
Dynamic AOP with PROSE

Angela Nicoară Gustavo Alonso

Department of Computer Science
Swiss Federal Institute of Technology Zürich (ETH Zürich)

CH-8092 Zürich, Switzerland
{anicoara,alonso}@inf.ethz.ch

Abstract. Dynamic Aspect-Oriented Programming (d-AOP) is an im-
portant tool to implement adaptation in a wide variety of applications.
In particular, large distributed infrastructures, middleware, and perva-
sive computing environments can greatly benefit from d-AOP to adapt
software systems at run time. In this paper, we discuss the design of
PROSE, an open source, generic platform for software adaptation. The
paper discusses the join-points needed in practical systems together with
examples of how they can be used, different implementation strategies
and their practical implications. It also describes a highly efficient mech-
anism to implement stub and advice weaving.

1 Introduction

Aspect oriented programming (AOP) [1] is a technique that allows the expression
of orthogonal concerns in an application. Dynamic AOP (d-AOP) extends the
original notion of AOP by allowing weaving at load or run time. Dynamic AOP
is intended for problems that are quite different from those addressed by compile
time AOP. In particular, dynamic AOP has been shown to be a very suitable
mechanism for run time adaptation of applications and services [2–5].

In this paper we present a new version of PROSE, a middleware platform
for dynamic adaptation. While previous versions of PROSE explored the issue
of dynamic AOP (interception through the Java Virtual Machine Debugger In-
terface (JVMDI) [6], and JIT based weaving [7]), in this new version we provide
a complete and flexible adaptation platform. The platform is flexible in that
it supports different forms of weaving: stub weaving and advice weaving. The
two of them are combined to give designers the ability to fine tune the trade-off
between performance and flexibility in the adaptation.

The rest of the paper is structured as follows: Section 2 describes PROSE.
Section 3 describes the design and the implementation of the new version of
PROSE, including the new weaving method. In Section 4 we present the perfor-
mance evaluation and comparison with other systems. Section 5 discusses related
work and Section 6 concludes the paper.

The work presented in this paper was supported (in part) by the National Com-
petence Center in Research on Mobile Information and Communication Systems
(NCCR-MICS), a center supported by the Swiss National Science Foundation under
grant number 5005-67322.



2 The PROSE System

PROSE is an open source (http://prose.ethz.ch), adaptive middleware platform.
PROSE is available in two versions: one based on the JIKES IBM Research
Virtual Machine (RVM) [8] and another one based on the SUN JVM. In this
paper, we discuss the version based on JIKES RVM.

2.1 Flexibility in PROSE

PROSE was one of the first platforms that tackled the problem of dynamic
AOP. As a result, PROSE has evolved through a number of versions, each one
of them based on different forms of interception and weaving. The first version
of PROSE was intended to demonstrate the potential of dynamic AOP. It used
the Java Virtual Machine Debugger Interface (JVMDI) to convert join-points
into stop points. Once the application had been stopped, the advice was executed
externally to the application although the advice had access to the context where
it was being executed (e.g., stack frames, calling parameters for methods, etc.)
[6]. The second version of PROSE extended this model by giving the option of,
instead of using the debugger, using the baseline JIT compiler. The idea was to
weave hooks into the application at native code locations that correspond to all
potential join-points. When executed, the hooks determine whether an advice
needed to be invoked for that particular join-point and called the advice [7].

In what follows, we describe the new version of PROSE where hook weaving
has been replaced with (a) an advice weaving strategy for method replacement
join-points and (b) a stub weaving mechanism for join-points involving external
advices. An important characteristic of PROSE is that these different weaving
mechanisms are meant as alternatives. The idea is to mirror the flexibility offered
by middleware platforms in which designers can choose different approaches
depending on the type of application involved. Thus, the new version of PROSE
presented in this paper supports JVMDI based weaving, hook weaving, stub
weaving, and advice weaving.

2.2 PROSE aspect language

By design [9], PROSE does not define a new aspect language. The aspect lan-
guage is Java. As an example of how this is done, Fig. 1 depicts a simple PROSE
aspect which redefines the original version of a method with a new one.

1 public class ExampleAspect extends DefaultAspect {
2 public Crosscut doRedef = new MethodRedefineCut() {
3 public void METHOD ARGS (Foo ob, int x) {
4 // the new method code

5 }
6 protected PointCutter pointCutter() {
7 return Within.method("bar");

8 }
9 };
10 }

Fig. 1. Example of a PROSE aspect



As the figure shows, all aspects in PROSE extend the DefaultAspect base
class (line 1). An aspect may contain one or more crosscut objects1. A crosscut
object defines an advice method called METHOD_ARGS (line 3) and a pointcut
method (line 6) which defines a set of join-points where the advice should be
executed. In Fig. 1, there is just one crosscut, corresponding to the doRedef
instance field (line 2). This crosscut type is called MethodRedefineCut (line 2),
similar to the around advice construct in AspectJ [10]. The aspect showed in
Fig. 1 tells PROSE to replace the method bar (line 7) from the Foo class (line
3) with the code specified in the advice (line 4).

Using Java as the aspect language has the advantage that any competent
Java programmer can use PROSE in a very short time. Because of the layered
architecture of the system, this does not prevent the use of other aspect lan-
guages. The only requisite is to develop the corresponding aspect management
module (called the AOP engine, see below).

2.3 Join-points in PROSE

In order to provide support for a wide range of adaptive middleware scenarios,
PROSE currently supports the following set of join-points:

Method boundaries: encompassing method entry and exit. These join-points
enable adaptations that extend an existing application by adding new func-
tionality. Examples are encryption of messages before they are being sent
and adding transactional controls to method calls [11].

Method redefine: replaces method bodies. Method redefine is used for adap-
tations that involve changes to the current behavior. Examples involve re-
placement of communication protocols, temporal offloading of functionality
by replacing the method with a call to another device or a server [12], and
testing and instrumentation.

Field access and modification: track access to variables. These joint-points
are very useful in, e.g., adaptations that involve orthogonal persistence [11]
and in correcting errors in measurements taken by sensors. They can also be
used to implement a dynamic form of shared memory among mobile devices
and to control potential race conditions.

Exception join-points: including exception catch and throw. These join-points
are essential to be able to deal with real applications. For instance, adding
transactional boundaries to existing methods require to deal as well with
the exceptions those methods might raise [11]. They are also important in
correcting anomalous situations in small devices and mobile computing set-
tings.

2.4 PROSE architecture
The architecture is divided into two layers: the AOP engine layer and the exe-
cution monitor layer (Fig. 2). The AOP engine acts as the middleware platform

1 The crosscut object construct in PROSE corresponds to a pointcut and an associated
advice in AspectJ terminology.



Fig. 2. PROSE architecture

in PROSE. It is in charge of the management of aspects and of the execution of
the advices. The execution monitor deals with weaving and resides in the JVM.
The two layers are independent of each other and interact through a well defined
API. The idea is that the AOP engine can be replaced as needed depending on
the application at hand.

The general procedure for aspect insertions is as follows (Fig. 2). The AOP
engine accepts aspects (1) and transforms them into join-point requests (2). This
module can be changed to accept aspects described in a language other than
Java. After the information on join-points has been extracted, the AOP engine
activates the join-point requests by using the API of the execution monitor (3).

The execution monitor is divided into two layers. The lower layer extends the
Jikes RVM by adding support for method code replacement at run time. The
upper layer accepts weaving requests from the AOP engine (3), gets the original
bytecode of each method (4) and the constant pool bytecode of the classes which
actually contains the methods (5), instruments the affected methods (by adding
advice callbacks at the corresponding bytecode locations (6.1), extends the con-
stant pools of all affected classes (6.2)) and installs the instrumented methods
in the virtual machine, using the services offered by the Class Evolution mod-
ule (6.3). The bytecode manipulations and the methods instrumentation (4 -
6.3) are performed by the Bytecode Advice Weaver module. This module con-
tains three main classes: FieldWeaver, MethodWeaver and RedefineWeaver.
The main class that handles advice weaving at bytecode level is MethodWeaver.
Field access and modification requests are handled by the FieldWeaver class,
whereas method redefine requests are handled by the RedefineWeaver class. For
advices that are executed externally, when the program execution reaches one
of the activated join-points (7), the execution monitor notifies the AOP engine
which then executes the corresponding advice (8) (or checks whether the advice
needs to be executed, e.g., by checking the current time if it is a time dependent



advice). When aspects are removed, the join-points are deactivated, the weaver
unweaves any advice whose aspects were removed, and the original bytecode of
each method is installed.

2.5 The Execution Monitor

The execution monitor is in charge on weaving. In the new version of PROSE,
weaving takes place by insertion of stubs or by direct advice weaving. In both
cases, the weaving procedure is based on code replacement. Whether what is
woven is a stub or the entire advice, this is done by working on the original
bytecode which is augmented with stubs or entirely overwritten. Then the new
code is inserted into the JVM. When the execution reaches the modified code,
the JVM is forced to JIT the new code before it is executed. In this way, what is
executed is not the old code but the new code containing the stub or the method
being redefined. We illustrate the process using method redefinition (other join-
point types are discussed later). Fig. 3 contains the core interface of the execution
monitor to change a class at run time.

When a new method is redefined, the execution monitor replaces the original
bytecode of a method with the new bytecode, using the redefineMethod method
of the VM_ClassEvolution class. The new method becomes active only when
the commit method is invoked. It is possible to redefine several methods before
committing them. The commit method should be called after instrumenting all
required methods.

The bytecode of a method is obtained by the getMethodCode method. More
exactly, the bytecode that represent the method_info structure defined in the
Java Virtual Machine Specification [13] are returned. Jikes RVM doesn’t store
the bytecode of a method when loading the class containing this method. There
is a field called VM_Method.bytecode but this only represents the Code at-
tribute which corresponds to the body of a method (a part of the method_info
structure). Therefore, in order to implement the getMethodCode method, we
adapted the VM_Method.readMethod method and added an additional field to the
VM_NormalMethod class which finally contains the whole bytecode of a method.

1 public final class VM ClassEvolution {
2 // get the bytecode of the method "m"

3 public static byte[] getMethodCode(Method m);

4 // replace the bytecode of method "m" with the new bytecode "codes"

5 public static void redefineMethod(Method m, byte[] codes);

6 // get the constant pool bytecode of the class "c"

7 public static byte[] getConstantPoolCode(Class c);

8 // extend the constant pool bytecode of the class "c" with new

bytecode "codes"

9 public static void extendConstantPool(Class c, byte[] codes);

10 // install the new redefined methods

11 public static void commit();
12 }

Fig. 3. The Class Evolution API



The method responsible for retrieving the bytecode that makes up the con-
stant pool of a class is getConstantPoolCode. If the constant pool has been
extended before with the extendConstantPool method, the extended version
will be returned even if those changes are not committed. This allows increas-
ingly extending the constant pool of a specific class without committing. In
order to implement getConstantPoolCode in Jikes RVM, we had to apply some
changes to the VM_Class class. The constant pool bytecode is processed in the
constructor of the VM_Class class but is not saved. Therefore, we added another
field to the VM_Class class which holds the bytecode of the constant pool.

In order to support dynamic bytecode instrumentation in Jikes RVM, two
lists are maintained: one for the method redefinitions and one for the constant
pool extensions. The constant pool extensions are installed first because the
method redefinitions rely on them.

The new method gets activated by calling VM_Class.updateMethod on the
class object where the method is declared. The static, virtual or interface method
table entry is updated (JTOC (Jikes RVM table of content) for static methods,
TIB (type information block) for virtual methods, or IMT (interface method
table) for interface methods [14]). This entry contains a pointer to the native
machine code that will be executed next time when the method is invoked.
However, it is not the JIT compiled code of the new method which is used. A
lazy compilation stub is used instead that will trigger the JIT compilation when
the method is being executed for the first time. With this optimization, methods
which are never executed are not compiled, thus saving the overhead that would
be needed to compile the method at run time. Support for weaving in the new
version of PROSE required minimal changes to the existing Jikes RVM code
(90% of the changed code was kept within the VM_ClassEvolution class).

2.6 The AOP Engine

The AOP engine is in charge of everything that has to do with aspects and
advices except the weaving. The role of the AOP engine is very important to
understand how PROSE works and its overall performance. Although several
performance comparisons among dynamic AOP system have been made, e.g.,
[15, 16], several of them do not take into consideration that PROSE has two
layers and that it is the AOP engine where most of the performance penalties are
paid. The comparisons typically involve the overhead of weaving in other systems
vs the overhead of weaving and the AOP engine of PROSE. To understand why
this comparison is not meaningful, it is enough to look at the functionality
PROSE offers at the AOP engine level. This functionality is also the essence of
the adaptive middleware features that PROSE provides.

Since its inception, PROSE supports atomic weaving, a critical feature in re-
alistic distributed applications. Atomic weaving corresponds to the activation of
join-points matched by an aspect A in one single step. The PROSE engine pro-
vides this support as follows. It activates join-points one by one (non-atomically)
but sets a flag in the A’s advice method that makes its execution a do-nothing
operation. As more join-points are activated, A’s advice is actually invoked, but



it has no visible effect at run time. Once all the join-points corresponding to A’s
advice have been properly activated in the execution monitor, the engine unsets
the flag. From this point on, reaching a join-point matched by A is followed by
the execution of the actual advice.

The AOP engine is also responsible for executing the advices that are not
directly woven into the application. As explained, the reason is to achieve the
necessary degree of indirection to implement additional functionality. Thus, the
AOP engine supports a filter pool on the advices that control whether they need
to be executed or not according to external events. One such event is the insertion
at other JVMs -used to implement atomic weaving. Other events involve, for
instance, timing constraints (advices executed only at particular times), context
constraints (e.g., advices executed only when other applications are present,
advices executed only when the network is overloaded), history constraints (e.g.,
advice is executed only after having been called X number of times). The use
of these filters is what gives PROSE the power to implement a wide range of
dynamic adaptations that are very useful in the context of middleware. Yet, they
also add certain overhead since the execution of an advice is conditional to those
filters and the filters are checked every time a callback is made to an external
advice.

3 Weaving at Join-points

This section describes the weaver API and the details concerning the bytecode
instrumentation for several join-point types supported by PROSE. Our approach
weaves advice calls at run time into the bytecode of a method wherever they
are needed, but not at all potential join-points. When an aspect is inserted,
the matching join-points are activated which implies that all affected methods
are instrumented with the corresponding advice call. These methods have to be
recompiled afterwards by the JIT compiler. Exception join-points (e.g., exception
throws and handlers) are treated differently. They are implemented by extending
the run time exception handler of Jikes RVM.

3.1 The weaving process

The main class that weaves advice calls at bytecode level is MethodWeaver. There
is a one-to-one relationship between method weavers and methods. Instances of
the class MethodWeaver are responsible for exactly one method. Each method
has exactly one method weaver object. If no method weaver exists for a certain
method then it is created during the first invocation of getMethodWeaver().

All modified method weavers will install their new method bytecode if the
static method commit() is called (this is part of the API used to support atomic
weaving). We iterate over all method weaver objects and check if they are mod-
ified. If yes, the weaver will weave callbacks for all activated join-points of this
method, using the weave() method.

The commit() method should be called after instrumenting all required meth-
ods. It is possible to add as many callbacks as needed before actually committing



bytecode instrumentation. After all method weavers have installed the new byte-
code, the changes are activated in the VM.

All the methods which have been woven with the corresponding callbacks can
be restored, using restoreAll() method. We iterate over all method weavers
and install the original bytecode of each method. Finally, all the changes are
committed using the services of VM_ClassEvolution.

Bytecode instrumentation [17] is a term used to denote various manipula-
tions of the bytecode, typically performed automatically by tools and libraries
according to a relatively high-level specification. The current implementation of
PROSE employs the BCEL (Byte Code Engineering Library) [18], a bytecode
manipulation library.

3.2 Method entry

Weaving method entry advice is done by adding a stub to the advice before the
original bytecode of a method. The stub is woven before the first instruction
of the method but after the call has taken place so that the stub can inspect
the stack, extract the parameters of the call and pass these parameters to the
advice code. The arguments of the called method are accessible from the advice
because they are passed as parameters to the advice method.

3.3 Method exit

Weaving a method exit advice is also done through a stub although is more
involved than weaving a method entry advice. The main problem is the control
flow. For example, consider a method that just returns a value. In that case
we could simply weave the method advice before the return bytecode instruc-
tion. This solution is not correct if the method contains two or more return
statements or, even worse, if an exception is thrown.

Therefore, we chose another solution: to introduce a try-finally construct.
The original body of the method is put into the try block and in the finally
block we invoke the method exit advice. According to the Java Language Speci-
fication [19] the finally block is guaranteed to be executed after the try clause.
It doesn’t matter whether the try block finishes successfully or because an ex-
ception has been thrown. The Java Virtual Machine Specification [13] presents
detailed information about how the try-finally construct is translated from
Java source to bytecode.

For normal control transfer from the try block the compiler makes use of two
special instructions: jsr (”jump to subroutine”) and ret (”return from subrou-
tine”). The instructions of the finally clause are located in the same method,
much like exception handlers. Before each return instruction, the returned value
(if any) is stored into a local variable, and then a jsr to the start of the finally
instructions is performed. The last finally instruction is the ret instruction; it
fetches the return address from the local variable and transfers control to the
instruction at the return address.

In the case of abrupt control transfer, i.e., when an exception has been thrown
in the try clause, an exception handler is added. This handler catches instances
of the class Throwable, thus exceptions of any type. In the catch block a jsr



instruction does a subroutine call to the code for the finally block, similar to
normal control transfer. After that, the exception is thrown again.

3.4 Method redefinition
Method redefinitions take place through direct advice weaving. They are per-
formed by the following steps: (1) read the bytecode of the new method, (2)
create a new method instance, (3) replace the old method with the new one
(in the list of the declared methods in its class, in all subclasses and in the
static/virtual/interface method lists) and (4) install and activate the new method.
Method redefine requests are handled by the helper class RedefineWeaver.
Method redefinition takes place if the setRedefineAdvice() method is called.

Advice weaving imposes certain restrictions on how the advice that redefines
a method can be written. For instance, AspectJ can execute the advice around
the join-point. An around construct applied to an AspectJ execution join-point
will replace the captured method code by the advice, resulting in a method
redefinition. AspectJ can nevertheless execute the surrounded code by invoking
proceed() in the body of the advice. Our implementation doesn’t support such
functionality. The redefined code is not accessible until the aspect is withdrawn.
For the same reasons, references to the current aspect instance are not allowed
since the aspect object is not available in the captured methods. This means
that the this keyword cannot be used in the advice method. Even implicit
this references are not allowed (no instance field reference and no instance
method invocation on the current object). Especially, getThisJoinPoint() is
not possible in such an advice method. The second limitation is related to Java
class-member access protection. Consider that we want to access non-public fields
of the Foo class in the advice method. In this case the Java compiler will refuse
to compile the aspect. However, this problem has been solved using Reflection
which permits access to non-public members.

3.5 Field access
Field access advices are woven using a stub. The main problem with field access
crosscuts is not the weaving process itself but to get the information about where
an actual field access happens. For example, assume that we want to execute
an advice before a public field declared in a class is accessed. Potentially, every
method in every class loaded into the VM could access this field, which makes
the search cumbersome.

One way to solve this problem is to scan all methods and check if they access
this field. But this would be very inefficient and time consuming. Therefore, we
chose a different solution: When a class is loaded into the VM, for each method
declared in this class we track every field access. These accessors (set of methods
that access a certain field) must be computed for every field available.

There are two bytecode instructions that deal with field accesses, getfield
and getstatic. The second instruction is used to read the content of a static
field, and the first one for normal (non-static) instance fields. We use these
instructions to track field accesses.

Field access requests are handled by the FieldWeaver class. For each method
that references the specified field, the corresponding stub is woven.



3.6 Field modification

Weaving field modification advice can be done in the same way as for field
accessses. Instead of a set of accessor methods for each field, we need a set
of modifiers. These modifiers can be computed by looking at each putfield
and putstatic instruction. Field modifications requests are handled by the
FieldWeaver class.

3.7 Exceptions

PROSE supports two exception join-point types: exception throw and exception
catch. With these join-points it is possible to execute advice when an exception
is thrown or when it is caught by a catch block. Weaving an advice for exception
join-points is different from the other join-point types. One possibility is to add
bytecode instructions which call an advice at the appropriate join-points. To
realize this, one must know every method which throws a certain exception or
which declares a certain handler. This leads to the same problem as with the field
join-points where we need a mapping from the field to the methods which access
or modify this field. Therefore, we chose a different solution. We implement these
types of join-points by extending the run time exception handler of Jikes RVM.
We adapt the Jikes RVM exception handler by adding callbacks. On the VM
side, exception handling can not be done at compile time. It must be done at
run time because the handler must walk the stack for a thrown exception until
it finds a catch block.

In case of exceptions, the Jikes RVM JIT compilers translate each athrow in-
struction into an invocation of the VM_Runtime.athrow() method which finally
invokes deliverException(). Therefore, we get the event of a thrown exception
for no additional cost. Exception handling is performed in deliverException().
The method invocation stack is walked until an appropriate catch block is found.
The thread will be terminated if the execution is not caught. If there is a catch
block, exception handling is delegated to a subclass of VM_ExceptionDeliverer,
depending on the JIT that compiled the method which contains the catch clause
(VM_BaselineExceptionDeliverer for methods compiled by the baseline com-
piler, and VM_OptExceptionDeliverer for methods compiled by the optimizing
compiler).

4 Performance Evaluation

In order to evaluate the performance of the new version of PROSE we have
performed different benchmarks. All experiments in this paper were performed
on Linux, running on an AMD Athlon MP 1600+ 1.4 GHz, double processor
machine with 1 GB RAM. We compare results using the Jikes RVM 2.3.0.1. In
our experiments the stub and advice-based weavers use the optimizing compiler
as a JIT. Additionally, the inlining suppport is turned off. In case of hook-based
weaver, a modified baseline compiler is used as a JIT. We evaluate our approach
using two benchmark applications: SPECjvm98 [20] and Java Grande [21].

In our experiment, we compare the original JVM with the JVM containing
the execution monitor. In this experiment the execution monitor is not activated.



Table 1. The execution times for the hook weaver and the stub and advice weavers
with AOP support for method boundaries, method redefinition, field sets, field gets,
and exception handlers

Execution time
with AOP support

Benchmark Hook Stub and
weaving advice

weaving
SPECjvm98 benchmark suite

check 1.35 (s) 0.51 (s)
jess 34.36 (s) 5.32 (s)
db 54.23 (s) 25.52 (s)
jack 20.95 (s) 4.67 (s)
javac 37.8 (s) 9.07 (s)

compress 40.82 (s) 12.79 (s)
mpegaudio 33.62 (s) 7.19 (s)

Execution time
with AOP support

Benchmark Hook Stub and
weaving advice

weaving
Java Grande benchmark suite

LUFact:Kernel 2.4 (s) 1.22 (s)
Crypt:Kernel 3.35 (s) 2.26 (s)
SOR:Kernel 12.92 (s) 3.23 (s)

SparseMatmult:Kernel 13.69 (s) 7.37 (s)
Series:Kernel 21.37 (s) 19.28 (s)

HeapSort:Kernel 3.62 (s) 1.26 (s)
FFT:Kernel 30.14 (s) 29.81 (s)

Fig. 4. Relative overhead for stub and advice weavers with AOP support for method
boundaries, method redefinition, field sets, field gets, and exception handlers

Fig. 5. Relative overhead for stub and advice weavers with AOP support for method
boundaries, method redefinition, field sets, field gets, and exception handlers



To measure the performance loss incurred by the existence of the AOP support,
on the SPECjvm98 benchmarks, we report the average of the execution times
measured for one hundred runs, all run during a single JVM execution, with the
size 100 (large) inputs. For the Java Grande benchmark, we report the average
times for one hundred runs, each run in a separate VM. Table 1 summarizes the
average execution times for each test for the hook weaver and stub and advice
weavers. Fig. 4 and Fig. 5 show the relative overhead of the AOP enhanced JVM
for the SPECjvm98 and Java Grande benchmarks. The standard deviation for
this experiment is less than 7%.

5 Related Work

5.1 Load time approaches

Load time weaving performs the weaving of advices into the original code at
the time classes are loaded into a JVM. Examples of such systems are JAC [2],
AspectWerkz [3] and JMangler [5]. JAC uses the Javassist bytecode manipulation
library to alter the bytecode of a Java object at class load time. AspectWerkz
uses a modified classloader to weave the aspects with the base-code instead. It
hooks directly into the bootstrap classloader and can then weave aspects to any
classes loaded by the preceding classloaders. JMangler modifies the base class
of the Java class loader hierarchy, thereby enforcing transformations for classes
that are loaded by arbitrary class loaders, except the bootstrap class loader. For
adaptation purposes, load time weaving has the disadvantage of breaching the
Java security mechanism (e.g., AspectWerkz).

5.2 Run time approaches

Run time weaving is based on a variety of mechanisms that support the insertion
of advices on running programs [15].

Similar to the PROSE JVMDI implementation, JAsCo [4] employs the de-
bugger interface of the JVM. JAsCo uses a new language that introduces two
additional entities: aspect beans and connectors. An aspect bean contains one or
more hooks that describe join-points or pointcuts and the corresponding advice.
A connector is used for deploying one or more aspect beans within a concrete
component context. JAsCo employs Java HotSwap to change class definitions
while the program that contains these classes is running.

Steamloom [16] is an implementation of dynamic join-point support as an
extension to IBM’s Jikes RVM. The mechanism used in Steamloom for weaving
and unweaving of aspects at run time is similar to the one we have presented in
this paper. Steamloom only supports method entry and exit join-points.

A dynamic aspect-weaving approach for the .NET platform is presented by
Schult and Polze in [22]. Aspects can be woven at instantiation time, i.e. aspects
are defined to be active for a particular object at the time when this object is
created. The weaving is achieved by dynamically creating a subclass and over-
riding the crosscutted methods with their woven counterparts. However, this
weaving approach is not dynamic in the sense of PROSE. In PROSE, aspects



can be inserted and withdrawn at any time. In the .NET approach, aspects are
either active or not during the whole lifetime of an object.

Wool [23] is a dynamic AOP framework that supports two different dynamic
weaving strategies. Similar to PROSE, the Wool system employs the JDI to
intercept the execution of the base program. Aspects can also be inserted into the
target join-points by employing Java HotSwap. Aspects are able to implement
their own heuristics for deciding whether they are invasively inserted or not. The
classes containing the applicable join-points need to be hotswapped again.

6 Conclusions

In this paper we have presented PROSE, a modular and flexible platform for dy-
namic adaptation. In addition, we have proposed a mechanism to implement dy-
namic AOP through method code replacement at run time. The idea is to weave
the advices at run time by triggering the recompilation of methods. As part of
the recompilation, and depending on the nature of the advice, the advice itself or
an efficient callback mechanism are woven into the original bytecode. The system
takes advantage of the JIT compiler (when an aspect is inserted, the affected
methods are automatically recompiled), but can also use optimizing versions of
the compiler, thereby introducing even greater performance gains. PROSE is an
open source project and can be downloaded from http://prose.ethz.ch.

7 Acknowledgements

We wish to thank Dr. Andrei Popovici, the initial developer of the PROSE
system. This work was possible through the dedicated work of several master
and term-project students. Thanks to Johann Gyger, Gerald Linhofer, Philippe
Schoch, Kaspar von Gunter, Philipp Sieber, Stephan Markwalder, Gregor Wieser,
and Marcel Müller, who contributed to the PROSE project.

References

1. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.,
Irwin, J.: Aspect oriented programming. In: ECOOP ’97, Jyvaskyla, Finland,
volume 1241 of LNCS, pages 220-242. Springer-Verlag. (1997)

2. Pawlak, R., Seinturier, L., Duchien, L., Florin, G.: JAC: A Flexible Solution for
Aspect-Oriented Programming in Java. In: Proceedings of the Third International
Conference on Metalevel Architectures and Separation of Crosscutting Concerns,
pages 1-24, Kyoto, Japan. (2001)

3. Boner J., Vasseur A.: AspectWerkz website. (http://aspectwerkz.codehaus.org)
4. Vanderperren, W., Suvee, D.: Optimizing JAsCo dynamic AOP through HotSwap

and Jutta. In: Proceedings of the 2004 Dynamic Aspects Workshop (DAW04),
pages 120-134, Lancaster, England. (2004)

5. Kniesel, G., Constanza, P., Austermann, M.: JMangler - A Framework for Load-
Time Transformation of Java Class Files. In: IEEE Workshop on SCAM’01. (2001)

6. Popovici, A., Gross, T., Alonso, G.: Dynamic Weaving for Aspect Oriented Pro-
gramming. In: 1st International Conference on Aspect-Oriented Software Devel-
opment, Enschede, The Netherlands. (2002)



7. Popovici, A., Alonso, G., Gross, T.: Just in Time Aspects: Efficient Dynamic
Weaving for Java. In: 2nd International Conference on Aspect-Oriented Software
Development, Boston, USA. (2003)

8. Alpern, B., Attanasio, D., Barton, J.J., Burke, M.G., P.Cheng, Choi, J.D., Cocchi,
A., Fink, S.J., Grove, D., Hind, M., Hummel, S.F., Lieber, D., Litvinov, V., Mergen,
M., Ngo, T., Russell, J.R., Sarkar, V., Serrano, M.J., Shepherd, J., Smith, S.,
Sreedhar, V.C., Srinivasan, H., Whaley, J.: The Jalapeno virtual machine. In:
IBM System Journal, 39(1). (2000)

9. A. Popovici: PROSE, a study on Dynamic AOP. Dissertation No. 15176 ETH
Zurich (2003)

10. AspectJ website. (http://www.aspectj.org)
11. Popovici, A., Alonso, G., Gross, T.: Spontaneous Container Services. In:

ECOOP’03, Darmstadt, Germany. (2003)
12. Popovici, A., Frei, A., Alonso, G.: A proactive middleware platform for mobile

computing. In: Proc. of the 4th ACM/IFIP/USENIX International Middleware
Conference, Rio de Janeiro, Brazil. (2003)

13. Lindholm, T., Yellin, F.: The Java Virtual Machine Specification. Addison-Wesley,
Second Edition. http://java.sun.com/docs/books/vmspec/ (1999)

14. The Jikes Research Virtual Machine User’s Guide 2.3.0.1. (http://www-
124.ibm.com/developerworks/projects/jikesrvm/)

15. R.Chitchyan, Sommerville, I.: Comparing Dynamic AO Systems. In: Proceed-
ings of the 2004 Dynamic Aspects Workshop (DAW04), pages 120-134, Lancaster,
England. (2004)

16. Bockisch, C., Haupt, M., Mezini, M., Ostermann, K.: Virtual Machine Support for
Dynamic Join Points. In: AOSD’04, Lancaster, England. (2004)

17. Dmitriev, M.: Application of the HotSwap Technology to Advanced Profiling. In:
ECOOP’02 Workshop on Unanticipated Software Evolution. (2002)

18. The Byte Code Engineering Library (BCEL) manual.
(http://jakarta.apache.org/bcel/manual.html)

19. Joy, B. and Steele, G. and Gosling, J. and Bracha, G.: The Java Language Speci-
fication. Addison-Wesley, Second edition. (http://java.sun.com/docs/books/jls/)

20. Spec - Standard Performance Evaluation Corporation.
(http://www.spec.org/osg/jvm98/)

21. Java Grande Forum benchmark suite. (http://www.javagrande.org)
22. Schult, W., Polze, A.: Dynamic Aspect Weaving with .NET. In: Workshop zur

Beherrschung nicht-funktionaler Eigenschaften in Betriebssystemen und Verteilten
Systemen, TU Berlin, Germany. (2002)

23. Sato, Y., Chiba, S., M.Tatsubori: A selective. Just-in-Time Aspect Weaver. In:
GPCE 2003 Proceedings, volume 2830 of LNCS, pages 189-208. Springer. (2003)


