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SUMMARY

We consider a general version of the classical problem of the stabilization of the inverted pendulum by a
vertical periodic vibration of the point of suspension. Instead of the usual harmonic motion, we propose an
oscillatory control with a piecewise-constant acceleration, obtaining explicit conditions over the frequency
or the amplitude leading to the desired stabilization. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Vibrational stabilization is a broad field with interesting applications to different problems in the
applied sciences. In quantum mechanics, it is employed to implement some trapping mechanisms
for elementary particles like the Paul trap [1, 2]. In mechanical engineering, it is a fundamental
concept in the control of robotic devices [3, 4]. The book Vibrational Mechanics [5] presents a
comprehensive survey on vibrational mechanics, including its many applications. Among them,
the stabilization of an inverted pendulum by vertical vibrations of the point of suspension is a
classical problem that has become a paradigm in dynamical systems and control theory. It is worth
mentioning that the problem of stabilizing an inverted pendulum is reaching the centenary, since
the first references go back to Stephenson in 1908 [6, 7]. Later, Kapitza [8] renewed the interest
in this problem and after this contribution the number of related articles is huge and covers many
different approaches. From the mathematical point of view, most of the works study the linearized
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Figure 1. The inverted pendulum and the stabilization of a maximal equilibrium.

problem [9–11]. When the oscillation of the axis is harmonic, a first rigorous proof of stability in
the nonlinear sense was done in [12].

A rigid pendulum can be seen as a particle sliding over a circumference under the only action
of gravity, and therefore the problem of the stabilization of the inverted pendulum can be seen as
the search of a suitable parametric excitation of the circumference for which the upper equilibrium
becomes stable. More generally, one can imagine the motion of a particle constrained to a pulsating
curve under the only action of gravity and question about the stability properties of relative
equilibria. This general problem was raised in [13]. Some first results were obtained concerning
pulsating elliptic and quartic curves. As an open problem, it was pointed out the possibility of
stabilizing the maximum position of a plane curve that is symmetric with respect to a vertical line,
in analogy to the inverted pendulum (see Figure 1).

Mathematically, the problem is described as follows. Let us consider a plane and smooth curve
parametrized by the arc length

�(s)=(X (s),Y (s)), s∈R

such that X is an odd function and Y is an even function. Under such conditions, the curve is
symmetric with respect to s=0. Our purpose is to study the movement of a bead sliding on this
curve under the only action of gravity when the equilibrium point s=0 is a maximum with negative
curvature Y ′′(0)<0. The rest point s=0 is unstable and the problem consists in finding a periodic
vertical movement h(t) of this curve in order to stabilize this equilibrium. Note that the simplest
case �(s)=(sins,coss) corresponds to the inverted pendulum.

We add a vertical movement by making

�(t,s)=(X (s),Y (s)+h(t)), t,s∈R

where h(t) is an adequate T -periodic function or vibrational control. By an adequate renormal-
ization, the gravitational constant and the mass are fixed as 1, and therefore the potential energy
is U (t,s)=Y (s)+h(t) and the lagrangian can be written as

L(t,s, ṡ)= 1
2 ṡ

2+(�t (t,s) ·�s(t,s))ṡ+ 1
2�t (t,s) ·�t (t,s)−U (t,s)

Consequently, the Euler–Lagrange motion’s equation is (see [13] for details)
s′′+(�t t (t,s)+e2) ·�s(t,s)=0 (1)
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Figure 2. The vibrational control p(t) and its second derivative.

where e2=(0,1) and · is the usual scalar product, or in a simplified form

s′′+Y ′(s)(1+h′′(t))=0 (2)

Notice that s=0 is still an equilibrium for this equation due to the oddness of Y ′(s). The objective
is to find adequate vibrational controls h(t) such that the equilibrium s=0 becomes stable in the
sense of Lyapunov.

We propose two different strategies: high-frequency vs modulated-amplitude vibrations. Both
cases are constructed from the basic function

p(t)=
{ 1

2 t (�− t) if 0�t<�

1
2 (t−�)(t−2�) if ��t<2�

(3)

This control function is of class C1 and the second derivative is piecewise constant (see Figure 2),
which is a key feature in order to simplify the computations.

Section 2 is devoted to the stabilization through high-frequency oscillations. For a certain range
of curvatures at the equilibrium point, a numerically computable frequency is obtained such that
stabilization holds for higher frequencies. This generalizes the classical results on the inverted
pendulum. The explicit estimation of the critical frequency is a remarkable advantage if it is
compared with other approaches of perturbative type like averaging theory [3].

In Section 3, we study the stabilizing effect at a fixed frequency of the control taking its
amplitude as the relevant parameter. It is found that the equilibrium point is stable in the nonlinear
sense provided that the amplitude belongs to a given set � (depending on the curvature), which
is composed of a sequence of disjoint open intervals tending +∞. This set is also numerically
computable.

With respect to the method of proof, after an analysis of the linear stability, it is shown that the
first twist coefficient is different from zero. This implies the existence of a foliation of invariant
KAM tori in a neighborhood of the equilibrium, which in turn gives the stability in the nonlinear
sense. We use an explicit formula for the twist coefficient obtained in [14, 15] and refined in [16].
In addition to the yet mentioned explicit estimates of the parameters, the other advantage of our
method is that the control is robust, that is, a small perturbation of the vertical vibration keeps the
stabilizing effect. On the contrary, it is not possible to give a quantitative estimate of the stability
region around the equilibrium, which is an interesting open problem.
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From now on, it is assumed that Y is of class C5 and the curvature Y ′′(0) at the rest point is
negative. We denote k2=|Y ′′(0)|.

2. HIGH-FREQUENCY OSCILLATORY CONTROL

In this section, we explore the stabilizing effect of a vertical vibration p(wt), where p is defined
by (3), for high values of the frequency w. The resulting equation is

s′′+Y ′(s)(1+w2 p′′(wt))=0 (4)

Note that the solutions must be understood in the Caratheodory sense (that is, with absolutely
continuous derivative, and satisfying the equation almost everywhere).

2.1. Linear stability

The linearized or variational equation of (2) around s=0 is the Hill’s equation

x ′′+a(t)x=0 (5)

where a(t) is a piecewise-constant periodic function given by

a(t)=Y ′′(0)(1+w2 p′′(wt))=

⎧⎪⎨
⎪⎩
k2(w2−1) if 0<t<

�

w

−k2(w2+1) if
�

w
<t<

2�

w

(6)

Note that the mean value of a over a whole period is negative, a case that is not covered by
the variety of stability criteria for Hill’s equation available in the literature (see [17–19]). This
particularity leads to a direct integration in order to compute the discriminant.

In what follows, we assume w>1. Then, a tedious but elemental piecewise integration of the
equation gives the monodromy matrix

M=
⎛
⎜⎝ cosh B cos A−A/B sinh B sin A

�

wA
cosh B sin A+ �

wB
sinh B cos A

wB

�
cos A sinh B− wA

�
cosh B sin A B/A sinh B sin A+cosh B cos A

⎞
⎟⎠ (7)

with

A≡ A(w,k) = �k
√

w2−1

w

B≡ B(w,k) = �k
√

w2+1

w

Therefore, the discriminant is

�(w,k)=2cosh B cos A−
[
B

A
− A

B

]
sinh B sin A (8)

The main result of this section is as follows.
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Proposition 1
Let us define the set

K={k>0 : |cosh(�k)cos(�k)|<1}
and assume that k∈K. Then, there exists a critical frequency w0(k)>0 such that (5) is stable for
all w>w0(k).

Proof
An elemental computation gives

lim
w→+∞ A(w,k)=�k, lim

w→+∞ B(w,k)=�k

and then

lim
w→+∞�(w,k)=2cosh(�k)cos(�k)

It is well-known (see [17] for details) that |�|<2 is a sufficient condition for the stability of a
given Hill’s equation. The result follows trivially. �

Remark 1
The set K is composed of a sequence of open intervals In with n+1/2∈ In for all n∈N.
A numerical computation gives

K=]0,0.596864[∪]1.4918,1.50562[∪]2.44975,2.50025[. . .
Remark 2
The critical frequency can be explicitly given by

w0(k)=sup{w>1 : |�(w,k)|�2}
As it was mentioned in the introduction, the critical frequency w0 is numerically computable, due to
the global character of our arguments. For instance, w0(0.5)=1, w0(0.55)=1.12646, w0(0.59)=
3.21142, w0(0.59686)=132.285 and diverges to +∞ as k approaches the upper limit of the first
interval of K. For higher curvatures, the critical frequency increases drastically, w0(5.5)=11042,
w0(7.5)=303547.

2.2. Nonlinear stability

The system (4) under study is conservative, so the stability in the sense of Lyapunov cannot be
directly derived from the first approximation because of the possible synchronized influence of
higher terms which may lead to resonance. After the works of Moser [20], it is well known that
the stability in the nonlinear sense depends generically on the third approximation around s=0

s′′+a(t)s+c(t)s3=0 (9)

with

a(t)=Y ′′(0)(1+w2 p′′(wt)), c(t)= 1
6Y

′′′′(0)(1+w2 p′′(wt)) (10)
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In [14], Ortega proves that if the equilibrium s=0 is stable for the linearized equation

s′′+a(t)s=0 (11)

then it is stable in the nonlinear sense provided the first twist coefficient is different from zero. In
particular, it occurs when c(t) does not change sign (main result of [14]).

The proof is based on the twist theorem of Moser combined with the Birkhoff normal form of
the Poincaré map associated with (4). Next, we shall explain it more explicitly for the reader’s
convenience. First, we make some definitions.

Let M be the monodromy matrix of (11). The eigenvalues �1,2 of M are called the Floquet
multipliers of (11). It is well known that the Floquet multipliers of (11) satisfy

�1�2=1

In a classical terminology, it is said that (11) (or s=0) is elliptic if �2=�1∈C1\{±1}, parabolic
if �1,2=±1 and hyperbolic if |�1,2| 
=1 respectively. In the hyperbolic case not only the linear
equation but also s=0 is also unstable like the solution of (4).

Given n∈N, we say that the equilibrium s≡0 of (4) is n-resonant if it is elliptic and the Floquet
multipliers satisfy �ni =1. We say that s=0 is strongly resonant if it is n-resonant for n=3 or 4.

The Poincaré mapping associated with (4) is defined near the origin by

P(x, y)=�(T ; x, y) (12)

where �(t; x, y) is the unique solution of (9) such that �(t; x, y)= x , �′(0; x, y)= y, and T =2�/�
is the minimal period of (4).

Note that P(0,0)=(0,0) and then the stability of s≡0 for (4) is equivalent to the stability of
(0,0) as fixed point of P. By the regularity imposed on Y , the Poincaré map is of class C4 near
the origin. Other elementary property of the Poincaré map states that if P′(0,0) is a monodromy
matrix for (11), then its eigenvalues are the Floquet multipliers of (11). If (11) is elliptic and
not strongly resonant, Birkhoff’s normal form Theorem provides a canonical change of variables
z=�(�), z=(x, y), such that P adopts the following form in the new coordinates:

P∗(�)=(�−1◦P◦�)(�)= R[�+	|�|2](�)+O4 (13)

where R[
] denotes the rotation of angle 
, �=e±i� are the Floquet multipliers, and O4 indicates
a term that is O(|�|4) when �→0. The coefficient 	 is called the first twist coefficient and plays
a central role in the stability. From the twist Theorem it follows that if 	 
=0 then (0,0) is stable
(see Chapter 3 of [20]).

On the other hand, the reason of excluding the 3-resonant case in the general process of the
Birkhoff normal form is to eliminate the second-order terms of P by a suitable canonical change
of variables. In a similar way, one must exclude the 4-resonant case to simplify the terms of
third-order of P. However, in our case, if P does not have any terms of second-order (see (9)),
then it is sufficient to exclude the 4-resonant case in our study. In other words, if (11) is elliptic
and not 4-resonant then we can define the twist coefficient 	 associated with (4) by means of (13).

The twist coefficient has an explicit formula and it is proportional to the integral quantity (see
[14, 15])

	=
∫ 2�/w

0
r(t)4c(t)dt (14)
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where r(t) is the modulus of the unique complex solution �(t) of (11) with initial conditions
�(0)=1 and �′(0)= i . In [16] the authors pointed out an interesting connection between the
Hill’s equation and the Emarkov–Pinney equation. More precisely, in Sections 3.2 and 3.4 of the
mentioned paper, the authors show that if (11) is elliptic then r(t) is the unique T -periodic positive
solution of the singular equation

r ′′+a(t)r = 1

r3
(15)

This characterization of r(t) will be a key fact in the proofs.
Now we are in a position to state and prove the main result of the paper.

Theorem 1
Let us assume that the discriminant defined by (8) verifies 0< |�(w,k)|<2. If Y ′′′′(0) 
=0, then
the equilibrium s=0 of (4) is stable in the nonlinear sense.

Proof
By the condition imposed on the discriminant, the equilibrium is elliptic and not 4-resonant. Hence,
it only remains to prove that 	 
=0. Note that

	= 1

6
Y ′′′′(0)

∫ 2�/w

0
r(t)4(1+w2 p′′(wt))dt

and due to the hypothesis Y ′′′′(0) 
=0, we can operate on the proportional coefficient

	∗ =
∫ 2�/w

0
r(t)4(1+w2 p′′(wt))dt=(1−w2)

∫ �/w

0
r(t)4 dt+(1+w2)

∫ 2�/w

�/w

r(t)4 dt

We are going to prove that this quantity is negative.
Let us remember that r is the unique positive 2�/w-periodic solution of the singular equation

(15). On the interval [0,�/w], r verifies the autonomous equation

r ′′+k(w2−1)r = 1

r3

Multiplying by r3 and integrating over [0,�/w] it results

k(w2−1)
∫ �/w

0
r(t)4 dt= �

w
−r

( �

w

)3
r ′ ( �

w

)
+r(0)3r ′(0)+3

∫ �/w

0
[r(t)r ′(t)]2 dt

after a trivial integration by parts. On the other hand, on the interval [�/w,2�/w], the corresponding
equation for r is

r ′′−k(w2+1)r = 1

r3

and operating analogously one obtains

k(w2+1)
∫ 2�/w

�/w

r(t)4 dt=− �

w
+r

(
2�

w

)3

r ′
(
2�

w

)
−r

( �

w

)3
r ′ ( �

w

)
−3

∫ 2�/w

�/w

[r(t)r ′(t)]2 dt
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Therefore, by introducing this information on 	∗ and using the periodicity of r , one obtains

	∗ =−1

k

[
2�

w
+3

∫ 2�/w

0
[r(t)r ′(t)]2 dt

]
<0

and the proof is complete. �

Remark 3
Notice that the proposed procedure is still valid for a more generic vibrational control p. More
explicitly, by using the same ideas as above, it is easy to prove that when the coefficients of
s′′+a(t)s+c(t)s3=0 are in proportional relationship, c(t)=�a(t),� 
=0,a 
=0, then the twist
coefficient is different from zero provided the linearized equation is elliptic and not 4-resonant.
Thus, the stability of s=0 is determined basically by the linearization (of course we are always
assuming the generic condition Y ′′′′(0) 
=0).

Corollary 1
Let us assume that k∈K, with k 
=n+ 1

2 ,∀n∈N∪{0}, and Y ′′′′(0) 
=0. Then, there exists a critical
frequency w0(k)>0 such that the equilibrium s=0 of (4) is stable in the nonlinear sense for all
w>w0(k).

Proof
By the conditions imposed over k, we have that

0<

∣∣∣∣ lim
w→+∞�(w,k)

∣∣∣∣<2

Therefore, by continuity we are in the conditions of the latter theorem for high values of w. �

Remark 4
We emphasize once again that, since the discriminant �(w,k) is explicitly known, it is very easy
to perform numerical computations in order to obtain explicit values of w0(k).

Remark 5
In the case of an inverted pendulum of length L , the corresponding vibrating curve is a circum-
ference of curvature 1/L , that is, k=1/

√
L . The stabilization is achieved for high frequencies if

k∈K, which corresponds to large values of length L (then k∈ I1), while there are some gaps in
the values of L as it approaches to zero. Moreover, from the numerical results, smaller pendulum’s
lengths require higher frequencies to get stabilized. In the next section, we will try to cover such
gaps with a different control.

3. MODULATED-AMPLITUDE OSCILLATORY CONTROL

In this section, we consider the stabilizing effect of a vertical vibration of fixed frequency by
modulating its amplitude. The periodic control is �p(t), where � is a parameter which represents
the magnitude or amplitude of the oscillation. In this case, the equation is

s′′+Y ′(s)(1+�p′′(t))=0 (16)
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3.1. Linear stability

In this case, the variational equation of (16) around s=0 is Hill’s equation

x ′′+a(t)x=0 (17)

where a(t) is a piecewise-constant periodic function given by

a(t)=Y ′′(0)(1+�p′′(t))=
{
k2(�−1) if 0<t<�

−k2(�+1) if �<t<2�
(18)

By assuming �>1, the discriminant (that is, the trace of the monodromy matrix) is

�(�,k)=2coshD cosC−
[
D

C
− C

D

]
sinhD sinC (19)

with

C ≡C(�,k)=�k
√

�−1

D ≡ D(�,k)=�k
√

�+1

Now, the following result can be proved.

Proposition 2
For every k, let us define the open set

�={�∈R+ : |�(�,k)|<2}
for which (17) is stable. Then � is composed by a sequence of disjoint open intervals tending
to +∞.

Proof
Let us fix the sequence �n =n2/k2+1. It is easy to verify that

lim
n→+∞�(�2n,k)=+∞, lim

n→+∞�(�2n+1,k)=−∞

Hence, by continuity, there exists a given n0 such that for any n>n0, there exists an open interval
Jn ⊂]n,n+1[ such that |�(�,k)|<2 for every �∈ Jn . The proof ends by defining �=⋃

n>n0 Jn .
�

Remark 6
For a given k, it is easy to find the set � numerically. For k=1,

�=]2.925963,2.933335[∪]7.024295,7.025168[∪ . . .

For k=0.1,

�=]223.855,227.241[∪]625.623,625.868[∪ . . .

As it is seen, it is possible to stabilize for any curvature but the amplitude must be tuned up in a
quite precise way.
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3.2. Nonlinear stability

To study the stability in the nonlinear sense, we consider again the third-order approximation
around s=0

s′′+a(t)s+c(t)s3=0 (20)

with

a(t)=Y ′′(0)(1+�p′′(t)), c(t)= 1
6Y

′′′′(0)(1+�p′′(t)) (21)

For a given k>0, let us define the open set

�0={�∈R+ :0< |�(�,k)|<2}
This is just the set � defined in Section 3.1 minus a sequence {�n}n for which the discriminant is
zero. The main result of this section is the following theorem.

Theorem 2
Given an arbitrary k>0, let us assume that �∈�0(k) and Y ′′′′(0) 
=0. Then, the equilibrium s=0
of (16) is stable in the nonlinear sense.

Proof
By Section 3.1, the equilibrium is linearly stable. Moreover, since the discriminant is not zero, the
equilibrium is not 4-resonant. The twist coefficient is proportional to

	= 1

6
Y ′′′′(0)

∫ 2�

0
r(t)4(1+�p′′(t))dt

It remains to prove that 	 
=0, and the proof is analogous to that of Theorem 1, so we omit it.
�
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