case to guarantee stability.
We follow the same steps asin Section 6.6.

6.8.1 A modifed time-limited balanced truncation method
Given the set-up above, let
Vo(T) := MAMT = Mdiag(\1,- -, A\)M?T and V,(T) := NANT = Ndiag(éy,---,0,)NT  (6.36)

be the EVD of V.(T) and V,(T) with MMT = NNT = I,,| A\ |> - | \n |[>0and | 61 |> --- | 6, |> 0.
Defne p := rank(V,(T")) and g := rank(V,(T)). Let

Br = Mdiag(| A\ [Y2,---,| A5 [Y2,---,0,---,0) and (6.37)
Cr = diag(] 8, |V%,---,| 65 [Y2,---,0,---,0)NT. (6.38)
The modi£ed time-limited gramians Pr and Ot are obtained as the solutions to
APr +PrAT + BrBE =0 and QrA+ ATQr + CLCr =o0. (6.39)
Then we balance P and O, i.e., £nd abasis such that
Pr = Qr = diag(dr Ir,, -+, 0r,17,),
where ¢; are the modi£ed singular values, 7; are the multiplicitiesof o; and 7 + - - - + 7, = n.

Corollary 6.2 Let the asymptotically stable, minimal system G(s) have the following modi£ed time-limited bal-
anced realization:

Ay A | B ) )
G(S) = AQl A22 BQ ) with 7)T = QT = diag(a-Tr[TU T 76TkITk76Tk+1]Tk+17 T 76TqITq)‘
¢, ¢y | D
Let G, = [ ?1 % ] be obtained by truncation. Then G,.(s) is balanced, stable and minimal. If, in addition,
1
rank([ B Br]) = rank(By) and rank([CT CL]) = rank(Ch), (6.40)
G, (s) isasymptotically stable, minimal and satisfes
3 3 q
1 G(s) = Gr(8) Iy, < 201l D i, (6.41)
i=k+1
where Jp := diag(] A |7Y2,---,] X5 |7Y2,0,---,00MTB and Jo := CNdiag(] 61 |~Y2,---,| 65 |71/2

,0,---,0).

Proof: Follows similarly to the proof of Theorem 6.5.
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6.9 Numerical issuesin computing the balanced truncation

The various balancing transformations and the corresponding balanced reduction schemes discussed require bal-
ancing of the whole system G(s) followed by truncation. This is numericaly inef£cient and ill-conditioned for
large-scale settings. Instead, below we will propose another implementation of balanced reduction which directly
obtains a reduced balanced system without balancing the whole G(s).

Let P and Q denote the gramians corresponding to the underlying balancing method. For all of the bal-
ancing methods studied above, P and Q and can be written as P = UU" and Q = LL" since both P and
Q are symmetric positive defnite matrices. U and L are cdled square roots of the gramians P and Q re-
spectively. Let U' L = ZSY' be the singular value decomposition (SVD). It is easy to show that the sin-
gular values of U'L are the corresponding singular values of G(s), hence we have U'L = ZXY' where
¥ = diag(o1lmy; 02@my, - - -, 0¢1Im, ), q is the number of distinct singular values with o, > o, > 0, m;’s
is the multiplicity of o;, and my + mg + --- + my = n. Let 31 = diag(o1lm,, 02lm,, .., 06.lmg), k < g,
r:=mj + ---+ my and deEne

Wy = LY;2; % and Vi = UZ 5] /%,

where 7, and Y7 are composed of the leading » columns of Z and Y respectively. It iseasy to check that WlT =
I, and hencethat V; WlT is an obligue projector. We abtain areduced model of order r by setting

A, =W, AVi, B, =W, B, C, =CV,.

Noting that PW; = V151 and QV; = W1 S yields that the reduced model is balanced (of the appropriate type)
for any k < ¢. The formulas above provide a numerically stable scheme for computing the reduced order model
based on a numerically stable scheme for computing the square roots U and L directly in upper triangular and
lower triangular form respectively. It isimportant to truncate 7, >, Y to Z3, %1, Y7 prior to forming Wy or V4. P
and Q are often found to have numerically low-rank compared to n. In most cases, the eigenvalues of P, Q as
well as the singular values o;(G(s)) decay rapidly. For a discussion on decay rates, see [7]. Therefore, it isalso
important to avoid formulas involving the inverses of L or U as these matrices are typically ill-conditioned due to
this rapid decay of the eigenvalues of the gramians.

Dueto thislow-rank phenomenon, inlarge-scale settings, U and L are approximated by their low-rank versions
and approximate balancing isapplied. Werefer thereader to[23], [5], [6], [34], [35], [41] and thereferencestherein
for further information on these issues.

7 Examples

7.1 An example on positive-real balancing

Consider acircuit, G(s) consisting of 50 sections interconnected in cascade; each section is as shown in Figure 1.
Theinput isthe voltage V' applied to the £rst section; the output isthe current I of the £rst section. The order of the
overal systemisn = 100. We apply 3 methods, namely (i) Positive real balanced reduction (PRBR) (ii) Modi£ed
positive real balanced reduction (M PRBR) and (iii) Lyapunov balanced reduction (L BR); and reduce the order to
k = 10. We note that G(s) belongs to the family D, hence allowing the usage of MPRBR. We £rst compute the
Hankel singular values o;, the positive real singular values 7; and the modi£ed positive real singular values 7; of
G(s). The largest 40 of the normalized* singular values are shown in Figure 1-b. As the £gure illustrates, even
though the computation of these singular values are different, they all show avery similar decay behavior. Hence
each of these 3 sets of singular values reveal s that the decay rateisfast, consequently G(s) is easy to approximate.
Finally, we note that the decay rates of «; and 7; are amost the same.

“For better comparison, the highest singular values, i.e. o1, 7, and 7; are normalized to 1.

21



Normalized singularvalues—n‘, . G,
Fmmmmmm e e e e~ 10 T T T T

Al

@ (b)

Figure 1: (a) One section of the circuit (b) Normalized singular values o;, ; and 7;

The sigma plots of the reduced and error systems are depicted in Figure 2-a and 2-b respectively. Let Gy(s),
Gp(s) and G,,(s) denote the reduced models obtained by, respectively, LBR, PRBR and MPRBR. Figure 2-a
shows that all the reduced models approximate G(s) well. In order to compare them better, we examine the error
plot Figure 2-b. Figure 2-b revealsthat G,,(s) and Gy (s) are very close to each other and they are both dightly
better than G, (s). Theerror normsand corresponding upper bounds are tabulated in Table 1. As Table 1illustrates,
the error bound (5.16) for G,,(s) + D and the absolute error bound (5.21) for G, (s) aretight like the upper bound
(2.3) for Gp(s). Theresultsindicate that when G(s) € D, MPRBR isapromising aternative to PRBR.

Exact error | Upper bound
|G (s) = Gb(3)|[r1 27x107° | 29 x107°
1G(s) = G ()1 3x107° | 3.5x107°
G (s) — Gp(3)llna 7.4 %1075

[(DT + Gp(s) " (G(s) — Gp(s))ne. | 5.9x107% | 1.4x107°
(DT + G(s))"' — (DT 4+ Gp(s)) | | 46.x 1077 [ 7.2 x 1077

Table 1: Error norms and the corresponding upper bounds for the Circuit Example

7.2 An example of weighted balanced reduction

The full order model (FOM) describes the dynamics of a portable CD player and is single-input single-output of
order 120. The sigma plot of the FOM is shown in Figure 3-(a). First we choose w; = 10 and wy = 1 x 103
to match the maximum peak of the sigma plot. We reduce the order to £k = 15 by applying (i) Gawronski
and Juang's frequency weighted balanced truncation (GFBT), (ii) our modi£ed version of Gawronski and Juang's
frequency weighted balanced truncation (M GFBT) and (iii) the unweighted Lyapunov balanced truncation (L BT).
Let G¢(s), Gmys(s) and Gy(s) denote the reduced order models obtained by using GFBT, MGFBT and LBT,
respectively. The sigma plots of the reduced and error systems are depicted in Figure 3-(a) and Figure 3-(b). As
Figure 3-(b) shows G ¢(s) and G,,¢(s) outperform Gy (s) in the chosen frequency interval, by matching the peak
of G(s) better than Gy (s). Furthermore, G,,,¢(s) and G(s) behave very similarly. Hence, for this example, our
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Figure 2: o,,.. plot of the (a) reduced and (b) error systems of the circuit example

modi£cation to GFBT did not have a negative impact on the quality of approximation in the speci£ed region, on
the other hand it added asymptotic stability and resulted in an error bound. The H. errors and corresponding error
norms are tabulated in Table 2.

Exact error | Upper bound
|G (s) — Go(s)||n., | 423 x 1072 | 2.36 x 1071
|G () — Gyp(s)|ln.. | 3.84x 1072 | 3.40 x 10~}
IG(s) = Gy(s)lln,. | 3.85 x 1077

Table 2: Error norms and the corresponding upper bounds for the CD Player Example for w; = 10 and w, = 1 x 103

Figures 3-(a) and 3-(b) reveal that all the reduced models miss the ripples of G(s) between the frequencies
10* and 10° rad/sec. To match this part of the sigma plot, we choose w; = 5 x 103 and wy = 1 x 10°. Figures
4-(a) and 4-(b) show the sigma plots of the resulting reduced systems and error systems. As expected, G ¢(s) and
G (s) match G(s) around the speci£ed interval and reproduce the ripples of the sigma plots. If we look at the
error plots Figures 4-(a), we see that over the selected frequency interval even though G, ¢ (s) matches G(s) quite
well, G ¢ (s) behaves better than G, ¢(s). Thisisdue to the fact that the modi£ed gramians are no longer the exact
frequency-limited gramians. With the modi£cation and the guaranteed stability, G ,,, ¢(s) performs slightly worse
than G ¢(s) over [ wq, wo |, however the over all response is better. We note that while G, ¢(s) matches the peak
of the sigmaplot over [ 10, 10% | rad/sec, G(s) isfar from G(s) over this range. The conclusion isthat thereisa
trade-off between guaranteed stability and performance in the specif£ed frequency interval. The same observation
isvalid for Enns frequency weighted balanced truncation and Wang's et al. modi£cation with guaranteed stability.

The H, norms and the upper bounds of the error systems are presented in Table 3. As the table shows,
the upper bound for ||G(s) — Gpr(s)||#.. IS pessimistic for this example. As explained in Remark 6.1 (3), this
is because of the fact that athough MFBT is a frequency weighted method, the bound is valid for the whole
frequency range.

Next, we examine the issues of Section 6.7, i.e. (i) the relationship between Gawronski and Juang's fre-
guency weighted balancing method, GFBT, and Enns’ frequency weighted balancing method (EFBT), and also
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The sigma plot of the FOM and the reduced systems for w, = 10 and w,= 1x10° The sigma plot of the error systems for w = 10 and w,= 1x10%
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Figure 3: ,,.. plot of the (a) reduced and (b) error systems of the CD player example for w; = 10 and w, = 1 x 103

Exact error | Upper bound
|G (s) — Go(s)||n., | 4.23 x 1072 | 2.36 x 101
|G () — Gyp(s)|ln., | 1.45 x 10° | 1.70 x 10*

IG(s) = Gy(s)lln,, | 6.83 x 10

Table 3: Error norms and the corresponding upper bounds for the CD Player Example for w; = 5 x 103 and wy = 1 x 10°

(ii) the relationship between our modi£ed version of Gawronski and Juang's method, MGFBT, and Wang's method
(WFBT). We choose w; = 10 and wy = 10? and apply these four methods to reduce to order k = 15. For EFBT
and WFBT, wetake W;(s) = W,(s) asButterworth band-pass £lters over the frequency band [ w1, w2 |. We keep
increasing the order of the Butterworth £lter, denoted by n;, and compare GFBT with EFBT and MGFBT with
WFBT as n,, increases. The n;, valueswe choose are: 4, 6, 10,20, 40, 80, 100. Table 4 tabulates the numerical
results. In thistable, the following notation is used:

g = 1Poa=Pull o _ 9 —Qull . _ lG(s) = Gels)lnn
[Pall 1Qall 1GF ()

g oo PPl o 19-0Ql . Gms(s) ~ Guls)
[Pall 1Qall |Gy ()l

where P and Qg are the gramians of GFBT, P;; and Q;; are the gramians of EFBT, P and Qg are the
gramians of MGFBT, and P and P are the gramians of WFBT; and G¢(s), Gif(s), Ge(s) and Gy, (s) are the
reduced models obtained by GFBT, MGFBT, EFBT, and WFBT respectively. Note that all the error quantities
are chosen as relative errors. Table 4 clearly illustrates that as ny, increases, i.e. as W;(s) and W, (s) become exact
band-pass £lters, EFBT convergesto GFBT, and WFBT convergesto MGFBT. For n, = 100, the corresponding
reduced systems are very close. This shows that using frequency limited gramians, we apply frequency weighted
balancing with weights being ideal band-pass £1ters without computing them.
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The sigma plot of the FOM and the reduced systems for w, = 5x10° ad and w,= 1x10°

The sigma plot of the error systems for w, = 5x10° and w,= 1x10°
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Figure 4: o,,4. plot of the (a) reduced and (b) error systems of the CD player example for w; = 5 x 10% and wy = 1 x 10°

& & E3 Es Es &
np=4 | 884x1072[327x1072[493x107° || 3.72x1073 | 1.44x 1072 | 3.42 x 107
np=06 | 1.90x1073 [ 6.74 x 1073 | 245 x 107 || 1.16 x 1073 | 1.80 x 103 | 1.46 x 10~°
ny=10 || 4.74 x 107* | 5.16 x 10=* | 9.00 x 107° [|| 5.25 x 10=* | 2.04 x 1072 | 6.87 x 10~
np=20 || 1.11 x 107* | 6.93 x 107° | 2.15 x 1079 ||| 1.29 x 10* | 5.04 x 10~% | 1.87 x 10
np=40 || 275 x107° | 1.67 x 107 [ 5.29 x 10~7 ||| 3.21 x 107> | 1.23 x 107* | 4.39 x 10~
ny=280 [[1.22x107° | 74x107% [232x 1077 || 1.42x 107° | 549 x 107° | 1.92 x 10~
ny =100 || 4.39 x 107° | 2.66 x 107° | 8.27 x 1078 || 5.12x 107 | 1.97 x 10~° | 6.90 x 10~®

Table 4: The relative errors between GFBT, MGFBT, EFBT, and WFBT related quantities

8 Conclusions

In this paper, we have presented a survey of balancing-related model reduction schemes and their corresponding
error norms, and aso introduced some new results. For positive-real balancing, we introduced an error bound.
Also, for acertain subclass of positive real system, we proposed amodi£ed positive-real balancing scheme with an
absolute error bound. Moreover, a new frequency-weighted balanced reduction method with guaranteed stability
and H, bound on the error system is developed. Two numerical examples have illustrated the eff£ciency of the
proposed agorithms.
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