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Abstract

This work analyzes centered Restricted Boltzmann Machines (RBMs) and centered Deep
Boltzmann Machines (DBMs), where centering is done by subtracting offset values from
visible and hidden variables. We show analytically that (i) centered and normal Boltz-
mann Machines (BMs) and thus RBMs and DBMs are different parameterizations of the
same model class, such that any normal BM/RBM/DBM can be transformed to an equiv-
alent centered BM/RBM/DBM and vice versa, and that this equivalence generalizes to
artificial neural networks in general, (ii) the expected performance of centered binary
BMs/RBMs/DBMs is invariant under simultaneous flip of data and offsets, for any off-
set value in the range of zero to one, (iii) centering can be reformulated as a different
update rule for normal BMs/RBMs/DBMs, and (iv) using the enhanced gradient is equiv-
alent to setting the offset values to the average over model and data mean. Furthermore,
we present numerical simulations suggesting that (i) optimal generative performance is
achieved by subtracting mean values from visible as well as hidden variables, (ii) centered
binary RBMs/DBMs reach significantly higher log-likelihood values than normal binary
RBMs/DBMs, (iii) centering variants whose offsets depend on the model mean, like the
enhanced gradient, suffer from severe divergence problems, (iv) learning is stabilized if an
exponentially moving average over the batch means is used for the offset values instead of
the current batch mean, which also prevents the enhanced gradient from severe divergence,
(v) on a similar level of log-likelihood values centered binary RBMs/DBMs have smaller
weights and bigger bias parameters than normal binary RBMs/DBMs, (vi) centering leads
to an update direction that is closer to the natural gradient, which is extremely efficient for
training as we show for small binary RBMs, (vii) centering eliminates the need for greedy
layer-wise pre-training of DBMs, which often even deteriorates the results independently
of whether centering is used or not, and (ix) centering is also beneficial for auto encoders.

Keywords: centering, restricted Boltzmann machine, deep Boltzmann machine, gener-
ative model, artificial neural network, auto encoder, enhanced gradient, natural gradient,
stochastic maximum likelihood, contrastive divergence, parallel tempering

1. Introduction

In the last decade Restricted Boltzmann Machines (RBMs) got into the focus of attention
because they can be considered as building blocks of deep neural networks (Hinton et al.,
2006; Bengio, 2009). RBM training methods are usually based on gradient ascent on the
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Log-Likelihood (LL) of the model parameters given the training data. Since the gradient
is intractable, it is often approximated using Gibbs sampling with only a few steps (Hinton
et al., 2006; Tieleman, 2008; Tieleman and Hinton, 2009). Two major problems have been
reported when training RBMs.

Firstly, the bias of the gradient approximation introduced by using only a few steps of
Gibbs sampling may lead to a divergence of the LL during training (Fischer and Igel, 2010;
Schulz et al., 2010; Fischer and Igel, 2011). To overcome the divergence problem Desjardins
et al. (2010) and Cho et al. (2010) have proposed to use parallel tempering (Swendsen and
Wang, 1986), which is an advanced sampling method that leads to a faster mixing Markov
chain and thus to a better approximation of the LL gradient.

Secondly, the learning process is not invariant to the data representation. For example
training an RBM on the MNIST data set leads to a better model than training it on 1-
MNIST (the data set generated by flipping each bit in MNIST ). This is due to missing
invariance properties of the gradient with respect to these flip transformations and not due
to the model’s capacity, since an RBM trained on MNIST can be transformed in such a way
that it models 1-MNIST with the same LL. Recently, two approaches have been introduced
that address this invariance problem. The enhanced gradient (Cho et al., 2011, 2013b) has
been designed as an invariant alternative to the true LL gradient of binary RBMs and has
been derived by calculating a weighted average over the gradients one gets by applying any
possible bit flip combination on the data set. Empirical results suggest that the enhanced
gradient leads to more distinct features and thus to better classification results based on the
learned hidden representation of the data. Furthermore, in combination with an adaptive
learning rate the enhanced gradient leads to more stable training in the sense that good LL
values are reached independently of the initial learning rate. Tang and Sutskever (2011)
on the other hand have shown empirically that subtracting the data mean from the visible
variables leads to a model that can reach similar LL values on the MNIST and the 1-MNIST
data set and comparable results to those of the enhanced gradient.1 Removing the mean
from all variables is known as the ‘centering trick’, which was originally proposed for feed
forward neural networks (LeCun et al., 1998; Schraudolph, 1998). It has recently also been
applied to the visible and hidden variables of Deep Boltzmann Machines (DBM) (Montavon
and Müller, 2012) where it has been shown to lead to a better conditioned optimization
problem. Furthermore, the learned features have shown better discriminative properties
and centering has improved the generative properties of locally connected DBMs. A related
approach applicable to multi-layer perceptrons where the activation functions of the neurons
are transformed to have zero mean and zero slope on average has been proposed by Raiko
et al. (2012). The authors could show that the gradient under this transformation gets closer
to the natural gradient, which is desirable since the natural gradient follows the direction
of steepest ascent in the manifold of probability distributions. Furthermore, the natural
gradient is independent of the concrete parameterization of the distributions and is thus
clearly the update direction of choice (Amari, 1998). Since the exact natural gradient is
intractable already for rather small RBMs, Schwehn (2010) and Ollivier et al. (2011) have
trained binary RBMs and Desjardins et al. (2013) binary DBMs using approximations of
the natural gradient obtained by Markov chain Monte Carlo methods. However, due to

1. Note that changing the model such that the mean of the visible variables is removed is not equivalent
to just removing the mean of the data.
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the computational overhead the practical relevance of the natural gradient for RBM/DBM
training remains questionable. Another approach related to the centering trick is batch
normalization, which has recently been proposed by Ioffe and Szegedy (2015) and aims at
removing first and second order statistics of the pre synaptic activation in a feed forward
network.

In this article2 we give a unified view on centering, revealing that the methods proposed
by Cho et al. (2011), Tang and Sutskever (2011), and Montavon and Müller (2012) can
all be considered as different ways of applying the centering trick to RBMs and DBMs.
Furthermore, we analyze the properties and performance of different centering variants.
In Section 2, we begin with a brief overview over binary RBMs, the standard learning
algorithms, the natural gradient of the LL of RBMs, and the basic ideas used to construct
the enhanced gradient. In Section 3, we discuss the theoretical properties of centered RBMs,
show that centering can be reformulated as a different update rule for normal RBMs, that
the enhanced gradient is a particular form of centering, and finally that centering and
its properties naturally extend to DBMs and BMs. Furthermore, in Section 4, we show
that centering is an alternative parameterization for arbitrary Artificial Neural Networks
(ANNs) in general and we discuss how the parameters of centered and normal ANNs should
be initialized. Our experimental setups are described in Section 5 before we empirically
analyze the performance of centered RBMs with different initializations, offset parameters,
sampling methods, and learning rates in Section 6. This empirical analysis includes a
comparison of the centered gradient with the natural gradient and extensive experiments
on 10 real world data sets. In addition we have also performed experiments with DBMs
and Auto encoders (AEs) on the 10 real work data sets. Finally our work is concluded in
Section 7.

2. Restricted Boltzmann Machines

An RBM (Smolensky, 1986) is a bipartite undirected graphical model with a set of N visible
and M hidden variables taking values x = (x1, ..., xN ) and h = (h1, ..., hM ), respectively.
Since an RBM is a Markov random field, its joint probability distribution is given by a
Gibbs distribution

p (x,h) =
1

Z
e−E(x,h) ,

with partition function Z and energy E(x,h). For binary RBMs, x ∈ {0, 1}N , h ∈ {0, 1}M ,
the energy, which defines the bipartite structure, is given by

E (x,h) = −xTb− cTh− xTWh ,

where the weight matrix W, the visible bias vector b, and the hidden bias vector c are the
parameters of the model, jointly denoted by θ. The partition function, which sums over all
possible visible and hidden states, is given by

Z =
∑
x

∑
h

e−E(x,h) .

2. Previous versions of this work have been published as an eprint (Melchior et al., 2013) and as part of
the PhD thesis by Fischer (2014).
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RBM training is usually based on gradient ascent using approximations of the LL gradient

∇θ =
∂ 〈log (p(x|θ))〉d

∂θ
= −

〈
∂E(x,h)

∂θ

〉
d

+

〈
∂E(x,h)

∂θ

〉
m

,

where 〈·〉m is the expectation under p(x,h) and 〈·〉d is the expectation under p(h|x)pe(x)
with empirical distribution pe. We use the notation ∇θ for the derivative of the LL with
respect to θ in order to be consistent with the notation used by Cho et al. (2011). For
binary RBMs the gradient becomes

∇W = 〈xhT 〉d − 〈xhT 〉m ,

∇b = 〈x〉d − 〈x〉m ,

∇c = 〈h〉d − 〈h〉m .

Common RBM training methods approximate 〈·〉m by samples gained by different Markov
chain Monte Carlo methods. Sampling k (usually k = 1) steps from a Gibbs chain ini-
tialized with a data sample yields Contrastive Divergence (CD) (Hinton et al., 2006). In
stochastic maximum likelihood (Younes, 1991), in the context of RBMs also known as Per-
sistent Contrastive Divergence (PCD) (Tieleman, 2008), the chain is not reinitialized with
a data sample after parameter updates. This has been reported to lead to better gradient
approximations if the learning rate is chosen sufficiently small. Fast Persistent Contrastive
Divergence (FPCD) (Tieleman and Hinton, 2009) tries to further speed up learning by
introducing an additional set of parameters, that is only used for Gibbs sampling during
learning. The advanced sampling method Parallel Tempering (PT) (Swendsen and Wang,
1986) introduces additional ‘tempered’ Gibbs chains corresponding to smoothed versions
of p(x,h). The energy of these distributions is multiplied by 1

T , where T is referred to
as temperature. The higher the temperature of a chain, the ‘smoother’ the correspond-
ing distribution and the faster the chain mixes. Samples may swap between chains with
a probability given by the Metropolis Hastings ratio, which leads to better mixing of the
original chain with temperature T = 1 (a first theoretical analysis of the mixing rate of PT
for sampling in RBMs has been given by Fischer and Igel, 2015). We use PTc to denote the
RBM training algorithm that uses Parallel Tempering with c tempered chains as a sampling
method. Usually only one step of Gibbs sampling is performed in each tempered chain be-
fore allowing samples to swap, and a deterministic even odd algorithm (Lingenheil et al.,
2009) is used as a swapping schedule. PTc increases the mixing rate and has been reported
to achieve better gradient approximations than CD and (F)PCD (Desjardins et al., 2010;
Cho et al., 2010) with the drawback of having a higher computational cost.

See the introductory paper of Fischer and Igel (2014) for a recent review of RBMs and
their training algorithms.

2.1 Enhanced Gradient

Cho et al. (2011) have proposed a different way to update parameters during training of
binary RBMs, which is invariant to the data representation.

When transforming the state (x,h) of a binary RBM by flipping some of its variables
(that is x̃i = 1 − xi, and h̃j = 1 − hj for some i, j), yielding a new state (x̃, h̃), one can
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transform the parameters θ of the RBM to θ̃ such that E(x,h|θ) = E(x̃, h̃|θ̃) + const and
thus p(x,h|θ) = p(x̃, h̃|θ̃). However, if we update the parameters of the transformed model

based on the corresponding LL gradient to θ̃
′
= θ̃ + η∇θ̃ and apply the inverse parameter

transformation to θ̃
′
, the result differs from θ′ = θ + η∇θ. The described procedure

of transforming, updating, and transforming back can be regarded as a different way to
update θ.

Following this line of thought there exist 2N+M different parameter updates correspond-
ing to the 2N+M possible binary flips of (x,h). Cho et al. (2011) have proposed the en-
hanced gradient as a weighted sum of these 2N+M parameter updates, which for their choice
of weighting is given by

∇eW = 〈(x− 〈x〉d)(h− 〈h〉d)T 〉d − 〈(x− 〈x〉m)(h− 〈h〉m)T 〉m , (1)

∇eb = 〈x〉d − 〈x〉m −∇eW
1

2
(〈h〉d + 〈h〉m) , (2)

∇ec = 〈h〉d − 〈h〉m −∇eWT 1

2
(〈x〉d + 〈x〉m) . (3)

It has been shown that the enhanced gradient is invariant to arbitrary bit flips of the vari-
ables and therefore invariant under the data representation, which has been demonstrated
on the MNIST and 1-MNIST data set. Furthermore, the authors have reported more stable
training under various settings in terms of the LL estimate and classification accuracy.

2.2 Natural Gradient

Following the direction of steepest ascent in the Euclidean parameter space (as given by the
standard gradient) does not necessarily correspond to the direction of steepest ascent in the
manifold of probability distributions {p(x|θ),θ ∈ Θ}, which we are actually interested in.
To account for the local geometry of the manifold, the Euclidean metric should be replaced
by the Fisher information metric defined by ||θ||I(θ) =

√∑
θkIkl (θ) θl, where I(θ) is the

Fisher information matrix (Amari, 1998). The kl-th entry of the Fisher information matrix
for a parameterized distribution p(x|θ) is given by

Ikl (θ) =

〈(
∂ log (p(x|θ))

∂θk

)(
∂ log (p(x|θ))

∂θl

)〉
m

,

where 〈·〉m denotes the expectation under p(x|θ). The gradient associated with the Fisher
metric is called the natural gradient and is given by

∇nθ = I (θ)−1∇θ .

The inverse Fisher information matrix corrects the direction and length of the standard gra-
dient to achieve the largest change of the objective function (here the LL) for an infinitesimal
small step δθ from p(x|θ) to p(x|θ+δθ) in terms of the Kullback-Leibler divergence (Amari,
1998). This makes the natural gradient independent of the parameterization leading to an
invariance to arbitrary coordinate transformations such as flipping variables, which makes
it clearly the update direction of choice.
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For binary RBMs the entries of the Fisher information matrix (Amari et al., 1992;
Desjardins et al., 2013; Ollivier et al., 2011) are given by

Iwij ,wuv (θ) = I ,wuv ,wij (θ) = 〈xihjxuhv〉m − 〈xuhv〉m〈xuhv〉m
= Covm (xihj , xuhv) ,

Iwij ,bu (θ) = Ibu,wij
(θ) = Covm (xihj , xu) ,

Iwij ,cv (θ) = Icv ,wij (θ) = Covm (xihj , hv) ,

Ibi,bu (θ) = Ibu,bi (θ) = Covm (xi, xu) ,

Icj ,cv (θ) = Icv ,cj (θ) = Covm (hj , hv) ,

where Covm (·, ·) denotes the covariance under the model distribution. Since these expres-
sions involve expectations under the model distribution they are not tractable in general,
but can be approximated using MCMC methods (Ollivier et al., 2011; Desjardins et al.,
2013). Furthermore, a diagonal approximation of the Fisher information matrix could be
used. However, the approximation of the natural gradient for RBMs and DBMs is still com-
putationally very expensive so that the practical usability remains questionable (Schwehn,
2010; Ollivier et al., 2011; Desjardins et al., 2013).

3. Centered Restricted Boltzmann Machines

Inspired by the centering trick proposed by LeCun et al. (1998), Tang and Sutskever (2011)
have addressed the problem that RBMs perform differently on the MNIST and 1-MNIST
data set by changing the energy of the RBM in a way that the mean of the input data is
removed. Montavon and Müller (2012) have extended the idea of centering to the visible and
hidden variables of DBMs and have shown that centering improves the conditioning of the
underlying optimization problem, leading to models with better discriminative properties
for DBMs in general and better generative properties in the case of locally connected DBMs.

Following their line of thought, the energy for a centered binary RBM where the
visible and hidden variables are shifted by the offset parameters µ = (µ1, . . . , µN ) and
λ = (λ1, . . . , λM ), respectively, can be formulated as

E (x,h) = − (x− µ)T b− cT (h− λ)− (x− µ)T W (h− λ) . (4)

By setting both offsets to zero one retains the normal binary RBM. Setting µ = 〈x〉d and
λ = 0 leads to the model introduced by Tang and Sutskever (2011), and by setting µ = 〈x〉d
and λ = 〈h〉d we get a shallow variant of the centered DBM analyzed by Montavon and
Müller (2012).

The conditional probabilities for a variable taking the value one are given by

p (xi = 1|h) = σ(wi∗ (h− λ) + bi) , (5)

p (hj = 1|x) = σ((x− µ)T w∗j + cj) , (6)

where σ (·) is the sigmoid function, wi∗ represents the ith row, and w∗j the jth column of
the weight matrix W. The LL gradient now takes the form

∇W = 〈(x− µ)(h− λ)T 〉d − 〈(x− µ)(h− λ)T 〉m , (7)

∇b = 〈x− µ〉d − 〈x− µ〉m = 〈x〉d − 〈x〉m , (8)

∇c = 〈h− λ〉d − 〈h− λ〉m = 〈h〉d − 〈h〉m . (9)
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∇b and ∇c are independent of the choice of µ and λ and thus centering only affects ∇W.
It can be shown (see Appendix A) that the gradient of a centered BM is invariant to flip
transformations if a flip of xi to 1− xi implies a change of µi to 1− µi, and in the case of
RBMs a flip hj to 1−hj implies a change of λj to 1−λj . This holds for µi = 0.5, λj = 0.5 but
remarkably also for the expectation values over xi and hj under any distribution. Moreover,
if the offsets are set to the expectation values, centered RBMs get also invariant to shifts

Algorithm 1: Training centered RBMs

1 Initialize W ; /* i.e., W← N (0, 0.01)N×M */

2 Initialize µ,λ ; /* i.e., µ← 〈data〉,λ← 0.5 */

3 Initialize b, c ; /* i.e., b← σ−1(µ), c← σ−1(λ) */

4 Initialize η, νµ, νλ ; /* i. e., η, νµ, νλ ∈ {0.001, ..., 0.1} */

5 repeat
6 foreach batch in data do
7 foreach sample xd in batch do
8 Calculate hd = p(h = 1|xd) ; /* . Eq. (6) */

9 Sample xm fromRBM ; /* i.e., PCD-1, . Eqs. (5), (6) */

10 Calculate hm = p(h = 1|xm) ; /* . Eq. (6) */

11 Store xm,hd,hm

12 Estimate µbatch ; /* i.e. µbatch ← 〈xd〉 */

13 Estimate λbatch ; /* i.e. λbatch ← 〈hd〉 */

/* Transform parameters with respect to the new offsets */

14 b← b + νλW (λbatch − λ) ; /* . Eq. (11), λ̃ = (1− νλ)λ+ νλλbatch */

15 c← c + νµW
T (µbatch − µ) ; /* . Eq. (12), µ̃ = (1− νµ)µ+ νµµbatch */

/* Update offsets using exp. moving average with sliding factors

νµ and νλ */

16 µ← (1− νµ)µ+ νµµbatch
17 λ← (1− νλ)λ+ νλλbatch

/* Update parameters using the gradient with learning rate η */

18 ∇W← 〈(xd − µ)(hd − λ)T 〉 − 〈(xm − µ)(hm − λ)T 〉 ; /* . Eq. (7) */

19 ∇b← 〈xd〉 − 〈xm〉 ; /* . Eq. (8) */

20 ∇c← 〈hd〉 − 〈hm〉 ; /* . Eq. (9) */

21 W←W + η∇W
22 b← b + η∇b
23 c← c + η∇c

24 until stopping criteria is met ;
/* Transform network to a normal binary RBM if desired */

25 b← b−Wλ ; /* . Eq. (11) */

26 c← c−WTµ ; /* . Eq. (12) */

27 µ← 0
28 λ← 0
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of variables (see Section 4). Note that these properties of centered RBMs naturally extend
to centered BMs and DBMs (see Section 3.2, Appendix A and B).

If we set µ and λ to the expectation values of the variables, these values may depend
on the RBM parameters (think for example about 〈h〉d) and thus they might change dur-
ing training. Consequently, a learning algorithm for centered RBMs needs to update the
offset values to match the expectations under the distribution that has changed through a
parameter update. When updating the offsets one needs to transform the RBM parameters
such that the modeled probability distribution stays the same. An RBM with offsets µ and
λ can be transformed to an RBM with offsets µ̃ and λ̃ by

W̃ = W , (10)

b̃ = b + W
(
λ̃− λ

)
, (11)

c̃ = c + WT (µ̃− µ) , (12)

such that E(x,h|θ,µ,λ) = E(x,h|θ̃, µ̃, λ̃) + const, is guaranteed (see Appendix B for a
derivation for a more general BM). Obviously, this can also be used to transform a centered
RBM to a normal RBM and vice versa, highlighting that centered and normal RBMs are
just different parameterizations of the same model class.

If the intractable model mean is used for an offset, it has to be approximated by samples.
Furthermore, when λ is chosen to be 〈h〉d or 〈h〉m or when µ is chosen to be 〈x〉m one
could approximate the mean values either using the sampled states or the corresponding
conditional probabilities. But due to the Rao-Blackwell theorem an estimation based on
the probabilities has lower variance and therefore is the approximation of choice.3

Algorithm 1 shows pseudo code for training a centered binary RBM, where we use 〈·〉
to denote the average over samples from the current batch. Thus, for example, we write
〈xd〉 for the average value of data samples xd in the current batch, which is used as an
approximation for the expectation of x under the data distribution, that is 〈x〉d. Similarly,
〈hd〉 = 〈p (h = 1|xd)〉 approximates 〈h〉d, where p (x = 1|h) denotes the vector containing
the elements p (xi = 1|h). Note that in Algorithm 1 the update of the offsets is performed
before the gradient is calculated, such that gradient and reparameterization both use the
current samples. This is in contrast to the algorithm for centered DBMs proposed by
Montavon and Müller (2012), where the update of the offsets and the reparameterization
follows after the gradient update. Thus, while the gradient still uses the current samples
the reparameterization is based on samples gained from the model of the previous iteration.
However, the proposed DBM algorithm smooths the offset estimations by an exponentially
moving average over the sample means from many iterations, so that the choice of the
sample set used for the offset estimation should be less relevant.

In Algorithm 1 an exponentially moving average for the approximation of µ is obtained
if the corresponding sliding factor νµ is set to 0 < νµ < 1 or prevented if νµ = 1 and equiv-
alently for λ and νλ. The effects of using an exponentially moving average are empirically
analyzed in Section 6.5.

3. This can be proven analogously to the proof of proposition 1 in the work of Swersky et al. (2010).
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3.1 Centered Gradient

We now use the centering trick to derive a centered parameter update, which can replace
the gradient during the training of normal RBMs. Similar to the derivation of the enhanced
gradient we can transform a normal RBM to a centered RBM, perform a gradient update,
and transform the RBM back (see Appendix B for a derivation for the more general BM).
This yields the following parameter updates, which we refer to as centered gradient

∇cW = 〈(x− µ)(h− λ)T 〉d − 〈(x− µ)(h− λ)T 〉m , (13)

∇cb = 〈x〉d − 〈x〉m −∇cWλ , (14)

∇cc = 〈h〉d − 〈h〉m −∇cWTµ . (15)

Note that by setting µ = 1
2 (〈x〉d + 〈x〉m) and λ = 1

2 (〈h〉d + 〈h〉m) the centered gradient
becomes equal to the enhanced gradient (see Appendix C). Thus, it becomes clear that the
enhanced gradient is a special case of centering. This can also be concluded from the
derivation of the enhanced gradient for Gaussian visible variables in (Cho et al., 2013a).

Algorithm 2: Training RBMs using the centered gradient

1 Initialize W ; /* i.e. W← N (0, 0.01)N×M */

2 Initialize µ,λ ; /* i.e. µ← 〈data〉,λ← 0.5 */

3 Initialize b, c ; /* i.e. b← σ−1(µ), c← σ−1(λ) */

4 Initialize η, νµ, νλ ; /* i.e. η, νµ, νλ ∈ {0.001, ..., 0.1} */

5 repeat
6 foreach batch in data do
7 foreach sample xd in batch do
8 Calculate hd = p(h = 1|xd) ; /* . Eq. (6) */

9 Sample xm fromRBM ; /* i.e., PCD-1, . Eqs. (5), (6) */

10 Calculate hm = p(h = 1|xm) ; /* . Eq. (6) */

11 Store xm,hd,hm

12 Estimate µbatch ; /* i.e. µbatch ← 〈xd〉 */

13 Estimate λbatch ; /* i.e. λbatch ← 〈hd〉 */

/* Update offsets using exp. moving averages with sliding factors

νµ and νλ */

14 µ← (1− νµ)µ+ νµµbatch
15 λ← (1− νλ)λ+ νλλbatch

/* Update parameters using the centered gradient with learning

rate η */

16 ∇cW← 〈(xd − µ)(hd − λ)T 〉 − 〈(xm − µ)(hm − λ)T 〉 ; /* . Eq. (13) */

17 ∇cb← 〈xd〉 − 〈xm〉 − ∇cWλ ; /* . Eq. (14) */

18 ∇cc← 〈hd〉 − 〈hm〉 − ∇cWTµ ; /* . Eq. (15) */

19 W←W + η∇cW
20 b← b + η∇cb
21 c← c + η∇cc
22 until stopping criteria is met ;
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The enhanced gradient has been designed such that the weight updates become the
difference of the covariances between one visible and one hidden variable under the data
and the model distribution. Interestingly, one gets the same weight update for two other
choices of offset parameters, either µ = 〈x〉d and λ = 〈h〉m or µ = 〈x〉m and λ = 〈h〉d.
However, these offsets result in different update rules for the bias parameters.

Algorithm 2 shows pseudo code for training a normal binary RBM using the centered
gradient, which is equivalent to training a centered binary RBM using Algorithm 1. Both
algorithms can easily be extended to RBMs with other types of units, DBMs and BMs.

3.2 Centered Deep Boltzmann Machines

A DBM (Salakhutdinov and Hinton, 2009) is a deep undirected graphical model with several
hidden layers where successive layers have a bipartite connectivity structure. Therefore, a
DBM can be seen as a jointly trained stack of several RBMs and thus as a natural extension
of RBMs. A centered binary DBM with L layers h(0), · · · ,h(L) (where h(0) corresponds to
the visible layer) represents a Gibbs distribution with energy

E
(
h(0), · · · ,h(L)

)
= −

L∑
l=0

(
h(l) − λ(l)

)T
b(l) −

L−1∑
l=0

(
h(l) − λ(l)

)T
W(l)

(
h(l+1) − λ(l+1)

)
,

where each layer l has a bias b(l), an offset λ(l) and is connected to layer l + 1 by weight
matrix Wl.

The derivations, proofs and algorithms given in this work for RBMs/BMs automatically
extend to DBMs since each DBM can be transformed to an RBM with restricted connections
and partially unknown input data. This is illustrated for a DBM with four layers in Figure 1.
As a consequence of this relation DBMs can essentially be trained in the same way as RBMs
but also suffer from the same problems as described before. The major difference in DBM

(a) Deep network version. (b) Shallow network version.

Figure 1: Example for (a) a DBM or an ANN with four layers h(0), · · · , h(3) and (b) the
equivalent two layer shallow version of the same network with restricted connec-
tions and unknown input h(2).
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training compared to RBM training is that the expectation under the data distribution in
the LL gradient of DBMs gets intractable. Due to the partially missing input data the
factorization trick used for the calculation of expectation under the data distribution in
RBMs cannot be applied anymore. Instead the term is approximated by running a mean
field estimation until convergence (Salakhutdinov and Hinton, 2009), which corresponds to
approximating the gradient of the variational lower bound of the LL. Furthermore, it is
common to pre-train DBMs in a greedy layer wise fashion using RBMs (Salakhutdinov and
Hinton, 2009; Hinton and Salakhutdinov, 2012).

4. Centering in Artificial Neural Networks in General

Removing the mean from visible and hidden units was originally proposed for feed forward
neural networks (LeCun et al., 1998; Schraudolph, 1998). When this idea was applied to
the visible units of RBMs (Tang and Sutskever, 2011) the model was reparameterized such
that the probability distribution defined by the normal and centered RBM stayed the same.

In this section we generalize this concept to show that centering is an alternative pa-
rameterization for arbitrary ANN architectures in general, if the network is reparameterized
accordingly. Consider the centered artificial neuron model

oj = φj

(∑
i

wij (ai − µi) + cj

)
, (16)

where the output oj of the jth neuron depends on its activation function φj , bias term cj
and weights wij with associated inputs ai and their corresponding offsets µi. Such neurons
can be used to construct arbitrary network architectures using undirected, directed and
recurrent connections, which can then be optimized with respect to a chosen loss.

Two different ANNs that represent exactly the same functional input-output mapping
can be considered as different parameterizations of the same model. Thus, a centered
ANN is just a different parameterization of an uncentered ANN if we can show that their
functional input-output mappings are the same. This can be guaranteed in general if all
corresponding units in a centered and an uncentered ANN have the same mapping from
inputs to outputs. If the offset µi is changed to µ̃i = µi + ∇µi then the output of the
centered artificial neuron (16) becomes

φj

(∑
i

wij (ai − µ̃i) + cj

)
= φj

(∑
i

wij (ai − (µi +∇µi)) + cj

)

= φj

(∑
i

wij (ai − µi) + cj −
∑
i

wij∇µi
)
,

showing that the unit’s output does not change when changing the offset µi to µ̃i if the
unit’s bias parameter cj is reparameterized to c̃j = cj +

∑
iwij∇µi. This generalizes the

reparameterization for RBMs given by Equations (10) – (12) to ANNs. Now, by setting µi
or µ̃i to zero it follows that for each normal ANN there exists a centered ANN and vice
versa such that the output of each neuron and thus the functional mapping from input
to output of the whole network stays the same. This holds independently of the chosen

11
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activation functions, loss function and connection types including directed, undirected and
recurrent connections.

Moreover, if we guarantee that a shift of ai implies a shift of µi by the same value (that
is, a shift of ai to ai+δi implies a shift of µi to µi+δi) the neuron’s output oj gets invariant
to shifts of ai. This is easy to see since δi cancels out in Equation (16) if the same shift is
applied to both ai and µi, which holds for example if we set the offsets to the mean values
of the corresponding variables since 〈ai + δi〉 = 〈ai〉+ δi.

Note that, the original centering algorithm (LeCun et al., 1998; Schraudolph, 1998) did
not reparameterize the network, which can cause instabilities especially if the learning rate
is large.

4.1 Auto Encoders

An AE or auto-associator (Rumelhart et al., 1986b) is a type of ANN (and can thus be
centered) that has originally been proposed for unsupervised dimensionality reduction. Like
RBMs, AEs have also been used for unsupervised feature extraction and greedy layer-wise
pre-training of deep neural networks (Bengio et al., 2007), and therefore fit well in this
study for analyzing centering in ANNs.

In general, an AE consists of a deterministic encoder encode(x), which maps the input
x = (x1, ..., xN ) to a hidden representation h = (h1, ..., hM ) and a deterministic decoder
decode(h), which maps the hidden representation to the reconstructed input representation
x̃. The network is optimized such that the reconstructed input x̃ gets as close as possible
to the original input x measured by a chosen loss L(x, x̃). Common choices for the loss are
the mean squared error 〈∑N

i=1 (xi − x̃i)2〉d for arbitrary input and the average cross entropy

〈−∑N
i=1 xi log x̃i + (1− xi) log(1− x̃i)〉d for binary data. AEs are usually trained via back-

propagation (Kelley, 1960; Rumelhart et al., 1986a) and they can be seen as feed-forward
neural networks where the input patterns are also the desired output patterns. We can
therefore define a centered AE by centering the encoder and decoder, which for a centered
three layer AE corresponds to

encode(x) = φenc
(
W′ (x− µ) + c

)
= h,

decode(h) = φdec (W (h− λ) + b) = x̃,

with encoder matrix W′, decoder matrix W, encoder bias c, decoder bias b, encoder
offset µ, decoder offset λ, encoder activation function φenc and decoder activation function
φdec. It is common to assume tied weights, which means that the encoder matrix is just
the transpose of the decoder matrix (W′ = WT ). Although this reduces the number of
free parameters AEs can still learn trivial representations if the number of hidden units is
not chosen to be much smaller than the number of input dimensions or if the network is
not regularized. Common regularized variants of AEs are denoising AEs (Vincent et al.,
2008), sparse AEs (Olshausen et al., 1996; Poultney et al., 2006; Ng, 2011) and contractive
AEs (Bishop, 1995; Rifai et al., 2011).

When choosing the activation functions for the encoder and decoder (that are sigmoid,
tangens-hyperbolicus, radial-basis, linear, linear-rectifier, ... ), we have to ensure that the
encoder activation function is appropriate for the input data (for example a sigmoid cannot
represent negative values). It is worth mentioning that when using the sigmoid function
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for φenc and φdec and tied weights, the encoder becomes equivalent to Equation (5) and
the decoder becomes equivalent to Equation (6). The network structure therefore becomes
equivalent to an RBM such that the only difference is the training objective (that is the
loss function).

4.2 Initialization of the Model Parameters

It is a common way to initialize the weight matrix of ANNs to small random values to break
the symmetry. The bias parameters are often initialized to zero. However, we argue that
there exists a more reasonable initialization for the bias parameters.

Hinton (2010) has proposed to initialize the RBM’s visible bias parameter bi to ln(pi/(1−
pi)), where pi is the proportion of the data points in which unit i is on (that is pi = 〈xi〉d).
He has stated that if this is not done, the hidden units are used to activate the ith visible
unit with a probability of approximately pi in the early stage of training.

We argue that this initialization is in fact reasonable since it corresponds to the Maxi-
mum Likelihood Estimate (MLE) of the visible bias given the data for an RBM with zero
weight matrix, given by

b∗ = ln

( 〈x〉d
1− 〈x〉d

)
= − ln

(
1

〈x〉d
− 1

)
= σ−1(〈x〉d) , (17)

where σ−1 is the inverse sigmoid function. Note that the MLE of the visible bias for an
RBM with zero weights is the same whether the RBM is centered or not. The conditional
probability of the visible variables of an RBM with this initialization is then given by
p (x = 1|h) = σ(σ−1(〈x〉d)) = 〈x〉d, where p (x = 1|h) denotes the vector containing the
elements p (xi = 1|h). Thus, the mean of the data is initially modeled only by the bias values
and the weights are free to model higher order statistics in the beginning of training. For the
unknown hidden variables it is reasonable to assume an initial mean of 0.5 so that the MLE
of the hidden bias for an RBM with zero weights is given by c∗ = σ−1(0.5) = 0.0. These
considerations still hold approximately if the weights are not zero but initialized to small
random values. For bigger initial weight values the model can be initially centered by using
the inverse sigmoid of the average hidden activity given the data (c∗ = σ−1 (〈p (h = 1|x)〉d))
for the hidden biases.

Montavon and Müller (2012) have suggested to initialize the bias parameters of centered
DBMs to the inverse sigmoid of the initial offset parameters. They have argued that this
initialization leads to a good starting point, because it guarantees that the Boltzmann
machine is initially centered. Actually, if the initial offsets are set to µi = 〈xi〉d and λj = 0.5
the initialization suggested by Montavon and Müller (2012) is equal to the initialization to
the MLEs as follows from Equation (17).

Note that this initialization is not restricted to RBMs or the sigmoid activation function.
Independently of the initial weight matrix we can always set the bias in ANNs to the inverse
activation function of the corresponding mean value.

5. Methods

As shown in Section 3 the algorithms described by Cho et al. (2011), Tang and Sutskever
(2011) and Montavon and Müller (2012) can all be viewed as different ways of applying
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the centering trick. They differ in the choice of the offset parameters and in the way of
approximating them, either based on the samples gained from the model in the previous
learning step or from the current one, using an exponentially moving average or not. The
question arises, how RBMs should be centered to achieve the best performance in terms of
the LL. In Section 5 we therefore empirically analyze the different ways of centering and
try to achieve a deeper understanding of why centering is beneficial.

For simplicity we introduce the following shorthand notation. The letter d denotes
the data mean 〈·〉d, m denotes the model mean 〈·〉m, a denotes the average of the means
1
2〈·〉d + 1

2〈·〉m, and 0 is used if the offsets are set to zero. We indicate the choice of µ in
the first and the choice of λ in the second place, for example dm translates to µ = 〈x〉d
and λ = 〈h〉m. We add a superscribed b (before) or l (later/after) to denote whether the
reparameterization is performed before or after the gradient update. If the sliding factor
in Algorithm 1 or 2 is set to a value smaller than one and thus an exponentially moving
average is used, a subscript s (sliding) is added. Thus, we represent the variant of Cho

Abbr. µ λ Description

00 0 0 Normal binary RBM

(Smolensky, 1986)

d0 〈x〉d 0 Data Normalization RBM

(Tang and Sutskever, 2011)

ddls 〈x〉d 〈h〉d Original Centered RBM

(Montavon and Müller, 2012)
reparam. after gradient update,
use of an exp. moving average

aab 0.5 (〈x〉d + 〈x〉m) 0.5 (〈h〉d + 〈h〉m) Enhanced gradient RBM

(Cho et al., 2011)
reparam. before gradient update,
no use of an exp. moving average

ddbs 〈x〉d 〈h〉d Centering using the data mean,

reparam. before gradient update,
use of an exp. moving average

mmb
s 〈x〉m 〈h〉m Centering using the model mean,

reparam. before gradient update,
use of an exp. moving average

dmb
s 〈x〉d 〈h〉m Centering using the data mean

for the visible and the model mean
for hidden units,

reparam. before gradient update,
use of an exp. moving average

Table 1: Look-up table: Abbreviations for the most frequently used algorithms.
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et al. (2011) by aab, the one of Montavon and Müller (2012) by ddls, the data normalization
of Tang and Sutskever (2011) by d0, and the normal binary RBM simply by 00. Table 1
summarizes the abbreviations most frequently used in this paper.

We begin our analysis with experiments on RBMs, where one layer is small enough to
guarantee that the exact LL is still tractable. In a first set of experiments we analyze the four
algorithms described above in terms of the evolution of the LL during training. In a second
set of experiments we analyze the effect of the initializations described in Section 4.2. We
proceed with a comparison of the effects of estimating offset values and reparameterizing the
parameters before or after the gradient update. Afterwards we analyze the effects of using
an exponentially moving average to approximate the offset values in the different algorithms
and of choosing other offset values. We then compare the normal and the centered gradient
with the natural gradient. Finally, to verify whether the results scale to more realistic
problem sizes we compare RBMs, DBMs and AE on ten large data sets.

5.1 Benchmark Problems

We consider twelve different benchmark problems in our detailed analysis, see also Figure 2.
The Bars & Stripes (MacKay, 2003) data set consists of patterns of size D×D that can
be generated as follows. First, for each row of a pattern all corresponding pixels are either
set to zero or to one with equal probability. Second, with a probability of 0.5 the pattern
is rotated by 90 degrees. This leads to N = 2D+1 patterns where the completely uniform
patterns occur twice as often as the others. The data set is symmetric in terms of the
amount of zeros and ones and thus the flipped and unflipped problems are equivalent. An
upper bound of the LL is given by (N − 4) ln

(
1
N

)
+ 4 ln

(
2
N

)
. For our experiments we used

D = 3 or D = 2 (only in Section 6.9) leading to an upper bound of −41.59 and −13.86,
respectively.

The Shifting Bar data set is an artificial benchmark problem we have designed to be
asymmetric in terms of the amount of zeros and ones in the data. The data set consists of
vectors of size N where a set of B successive pixels with cyclic boundary conditions are set
to one, the ’bar’, and the others are set to zero. More formally the data set can be generated
as follows, beginning with a vector where all pixels are set to zero, an index 0 ≤ i < N is
chosen uniformly at random. The pixel with index i and the following B − 1 pixels, which
underly cyclic boundary conditions are set to one (that is the pixels with indices {i, (i+ 1)
mod N , . . . , (i+B − 1) mod N} are set to one). This leads to N different patterns with
equal probability, and an upper bound of the LL of N ln

(
1
N

)
, the percentage of ones in

the data set is B
N . For our experiments we used N = 9, B = 1 and its flipped version

Flipped Shifting Bar , which we get for N = 9, B = 8, both having an upper LL bound
of −19.78.

The MNIST (LeCun et al., 1998) data set of handwritten digits has become a standard
benchmark problem for RBMs. It consists of 60, 000 training and 10, 000 testing examples
of gray value handwritten digits of size 28 × 28. Usually, in a first preprocessing step the
values are normalized to lie in [0, 1]. Across different studies the normalized values are
then either used directly as input, or the data set is binarized using a threshold of 0.5 or by
sampling according to the normalized values that are treated as probabilities.4 In this study

4. In Appendix D we give a an comparison of normal and centered RBMs on the different MNIST versions.
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(a) 8 out of 16 patterns from the Bars & Stripes data set.

(b) All patterns of the Shifting Bar data set with N = 9 and B = 1.

(c) Example patterns from the MNIST data set after binarization.

(d) Example patterns from the Caltech 101 Silhouette data set.

Figure 2: Some patterns from the different benchmark problems.

we binarized MNIST with a threshold of 0.5. The data set contains 13.3% ones, similar to
the Shifting Bar problem, which for our choice of N and B contains 11.1% ones. We refer
to the data set where each bit of MNIST is flipped (that is each one is replaced by a zero
and vice versa) as 1-MNIST .

The CalTech 101 Silhouettes (Marlin et al., 2010) data set consists of 4100 training,
2307 validation, and 2264 testing examples of binary object silhouettes of size 28× 28. The
data set contains 55.1% ones, and thus (like in the Bars & Stripes problem) the amount of
zeros and ones is almost the same. The background pixels take the value one, which is in
contrast to MNIST where the background pixels are set to zero.

In some experiments we also considered the eight UCI binary (Larochelle et al., 2010;
Larochelle and Murray, 2011) data sets from different domains comprising biological, im-
age, text and game-related data. The data sets differ in dimensionality (112 to 500) and
size (a few hundred to several thousand examples) and have been separated into training,
validation, and test sets. All UCI binary data sets contain less ones than zeros, where the
percentage of ones lies between 3.9% and 36.8%.
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6. Results

For all models in this work the weight matrices were initialized with random values sampled
from a Gaussian with zero mean and a standard deviation of 0.01. If not stated otherwise
the visible biases, hidden biases, and offsets were initialized as described in Section 4.2.

We began our analysis with experiments on small RBMs where the LL can be calculated
exactly, where we used 4 hidden units when modeling Bars & Stripes and Shifting Bar and
16 hidden units when modeling MNIST. For training we used CD-1, PCD-1 and PTc (with
c = 10 or c = 20) where the c temperatures were distributed uniformly from 0 to 1. For
Bars & Stripes and Shifting Bar full-batch training was performed for 50, 000 gradient
updates, where the LL was evaluated every 50th gradient update. For modeling MNIST
mini-batch training with a batch size of 100 was performed for 100 epochs, each consisting
of 600 gradient updates and the exact LL was evaluated after each epoch. Note that in
order to get an unbiased comparison of the different models, we did not use any additional
modifications of the update rule like a momentum term, weight decay or an annealing
learning rate.

The tables in this work show the maximum average LL and the corresponding standard
deviation reached during training averaged over 25 trials. In addition the final average LL
reached at the end of training is given in parenthesis to indicate a potential divergence of
the LL. For some computational expensive experiments we used only 10 trials, which will
be mentioned explicitly. For reasons of readability, the LL values for the big data sets were
normalized to the number of training samples. In order to check if the result of the best
method within one row differs significantly from the others we performed pairwise signed
Wilcoxon rank-sum tests (with p = 0.05). The best results are highlighted in bold. This
can be more than one value if the significance test between these values was negative.

6.1 Comparison of the Standard Methods

The comparison of the learning performance of the previously described algorithms ddls, aa
b,

d0, and 00 (using their originally proposed initializations) shows that training a centered
RBM leads to significantly higher LL values than training a normal binary RBM (see Table 2
for the results on Bars & Stripes and MNIST and Table 3 for the results on Shifting Bar
and Flipped Shifting Bar).

Figure 3 illustrates on the Bars & Stripes data set that centering (aab, ddls, and d0)
leads to faster learning and higher LL values than normal RBMs (00 ). This differs from
the observations made for DBMs by Montavon and Müller (2012), who have found a better
generative performance of centering only in the case of locally connected DBMs. Further-
more, Figure 3 shows that centering both the visible and the hidden variables (ddls and aab)
compared to centering only the visible variables (d0 ) accelerates learning and leads to a
higher LL. This is different from the observations made for RBMs by Tang and Sutskever
(2011), who have stated that centering only the visible variables leads to a performance
similar to that of the enhanced gradient. Thus centered RBMs where visible and hidden
variables are centered can form more accurate models of the data distribution than normal
RBMs and centered RBMs where only the visible variables are centered.

It can also be seen from Figure 3 that all methods show divergence in combination with
CD and PCD (as described before by Fischer and Igel, 2010, for normal RBMs), which
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is prevented for ddls, d0, and 00 when using PT as shown in Figure 3(b). This can be
explained by the fact that PT leads to faster mixing Markov chains and thus less biased
gradient approximations. The aa algorithm however suffers from severe divergence of the
LL when PCD or PT is used, which is even worse than with CD. This divergence problem
does occur independently of the choice of the learning rate as indicated by the LL values
reached at the end of training (given in parentheses) in Table 2 and Table 3, and which can
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(a) CD-1 - learning rate 0.05
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(b) PT10 - learning rate 0.05
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(c) PCD-1 - learning rate 0.05
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(d) PCD-1 - learning rate 0.01

Figure 3: Evolution of the average LL on the training data for models with 4 hidden units
on the Bars & Stripes data set for the standard centering methods. (a) CD-1
with a learning rate of η = 0.05, (b) PT10 with a learning rate of η = 0.05, (c)
PCD-1 with a learning rate of η = 0.05, and (d) PCD-1 with a learning rate of
η = 0.01.
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Algorithm-η aab ddls d0 00

Bars & Stripes

CD-1-0.1 -61.66 ±1.71 (-69.1) -61.33 ±1.89 (-69.1) -61.73 ±4.19 (-70.9) -66.53 ±3.47 (-78.1)
CD-1-0.05 -61.09 ±1.89 (-65.0) -60.82 ±2.31 (-64.2) -61.23 ±3.70 (-65.1) -66.35 ±4.24 (-71.2)
CD-1-0.01 -61.08 ±1.60 (-61.1) -61.31 ±1.55 (-61.3) -63.30 ±3.02 (-63.3) -68.56 ±2.94 (-68.6)
PCD-1-0.1 -59.05 ±2.07 (-360.6) -58.93 ±2.24 (-102.7) -62.46 ±4.65 (-97.3) -63.28 ±5.61 (-84.3)
PCD-1-0.05 -57.25 ±1.51 (-167.4) -57.01 ±1.61 (-65.4) -60.42 ±5.19 (-72.5) -62.29 ±4.84 (-70.6)
PCD-1-0.01 -54.86 ±0.98 (-55.3) -56.80 ±0.73 (-56.8) -61.03 ±3.74 (-61.0) -64.61 ±2.95 (-64.6)
PT10-0.1 -54.67 ±3.43 (-202.5) -51.99 ±1.13 (-52.2) -56.18 ±5.32 (-56.7) -54.89 ±3.66 (-55.3)
PT10-0.05 -53.34 ±0.99 (-70.7) -52.21 ±1.06 (-52.5) -56.54 ±5.82 (-56.6) -56.46 ±4.43 (-56.8)
PT10-0.01 -53.63 ±1.25 (-53.8) -56.76 ±0.79 (-56.8) -61.26 ±4.58 (-61.3) -64.71 ±3.52 (-64.7)

MNIST

CD-1-0.1 -153.01 ±2.32 (-158.0) -153.46 ±2.45 (-155.5) -153.89 ±2.91 (-155.0) -170.29 ±2.45 (-170.6)
CD-1-0.05 -153.07 ±1.51 (-156.0) -152.78 ±3.57 (-153.8) -153.01 ±2.80 (-155.4) -169.43 ±2.95 (-169.7)
CD-1-0.01 -152.90 ±1.38 (-152.9) -152.42 ±2.15 (-152.4) -153.77 ±2.54 (-153.8) -172.70 ±1.86 (-172.8)
PCD-1-0.1 -150.78 ±1.95 (-174.9) -144.10 ±1.67 (-144.7) -154.64 ±3.14 (-156.6) -183.11 ±8.62 (-183.2)
PCD-1-0.05 -146.83 ±1.54 (-163.4) -141.93 ±1.25 (-142.9) -146.86 ±2.08 (-147.5) -185.78 ±6.78 (-185.8)
PCD-1-0.01 -143.36 ±0.74 (-144.1) -140.43 ±0.62 (-140.7) -141.88 ±1.02 (-141.9) -193.60 ±4.56 (-193.6)
PT10-0.01 -259.50 ±17.54 (<-999) -142.00 ±1.04 (-142.3) -145.84 ±2.49 (-147.4) -152.38 ±3.05 (-152.4)

Table 2: Maximum average LL on the training data for centered and normal RBMs (top) with 4 hidden units on the Bars &
Stripes data set and (bottom) with 16 hidden units on the MNIST data set using different sampling methods and
learning rates η. Each LL value is followed by the corresponding standard deviation of the 25 trials and the average LL
at the end of training is given in parenthesis.
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Algorithm-η aab ddls d0 00

Shifting Bar

CD-1-0.2 -21.04 ±1.41 (-21.9) -20.42 ±0.85 (-20.4) -22.15 ±1.38 (-22.5) -22.32 ±1.46 (-22.6)
CD-1-0.1 -21.29 ±1.18 (-21.5) -20.76 ±0.80 (-20.8) -21.35 ±0.95 (-21.4) -21.56 ±0.94 (-21.6)
CD-1-0.05 -21.16 ±0.84 (-21.2) -22.74 ±0.65 (-22.7) -26.89 ±0.29 (-26.9) -26.11 ±0.40 (-26.1)
PCD-1-0.2 -23.07 ±0.78 (-237.2) -22.48 ±0.85 (-33.6) -23.15 ±1.01 (-31.9) -23.34 ±0.75 (-31.7)
PCD-1-0.1 -22.14 ±0.70 (-87.4) -21.92 ±0.66 (-24.0) -22.75 ±0.84 (-23.7) -22.64 ±1.15 (-23.3)
PCD-1-0.05 -21.71 ±0.73 (-26.0) -22.53 ±0.55 (-22.5) -26.84 ±0.36 (-26.8) -26.06 ±0.48 (-26.1)
PT10-0.2 -21.30 ±0.81 (-31.9) -20.66 ±0.67 (-20.8) -21.47 ±1.13 (-21.6) -22.12 ±1.17 (-22.3)
PT10-0.1 -20.84 ±0.62 (-21.5) -20.57 ±0.56 (-20.6) -21.34 ±0.90 (-21.4) -21.21 ±0.93 (-21.2)
PT10-0.05 -20.78 ±0.88 (-20.8) -22.42 ±0.69 (-22.4) -26.96 ±0.30 (-27.0) -26.18 ±0.38 (-26.2)

Flipped Shifting Bar

CD-1-0.2 -20.82 ±1.15 (-21.3) -20.73 ±1.06 (-20.8) -22.04 ±1.62 (-22.3) -28.14 ±0.27 (-28.2)
CD-1-0.1 -20.85 ±1.05 (-20.9) -20.90 ±0.83 (-20.9) -21.17 ±0.84 (-21.2) -28.35 ±0.04 (-28.4)
CD-1-0.05 -21.18 ±0.82 (-21.2) -22.64 ±0.65 (-22.6) -26.85 ±0.34 (-26.9) -28.31 ±0.02 (-28.3)
PCD-1-0.2 -22.73 ±0.88 (-310.8) -22.35 ±0.91 (-29.1) -23.48 ±0.84 (-32.6) -28.19 ±0.28 (-28.3)
PCD-1-0.1 -22.15 ±0.71 (-88.3) -21.64 ±0.72 (-22.6) -22.38 ±0.88 (-23.2) -28.35 ±0.04 (-28.4)
PCD-1-0.05 -21.72 ±0.86 (-25.6) -22.34 ±0.60 (-22.3) -26.90 ±0.34 (-26.9) -28.31 ±0.02 (-28.3)
PT10-0.2 -21.13 ±0.72 (-32.4) -20.57 ±0.63 (-20.6) -21.14 ±0.84 (-21.4) -28.17 ±0.26 (-28.2)
PT10-0.1 -21.03 ±0.81 (-21.6) -20.73 ±0.74 (-20.8) -21.26 ±0.72 (-21.3) -28.35 ±0.04 (-28.4)
PT10-0.05 -21.01 ±0.86 (-21.1) -22.48 ±0.73 (-22.5) -26.87 ±0.35 (-26.9) -28.31 ±0.02 (-28.3)

Table 3: Maximum average LL on the training data for centered and normal RBMs with 4 hidden units on (top) the Shifting Bar
data set and (bottom) the Flipped Shifting Bar data set using different sampling methods and learning rates η. Each
LL value is followed by the corresponding standard deviation of the 25 trials and the average LL at the end of training
is given in parenthesis.
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also be seen by comparing Figure 3(c) and Figure 3(d). The divergence occurs earlier and
is more severe for bigger learning rates, while for the other algorithms we never observed
divergence in combination with PT even for very big learning rates and long training time.
The reasons for this divergence are discussed in detail in Section 6.4.

The results in Table 3 also demonstrate the flip invariance of the centered RBMs on the
Shifting Bar data set empirically. Whereas 00 fails to model the flipped version of the data
set correctly, ddls, aa

b, and d0 have approximately the same performance on the flipped and
unflipped data set.

6.2 Initialization

The experiments in this section were done to analyze the effects of different initializations
of the parameters as discussed in Section 4.2. First, we trained normal binary RBMs (that
is 00 ) where the visible bias was initialized to zero or to the inverse sigmoid of the data
mean. In both cases the hidden bias was initialized to zero. Table 4 shows the results
for normal binary RBMs trained on the Flipped Shifting Bar data set, where RBMs with
zero initialization failed to learn the distribution accurately. The RBMs using the inverse
sigmoid initialization achieved better performance and therefore seem to be less sensitive

Algorithm-η 00 init zero 00 init σ−1

Flipped Shifting Bar

CD-1-0.2 -28.14 ±0.27 (-28.2) -22.08 ±1.49 (-22.5)
CD-1-0.1 -28.35 ±0.04 (-28.4) -21.40 ±1.21 (-21.6)
CD-1-0.05 -28.31 ±0.02 (-28.3) -24.90 ±0.47 (-24.9)
PCD-1-0.2 -28.19 ±0.28 (-28.3) -25.17 ±1.32 (-42.3)
PCD-1-0.1 -28.35 ±0.04 (-28.4) -23.71 ±0.98 (-26.7)
PCD-1-0.05 -28.31 ±0.02 (-28.3) -24.99 ±0.57 (-25.0)
PT10-0.2 -28.17 ±0.26 (-28.2) -22.83 ±1.41 (-23.5)
PT10-0.1 -28.35 ±0.04 (-28.4) -21.52 ±0.88 (-21.8)
PT10-0.05 -28.31 ±0.02 (-28.3) -24.87 ±0.50 (-24.9)

MNIST

CD-1-0.1 -170.29 ±2.45 (-170.6) -169.62 ±4.45 (-169.8)
CD-1-0.05 -169.43 ±2.95 (-169.7) -171.12 ±3.05 (-171.2)
CD-1-0.01 -172.70 ±1.86 (-172.8) -169.97 ±2.02 (-172.3)
PCD-1-0.1 -183.11 ±8.62 (-183.2) -164.68 ±3.27 (-189.7)
PCD-1-0.05 -185.78 ±6.78 (-185.8) -156.93 ±4.10 (-158.3)
PCD-1-0.01 -193.60 ±4.56 (-193.6) -144.28 ±0.93 (-144.3)
PT10-0.01 -152.38 ±3.05 (-152.4) -148.79 ±2.44 (-150.7)

Table 4: Maximum average LL on the training data for normal RBMs (top) with 4 hidden
units on the Flipped Shifting Bar data set and (bottom) with 16 hidden units on
the MNIST data set, where the visible bias is initialized to zero or to the inverse
sigmoid of the data mean.
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Algorithm-η ddls init zero ddls init σ
−1

Flipped Shifting Bar

CD-1-0.2 -20.76 ±0.95 (-20.8) -20.73 ±1.06 (-20.8)
CD-1-0.1 -20.82 ±0.88 (-20.8) -20.90 ±0.83 (-20.9)
CD-1-0.05 -22.98 ±0.73 (-23.0) -22.64 ±0.65 (-22.6)
PCD-1-0.2 -22.32 ±0.82 (-31.8) -22.35 ±0.91 (-29.1)
PCD-1-0.1 -21.75 ±0.60 (-22.6) -21.64 ±0.72 (-22.6)
PCD-1-0.05 -22.79 ±0.64 (-22.8) -22.34 ±0.60 (-22.3)
PT10-0.2 -20.37 ±0.36 (-20.6) -20.57 ±0.63 (-20.6)
PT10-0.1 -20.74 ±0.75 (-20.8) -20.73 ±0.74 (-20.8)
PT10-0.05 -22.95 ±0.70 (-22.9) -22.48 ±0.73 (-22.5)

Table 5: Maximum average LL on the training data for centered RBMs (ddls) with 4 hidden
units on the Flipped Shifting Bar data set, where the visible bias is initialized to
zero or to the inverse sigmoid of the data mean.

to the ‘difficulty’ of the data representation. However, the results are not as good as the
results of the centered RBMs shown in Table 3. The same observations can be made when
training RBMs on the MNIST data set (see Table 4 bottom). The RBMs with inverse
sigmoid initialization achieved significantly better results than RBMs initialized to zero in
the case of PCD and PT, but still worse compared to the centered RBMs. Furthermore,
using the inverse sigmoid initialization allows us to achieve similar performance on MNIST
and 1-MNIST, while the RBM with zero initialization failed to learn the distribution for
1-MNIST at all (results not shown). A visual comparison of the filters of normal RBMs
trained on MNIST and 1-MNIST has already been given by Cho et al. (2011) and Tang
and Sutskever (2011).

We then trained models using the centering versions dd, aa, and d0 comparing the
initialization suggested in Section 4.2 against the initialization to zero. In most cases the
results showed no significant difference in terms of the maximum LL reached in trials with
different initializations, or slightly better results were found when using the inverse sigmoid
in combination with a small learning rate. This can be explained by the better starting point
yielded by this initialization. See Table 5 for the results for ddls on the Flipped Shifting Bar
data set as an example. We therefore used the inverse sigmoid initialization in the following
experiments since it was beneficial for normal RBMs.

6.3 Reparameterization

To investigate the effects of performing the reparameterization before or after the gradient
update during training of centered RBMs , we analyzed the learning behavior of ddbs (the
algorithm suggested here) and ddls (the algorithm suggested by Montavon and Müller, 2012)
on all data sets. The results for RBMs trained on the Bars & Stripes data set and the
MNIST data set are given in Table 6 (top). No significant difference between the two
versions can be observed and the same result (not shown) was obtained for the Shifting Bar
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Algorithm-η ddbs ddls

Bars & Stripes

CD-1-0.1 -61.32 ±1.87 (-69.1) -61.33 ±1.89 (-69.1)
CD-1-0.05 -60.82 ±2.26 (-64.2) -60.82 ±2.31 (-64.2)
CD-1-0.01 -61.31 ±1.55 (-61.3) -61.31 ±1.55 (-61.3)
PCD-1-0.1 -59.08 ±1.53 (-94.5) -58.93 ±2.24 (-102.7)
PCD-1-0.05 -56.97 ±1.74 (-64.3) -57.01 ±1.61 (-65.4)
PCD-1-0.01 -56.88 ±0.75 (-56.9) -56.80 ±0.73 (-56.8)
PT10-0.1 -51.99 ±1.29 (-52.5) -51.99 ±1.13 (-52.2)
PT10-0.05 -52.34 ±1.15 (-52.5) -52.21 ±1.06 (-52.5)
PT10-0.01 -56.76 ±0.77 (-56.8) -56.76 ±0.79 (-56.8)

MNIST

CD-1-0.1 -153.16 ±2.57 (-154.9) -153.46 ±2.45 (-155.5)
CD-1-0.05 -152.34 ±3.61 (-153.1) -152.78 ±3.57 (-153.8)
CD-1-0.01 -152.23 ±2.03 (-152.2) -152.42 ±2.15 (-152.4)
PCD-1-0.1 -144.12 ±2.12 (-145.2) -144.10 ±1.67 (-144.7)
PCD-1-0.05 -141.88 ±1.28 (-142.2) -141.93 ±1.25 (-142.9)
PCD-1-0.01 -140.40 ±0.66 (-140.7) -140.43 ±0.62 (-140.7)
PT10-0.01 -141.95 ±1.22 (-142.5) -142.00 ±1.04 (-142.3)

Table 6: Maximum average LL on the training data for RBMs (top) with 4 hidden units
on the Bars & Stripes data set and (bottom) with 16 hidden units on the MNIST
data set, using the reparameterization before (ddbs) and after (ddls) the gradient
update.

and the Flipped Shifting Bar data set. We therefore reparameterize the RBMs before the
gradient update in the remainder of this work. This is also motivated by the fact that the
enhanced gradient is only equivalent to centering using the average of model and data mean
for visible and hidden offsets if the model is reparameterized before it is updated (that is,
the enhanced gradient is equivalent to aab but not to aal).

6.4 Analyzing the Model-Mean-Related Divergence Effect

The severe divergence problem observed when using the enhanced gradient in combination
with PCD or PT raises the question whether the problem is induced by setting the offsets
to 0.5(〈x〉d + 〈x〉m) and 0.5(〈h〉d + 〈h〉m) or by bad sampling based estimates of gradient
and offsets. We therefore trained centered RBMs with 9 visible and 4 hidden units on the
Bars & Stripes data set using either the exact gradient where only 〈x〉m and 〈h〉m were
approximated by samples or using PT10 estimates of the gradient while 〈x〉m and 〈h〉m were
calculated exactly. Figure 4(a) shows that if the exact gradient is used but the offsets are
estimated, no divergence for aa in combination with PT is observed and the performance of
aa and dd become almost equivalent. Interestingly, the divergence is also prevented if the
gradient is estimated using PT but the offsets are calculated exactly as shown in Figure 4(b).
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Figure 4: Evolution of the average LL on the training data for RBMs with 4 hidden units
on the Bars & Stripes data set for the standard centering methods. (a) When
the exact gradient is used but the offsets are estimated using PT10 and (b) when
PT10 is used for estimating the gradient but the offsets are calculated exactly. In
both cases the learning rate was η = 0.05.

Thus, the divergence behavior must be induced by approximating both, gradient and offsets.
The fact that the mean under the data distribution can always be calculated exactly might
explain why we do not observe divergence for dd in combination with PT.

To further deepen the understanding of the divergence effect we investigated the param-
eter evolution during training of RBMs with different offsets. We observed that the change
of the offset values between two gradient updates gets extremely large during training when
using the model mean. Figure 5(a) shows in an exemplary manner the evolution of the first
hidden offset λ1 for a single trial, where the approximated offset for ddb is almost constant
while it is rather large for aab and even bigger for mmb (the centering variant that uses
the mean of hidden and visible variables under the model distribution as offsets). In each
iteration we calculated the exact offsets to estimate the approximation error shown in Fig-
ure 5(b). Obviously, there is no approximation error for dd while the error for aa quickly
gets large and the error for mm gets even twice as big. In combination with the gradient
approximation error this causes the weight matrices for aa and mm to grow extremely big
as shown in Figure 5(c). Consistent with the even larger approximation error for the offset
estimate of mm, the divergence for mm becomes even worse than that for aa, as shown in
Figure 6.

To further confirm that the divergence is not just caused by the additional sampling
noise introduced by approximating the offsets, we trained a centered RBM using PT for
the gradient approximation while we set the offsets to uniform random values between zero
and one in each iteration. The results are shown in Figure 6(a) and demonstrate that even
random offset values do not lead to the divergence problems. Thus, the divergence cannot
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be caused by additional sampling noise but rather by the correlated errors of gradient and
offset approximations. To test this hypothesis we investigated mmb where the samples for
offset and gradient approximations were taken from different PT sampling processes. The
results are shown in Figure 6(b) where no divergence can be observed anymore. While
creating two sets of samples for gradient and offset approximations prevents the LL from
diverging it almost doubles the computational cost and can therefore not be considered as
a reasonable solution in practice. Moreover, using the model mean as offset still leads to
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(c) Evolution of the weight norm

Figure 5: Evolution of the offsets and weights of different centered variants for RBMs with
4 hidden units during training on Bars & Stripes using PT10. For clearness a
single trial is shown, but the experiments were repeated 25 times and all trials
showed qualitatively the same results. (a) Close up of the evolution of offset λ1
over 500 gradient updates. (b) The evolution of the absolute difference between
exact and approximated hidden offset averaged over all hidden units. (c) The
evolution of the Frobenius norm of the weight matrices.

25



melchior, fischer and wiskott

0 10000 20000 30000 40000 50000

gradient update

−34

−32

−30

−28

−26

−24

−22

−20

lo
g-

lik
el

ih
oo

d

aab

ddb

mmb

00

(Randommeans)b

(a) Random offsets

0 20000 40000 60000 80000 100000

gradient update

−34

−32

−30

−28

−26

−24

−22

−20

lo
g-

lik
el

ih
oo

d

aab

ddb

mmb

(b) Independent approximations

Figure 6: Evolution of the average LL on the training data for RBMs with 4 hidden units
on the Shifting Bars data set using PT10 with a learning rate of η = 0.1. (a)
Normal RBMs, centered RBMs, and centered RBMs with random offset values
(denoted by Random meansb). (b) Centered RBMs when the samples for the
offset approximations come from a different Markov chain than the samples used
for the gradient approximation.

slightly worse final LL values than using the mean under the data distribution. This might
be explained by the fact that the additional approximation of the model mean introduces
noise while the data mean can be estimated exactly. Note, that the divergence also occurs
if either only visible or hidden offsets are set to the PT-approximated model mean, which
can be seen for example for dm in Figure 7(b).

Interestingly, the observed initially faster learning speed of mm and aa, which can be
seen in Figure 6(a), does not occur anymore when offset and gradient approximation are
based on different sample sets. This observation can also be made when the exact gradient
is used (see Figure 4a). Thus, the initially faster learning speed seems also be caused by
the correlated approximations of gradient and offsets and could be explained by the rapidly
growing norm of the weight matrix shown in Figure 5(c), which effectively leads to a bigger
step size in the parameter updates.

Note, that divergence can either be caused by using the expectation under the model
distribution for the offset approximations as described in this section or by the bias of the
gradient approximation introduced by using only a few steps of Gibbs sampling (Fischer
and Igel, 2010; Schulz et al., 2010; Fischer and Igel, 2011). The latter can occur for all
methods when CD or PCD is used for training. Furthermore, the LL can also decrease on
the test data due to overfitting to the training data, which is not divergence in the proper
sense.
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Figure 7: Evolution of the average LL on the training data for RBMs with 4 hidden units
on Bars & Stripes with different centering variants, using PT10 and a learning
rate of η = 0.05. (a) Using an exponentially moving average with a sliding factor
of 0.01 (the curves are almost equivalent) and (b) without exponentially moving
average (see also Figure 3b for aab)

6.5 Usage of an Exponentially Moving Average

The approximation of the mean values of the variables using just a few samples might be
too inaccurate or biased by the samples in the current batch. This is in particular the case
when the model mean is used as shown in Section 6.4, but also when the data mean is
used with a small batch size. Therefore, an exponentially moving average can be used to
smooth the approximation of the offsets between parameter updates, which stabilizes the
approximations when small batch sizes are used as well as when the model mean is used for
the offsets.

We analyzed the impact of using an exponentially moving average with a sliding factor
of 0.01 for the estimation of the offset parameters. Figure 7(a) illustrates on the Bars&
Stripes data set that the learning curves of the different models become almost equivalent
and that the divergence problem when using the model mean does not occur anymore when
an exponentially moving average is used. However, the maximum LL values reached are
the same whether an exponentially moving average is used or not. This can be seen by
comparing Figure 7(a) and Figure 7(b) and also by comparing the results in Table 2 and
Table 3 with those in Table 7. As discussed in Section 6.4, this problem is caused by
the correlation between the approximation error of gradient and offsets. When using an
exponential moving average the current offsets contain only a small fraction of the current
mean such that the correlation is highly reduced.

In our experiments, dd does not suffer from the divergence problem when PT is used
for sampling, even without exponentially moving average as can be seen in Figure 7(b) for
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example or in the case of mini-batch learning (results not shown). Thus, dd seems to be
generally more stable than the other centering variants, which is also true for big models
as will be shown at the end of Section 6.7.

In the previous experiments an exponentially moving average was used for the approxi-
mation of visible and hidden offsets as originally suggested by Montavon and Müller (2012).
Note however, that in batch learning when 〈x〉d is used for the visible offsets, these values
stay constant such that an exponentially moving average has no effect. More generally

Algorithm-η aabs ddbs dmb
s

Bars & Stripes

CD-1-0.1 -60.90 ±2.14 (-70.5) -61.32 ±1.87 (-69.1) -61.09 ±2.18 (-68.8)
CD-1-0.05 -60.25 ±2.62 (-64.2) -60.82 ±2.26 (-64.2) -60.83 ±2.31 (-64.2)
CD-1-0.01 -60.87 ±1.31 (-60.9) -61.31 ±1.55 (-61.3) -61.31 ±1.56 (-61.3)
PCD-1-0.1 -58.80 ±3.03 (-199.4) -59.08 ±1.53 (-94.5) -58.53 ±2.42 (-177.3)
PCD-1-0.05 -57.52 ±2.07 (-101.5) -56.97 ±1.74 (-64.3) -56.87 ±2.27 (-83.3)
PCD-1-0.01 -57.31 ±1.34 (-57.3) -56.88 ±0.75 (-56.9) -56.65 ±0.76 (-56.6)
PT10-0.1 -52.79 ±1.92 (-53.0) -51.99 ±1.29 (-52.5) -51.88 ±1.02 (-52.5)
PT10-0.05 -52.80 ±1.62 (-52.9) -52.34 ±1.15 (-52.5) -52.25 ±1.06 (-52.4)
PT10-0.01 -57.23 ±1.34 (-57.2) -56.76 ±0.77 (-56.8) -56.69 ±0.77 (-56.7)

Flipped Shifting Bar

CD-1-0.2 -20.79 ±1.11 (-20.8) -20.70 ±1.01 (-20.7) -20.64 ±1.05 (-20.7)
CD-1-0.1 -21.07 ±0.91 (-21.1) -20.84 ±0.80 (-20.8) -21.01 ±0.87 (-21.0)
CD-1-0.05 -22.52 ±0.61 (-22.5) -22.64 ±0.67 (-22.6) -22.61 ±0.68 (-22.6)
PCD-1-0.2 -22.29 ±0.62 (-38.3) -22.21 ±0.85 (-34.0) -22.44 ±0.71 (-37.8)
PCD-1-0.1 -21.88 ±0.65 (-23.9) -21.66 ±0.73 (-22.6) -21.75 ±0.59 (-23.8)
PCD-1-0.05 -22.50 ±0.59 (-22.5) -22.36 ±0.60 (-22.4) -22.36 ±0.63 (-22.4)
PT10-0.2 -20.57 ±0.56 (-20.7) -20.47 ±0.57 (-20.6) -20.53 ±0.58 (-20.7)
PT10-0.1 -20.61 ±0.64 (-20.7) -20.62 ±0.61 (-20.7) -20.62 ±0.60 (-20.7)
PT10-0.05 -22.37 ±0.65 (-22.4) -22.48 ±0.72 (-22.5) -22.34 ±0.66 (-22.3)

MNIST

CD-1-0.1 -152.81 ±2.34 (-155.5) -153.16 ±2.57 (-154.9) -153.13 ±2.32 (-155.2)
CD-1-0.05 -152.01 ±2.04 (-153.2) -152.34 ±3.61 (-153.1) -152.37 ±3.50 (-153.2)
CD-1-0.01 -153.20 ±1.89 (-153.2) -152.23 ±2.03 (-152.2) -152.13 ±2.04 (-152.1)
PCD-1-0.1 -144.07 ±1.54 (-144.5) -144.12 ±2.12 (-145.2) -143.87 ±1.79 (-145.0)
PCD-1-0.05 -142.19 ±1.62 (-143.2) -141.88 ±1.28 (-142.2) -141.98 ±1.96 (-143.2)
PCD-1-0.01 -140.58 ±0.91 (-140.7) -140.40 ±0.66 (-140.7) -140.52 ±0.55 (-140.7)
PT10-0.01 -143.68 ±1.53 (-153.0) -141.95 ±1.22 (-142.5) -143.45 ±0.76 (-145.8)

Table 7: Maximum average LL on the training data for RBMs with 4 hidden units on (top)
Bars & Stripes, and (middle) Flipped Shifting Bar, and (bottom) RBMs with 16
hidden units on MNIST when using an exponentially moving average with a sliding
factor of 0.01.
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if the training data and thus 〈x〉d is known in advance the visible offsets should be fixed
to this value independent of whether batch or mini-batch learning is used. However, the
use of an exponentially moving average for approximating 〈x〉d is reasonable if the training
data is not known in advance, as well as for the approximation of the mean of the hidden
representation 〈h〉d. We therefore used an exponentially moving average for the following
experiments on the big data sets.

6.6 Control Experiments: Other Choices for the Offsets

As discussed in Section 3, any offset value between 0 and 1 guarantees the flip invariance
property as long as it is flipped simultaneously with the data. An intuitive and constant
choice is to set the offsets to 0.5, which has also been proposed by Ollivier et al. (2011) and
results in a symmetric variant of the energy of RBMs. This leads to comparable LL values
on flipped and unflipped data sets. However, if the data set is unbalanced in the amount
of zeros and ones like MNIST, we found that the performance is always worse compared
to that of a normal RBM on the version of the data set that has fewer ones than zeros.
Therefore, fixing the offset values to 0.5 cannot be considered as an alternative for centering
using expectation values over the data or model distribution.

In Section 3.1, we mentioned that using either µ = 〈x〉d and λ = 〈h〉m or µ = 〈x〉m and
λ = 〈h〉d as offsets both lead to the same updates for the weights as the enhanced gradient.
Using µ = 〈x〉d and λ = 〈h〉m seems reasonable since the data mean is usually known in
advance. As mentioned above we refer to centering with this choice of offsets as dm. We
trained RBMs with dmb

s using a sliding factor of 0.01. The results are shown in Table 7 and
suggest that there is no significant difference between dmb

s, aa
b
s, and ddbs. However, without

an exponentially moving average dmb has the same divergence problems as aab when PTc

is used for sampling, as shown in Figure 7(b).

We further tried variants like mm, m0, 0d, m0, etc., but did not find better performance
than that of dd. The variants that subtract an offset from both, visible and hidden variables
outperformed or achieved the same performance as the variants that only subtract an offset
from either visible or hidden variables. When the model expectation was used without an
exponentially moving average either for µ or λ, or for both offsets we always observed the
divergence when PTc was used for sampling (results not shown).

Interestingly, if the exact gradient and offsets are used for training, no significant differ-
ence can be observed in terms of the LL evolution whether data mean, model mean or the
average of both is used for the offsets, as shown in Figure 8. But centering both visible and
hidden units still leads to better results than centering only one. Furthermore, the results
illustrate that centered RBMs outperform normal binary RBMs also if the exact gradient
is used for training both models. This further emphasizes that the worse performance of
normal binary RBMs is caused by the properties of the gradient rather than by the gradient
approximation.

The control experiments confirm our findings that centering both visible and hidden
units is important and that the performance of dd, aa, and mm become similar when an
exponentially moving average is used.
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Figure 8: Evolution of the average LL on the training data for RBMs with 4 hidden units
on the Bars & Stripes data set for the various centering methods when the exact
gradient is used with the exact offsets and a learning rate of η = 0.05. The plots
for aab, ddb and mmb overlay each other and so do a0b, d0b, m0b, and also 0ab,
0db and 0mb. In (b) the plots for a0b, d0b, m0b can be distinguished from the
plots for a0b, d0b, m0b in that they are initially slower and later lower.

6.7 Experiments with Big RBMs

For the experiments in Section 6.1-6.6 we trained small models in order to be able to run
many experiments and to evaluate the LL exactly. In this section we want to show that the
results we observed on the toy problems and MNIST with RBMs having 16 hidden units
carry over to more realistic settings. Furthermore, we want to investigate the generalization
performance of the different models. In a first set of experiments we therefore trained the
models 00, d0, ddbs, and aabs with 500 hidden units on MNIST and Caltech. The weight
matrices were initialized with random values sampled from a Gaussian with zero mean
and a standard deviation of 0.01, and visible and hidden biases and offsets were initialized
as described in Section 4.2. The LL was estimated using Annealed Importance Sampling
(AIS), where we used the same setup as described in the analysis of Salakhutdinov and
Murray (2008).

Figure 9 shows the evolution of the average LL on the test data of MNIST over 25
trials for PCD-1 and PT20 for different centering versions. The models were trained for 200
epochs, each consisting of 600 gradient updates with a batch size of 100 and the LL was
estimated every 10th epoch using AIS. Both variants ddbs and aabs reach significantly higher
LL values than 00 and d0. Also the standard deviation over the 25 trials indicated by the
error bars is smaller for ddbs and aabs than for 00 and d0, especially when PT20 is used for
sampling. Furthermore, 00 and d0 show divergence already after 30000 gradient updates
when PCD-1 is used, while no divergence can be observed for ddbs and aabs up to 120000
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Figure 9: Evolution of the average LL on the test data of MNIST during training of different
centering variants with 500 hidden units, using a learning rate of η = 0.01, and
a sliding factor of 0.01. (a) When using PCD-1 and (b) when using PT20 for
training. The error bars indicate the standard deviation of the LL over the 25
trials.

gradient updates. The evolution of the LL on the training data is not shown, since it is
almost equivalent to the evolution on the test data. The superiority of centering over normal
RBMs can also be observed for the other variants of MNIST as shown in Appendix D.

Figure 10 shows the evolution of the average LL on training and test data of the Caltech
data set over 25 trials for different centering versions using PCD-1 with a batch size of 100
and either a learning rate of 0.001 or 0.01. The LL was estimated every 5000th gradient
update using AIS. The results show that ddbs, aa

b
s and d0 reach higher LL values than 00 for

both learning rates and on training and test data. While ddbs and aabs perform only slightly
better than d0 when a small learning rate is used, the difference becomes more prominent
for a big learning rate. Figure 10(c) and (d) show that all models overfit to the training
data. Nevertheless, ddbs and aabs reach higher LL values on the test data and thus lead to
a better generalization. The final average LL on the test data for ddbs and aabs shown in
Figure 10(b) is around -118. This is consistent with the reported performance of -120.0 for
a normal RBM with 500 hidden units trained with PCD-1 (Marlin et al., 2010) and -114.75
when PT sampling is used in combination with the enhanced gradient (Cho et al., 2013b).

In a second set of experiments we extended our analysis to the eight UCI binary data
sets used by Larochelle et al. (2010). The four different models 00, d0, ddbs, and aabs were
trained with the same setup as before using PCD-1, a learning rate of 0.01, a batch size of
100 and a total number of 5000 epochs. All experiments were repeated 25 times and we
trained either RBMs with 16 hidden units and calculated the LL exactly or RBMs with
200 hidden units using AIS for estimating the LL. Additionally we trained RBMs with 200
hidden variables with a smaller learning rate of 0.001 for 30000 epochs. Due to the long
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training time these experiments were repeated only 10 times. The maximum average LL for
the test data is shown in Table 8. On seven out of eight data sets ddbs or aabs reached the best
result independent of whether 16 or 200 hidden units, or a learning rate of 0.01 or 0.001 were
used. Whenever aabs reached the highest value it was not significantly different from that of
ddbs. Note that when training RBMs with 16 hidden units d0 reached comparable results to
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(a) Training data- learning rate 0.001
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(c) Training data - learning rate 0.01
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Figure 10: Evolution of the average LL on Caltech data set with different centering variants
with 500 hidden units. The results on training and test data for a learning
rate of η = 0.001 are shown in sub-figures (a) and (b), respectively, and for a
learning rate of η = 0.01 in sub-figures (c) and (d), respectively. In both cases a
sliding factor of 0.01 and PCD-1 was used. The error bars indicate the standard
deviation of the LL over the 25 trials.
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Data set aabs ddbs d0 00

16 hidden units - learning rate 0.01

Adult -18.09 ±0.62 (-18.18) -17.70 ±0.25 (-17.74) -17.90 ±0.21 (-17.97) -17.94 ±0.22 (-17.98)
CONNECT-4 -20.07 ±0.19 (-20.52) -19.89 ±0.21 (-19.90) -20.14 ±0.24 (-20.16) -20.59 ±0.29 (-20.74)
DNA -96.97 ±0.05 (-97.26) -96.97 ±0.04 (-97.25) -97.01 ±0.04 (-97.21) -97.03 ±0.05 (-97.19)
Mushroom -16.83 ±0.57 (-17.11) -16.53 ±0.64 (-16.53) -16.76 ±0.56 (-17.11) -17.05 ±0.59 (-17.44)
NIPS -276.37 ±0.16 (-279.13) -276.38 ±0.16 (-279.11) -276.53 ±0.21 (-278.97) -278.04 ±0.27 (-279.95)
OCR -45.81 ±0.13 (-45.81) -45.82 ±0.12 (-45.83) -45.84 ±0.12 (-45.86) -45.97 ±0.17 (-45.99)
RCV1 -49.57 ±0.04 (-49.57) -49.58 ±0.05 (-49.58) -49.59 ±0.05 (-49.59) -49.53 ±0.04 (-49.53)
Web -29.99 ±0.05 (-29.99) -29.98 ±0.05 (-29.98) -30.20 ±0.70 (-30.86) -30.75 ±0.11 (-38.82)

200 hidden units - learning rate 0.01

Adult -15.98 ±0.37 (-17.80) -15.55 ±0.25 (-16.22) -16.65 ±0.61 (-18.96) -16.91 ±0.78 (-19.24)
CONNECT-4 -14.85 ±0.24 (-23.31) -14.70 ±0.20 (-17.71) -16.14 ±0.50 (-23.14) -17.88 ±0.78 (-30.41)
DNA -90.15 ±0.09 (-95.17) -90.12 ±0.10 (-94.13) -90.78 ±0.10 (-95.93) -91.13 ±0.12 (-97.62)
Mushroom -15.45 ±1.35 (-20.11) -15.61 ±1.23 (-19.93) -16.28 ±0.88 (-21.59) -16.42 ±1.61 (-21.90)
NIPS -270.81 ±0.05 (-291.82) -270.81 ±0.07 (-291.77) -271.38 ±0.28 (-294.28) -272.88 ±0.44 (-290.02)
OCR -29.75 ±0.50 (-30.18) -29.53 ±0.52 (-29.97) -30.66 ±0.65 (-30.66) -30.08 ±0.52 (-30.25)
RCV1 -47.13 ±0.12 (-47.13) -47.14 ±0.12 (-47.16) -47.14 ±0.10 (-47.19) -46.70 ±0.11 (-46.72)
Web -28.27 ±0.19 (-28.47) -28.27 ±0.19 (-28.58) -28.50 ±0.51 (-29.16) -28.35 ±0.14 (-28.71)

200 hidden units - learning rate 0.001

Adult -15.51 ±0.17 (-17.14) -14.90 ±0.07 (-14.90) -15.27 ±0.22 (-15.48) -15.16 ±0.21 (-15.39)
CONNECT-4 -13.73 ±0.17 (-15.95) -13.13 ±0.10 (-13.25) -13.86 ±0.29 (-14.79) -14.47 ±0.38 (-16.04)
DNA -90.17 ±0.07 (-90.17) -90.15 ±0.07 (-90.15) -90.45 ±0.09 (-90.45) -90.73 ±0.13 (-90.73)
Mushroom -13.44 ±0.75 (-13.96) -13.17 ±1.15 (-13.94) -13.47 ±0.73 (-14.51) -13.68 ±0.77 (-14.77)
NIPS -270.71 ±0.03 (-313.30) -270.70 ±0.03 (-313.16) -270.84 ±0.04 (-315.96) -271.91 ±0.12 (-309.03)
OCR -27.92 ±0.34 (-27.92) -27.70 ±0.15 (-27.75) -28.24 ±0.21 (-28.34) -28.04 ±0.39 (-28.29)
RCV1 -47.09 ±0.05 (-47.09) -47.10 ±0.03 (-47.11) -46.93 ±0.07 (-46.93) -46.56 ±0.07 (-46.56)
Web -28.13 ±0.02 (-28.17) -28.11 ±0.06 (-28.11) -28.16 ±0.05 (-28.20) -28.13 ±0.05 (-28.15)

Table 8: Maximum average LL for the test data of the eight UCI binary data sets during training RBMs with (top) 16 hidden
units and a learning rate of 0.01, (middle) 200 hidden units and a learning rate of 0.01 and (bottom) 200 hidden units and
learning rate of 0.001 (since 10 trials are are not enough to perform a statistical significance test we simply underlined
the best result). All models were trained using PCD-1 with a batch size of 100.
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Data set aabs ddbs d0 00

16 hidden units - learning rate 0.01

Adult -17.93 ±0.61 (-18.01) -17.54 ±0.25 (-17.58) -17.73 ±0.20 (-17.80) -17.78 ±0.23 (-17.81)
CONNECT-4 -19.94 ±0.19 (-20.38) -19.75 ±0.25 (-19.77) -20.01 ±0.24 (-20.03) -20.46 ±0.28 (-20.61)
DNA -94.33 ±0.05 (-94.33) -94.33 ±0.06 (-94.33) -94.44 ±0.04 (-94.44) -94.42 ±0.05 (-94.42)
Mushroom -16.55 ±0.56 (-16.82) -16.25 ±0.64 (-16.25) -16.46 ±0.56 (-16.80) -16.75 ±0.60 (-17.15)
NIPS -255.03 ±0.25 (-255.05) -255.02 ±0.23 (-255.04) -255.88 ±0.28 (-255.88) -258.57 ±0.29 (-258.57)
OCR -45.88 ±0.12 (-45.88) -45.90 ±0.11 (-45.90) -45.90 ±0.12 (-45.93) -46.03 ±0.16 (-46.05)
RCV1 -49.42 ±0.04 (-49.42) -49.43 ±0.05 (-49.43) -49.44 ±0.05 (-49.44) -49.38 ±0.04 (-49.38)
Web -29.79 ±0.05 (-29.79) -29.78 ±0.05 (-29.78) -29.97 ±0.70 (-30.62) -30.64 ±0.11 (-38.61)

200 hidden units - learning rate 0.01

Adult -15.19 ±0.62 (-16.29) -14.51 ±0.43 (-14.80) -15.83 ±0.61 (-17.17) -16.00 ±0.79 (-17.51)
CONNECT-4 -14.39 ±0.24 (-22.50) -14.22 ±0.20 (-17.02) -15.74 ±0.49 (-22.32) -17.58 ±0.76 (-29.55)
DNA -60.19 ±1.20 (-60.69) -59.75 ±1.45 (-59.75) -60.31 ±1.64 (-60.31) -61.11 ±1.54 (-61.71)
Mushroom -14.90 ±1.34 (-19.14) -15.06 ±2.09 (-19.00) -15.70 ±2.88 (-20.52) -15.87 ±1.63 (-20.87)
NIPS -180.48 ±0.24 (-180.48) -180.51 ±0.31 (-180.51) -180.29 ±0.54 (-180.29) -184.84 ±0.62 (-184.84)
OCR -28.97 ±0.49 (-29.39) -28.76 ±0.52 (-29.20) -29.84 ±0.63 (-29.84) -29.34 ±0.51 (-29.49)
RCV1 -45.83 ±0.12 (-45.83) -45.85 ±0.11 (-45.87) -45.92 ±0.18 (-45.97) -45.60 ±0.11 (-45.61)
Web -26.22 ±0.67 (-26.22) -26.28 ±0.20 (-26.32) -26.57 ±0.66 (-26.75) -26.34 ±0.38 (-26.39)

200 hidden units - learning rate 0.001

Adult -14.61 ±0.52 (-15.96) -13.85 ±0.06 (-13.85) -14.07 ±0.22 (-14.17) -14.03 ±0.21 (-14.11)
CONNECT-4 -13.15 ±0.17 (-15.20) -12.54 ±0.11 (-12.62) -13.28 ±0.29 (-14.10) -13.98 ±0.38 (-15.39)
DNA -70.22 ±0.08 (-70.22) -70.24 ±0.08 (-70.24) -69.66 ±0.06 (-69.66) -69.40 ±0.08 (-69.40)
Mushroom -12.76 ±0.75 (-13.21) -12.43 ±1.18 (-13.21) -12.69 ±0.72 (-13.68) -13.05 ±0.76 -13.92)
NIPS -148.14 ±0.30 (-148.14) -148.30 ±0.31 (-148.30) -147.33 ±0.30 (-147.33) -150.91 ±0.30 (-150.91)
OCR -27.06 ±0.33 (-27.06) -26.90 ±0.14 (-26.95) -27.41 ±0.20 (-27.52) -27.28 ±0.39 (-27.53)
RCV1 -45.83 ±0.04 (-45.83) -45.85 ±0.05 (-45.85) -45.73 ±0.07 (-45.73) -45.47 ±0.06 (-45.47)
Web -26.44 ±0.06 (-26.45) -26.36 ±0.07 (-26.36) -26.32 ±0.05 (-26.33) -26.35 ±0.10 (-26.35)

Table 9: Maximum average LL for the training data on the eight UCI binary data sets during training RBMs, with (top) 16
hidden units and a learning rate of 0.01, (middle) 200 hidden units and a learning rate of 0.01 and (bottom) 200 hidden
units and a learning rate of 0.001 (since 10 trials are are not enough to perform a statistical significance test we simply
underlined the best result). All models were trained using PCD-1 with a batch size of 100

.
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Figure 11: Evolution of the LL of exemplary trials for the different centering variants aab,
ddb, aabs and ddbs on (a) MNIST and (b) Caltech during training using PT20 with
a batch size of 100, 500 hidden units and a learning rate of 0.001. For Caltech
aab and ddb were also trained in full batch mode with PT20 and a learning rate
of 0.01.

ddbs on some data sets. Only on the RCV1 data set, 00 lead to better LL values than the
centered RBMs for both 16 and 200 hidden units. It seems that the convergence rate on the
RCV1, OCR and WEB data set is rather low for all models since the difference between the
highest and the final LL values is rather small, indicating that no divergence or overfitting
has happened so far. This can also be observed on the training data shown in Table 9. The
DNA data set and the NIPS data set overfitted to the training data as indicated by the
fact that the LL only decreased for the test data. In contrast, on the remaining three data
sets ADULT, CONNECT-4 and MUSHROOM the divergence can be observed on training
and test data. Finally note that all eight data sets contain more zeros than ones in the
current representation as mentioned in Section 5.1. Thus, the performance of the normal
RBM would be even worse on the flipped data sets while for the centering variants it would
stay the same (results not shown). Consistent with the experiments on small models, the
results from nine of the ten real world data sets clearly support the superiority of centered
over normal RBMs, show that centering visible and hidden units in RBMs is important for
yielding good models and that averaged over all data sets ddbs performs better than aabs.

To emphasize that the divergence problems induced by using the model means as offsets
also occurs for big models when no moving average is used, we trained RBMs with 500
hidden units on MNIST and Caltech using PT20 with a learning rate of 0.001 and a batch
size of 100. In addition, we trained aab and ddb on Caltech using full batch learning and a
learning rate of 0.01. Figure 11 shows that aab diverges while ddb and the corresponding
centering versions using a moving average, aabs and ddbs, show no divergence. The divergence
for aab even occurs in full batch training as shown in Figure 11(b).
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6.8 Investigating the Effect of Centering on the Model Parameters

One explanation why centering works has already been given by Montavon and Müller
(2012), who found that centering leads to a better conditioned optimization problem. Fur-
thermore, Cho et al. (2011) have shown that when the enhanced gradient is used for training
the update directions for the weights are less correlated than when the standard gradient
is used, which allows to learn more meaningful features. From our analysis in Section 3 we
know that centered RBMs and normal RBMs belong to the same model class and therefore
the reason why centered RBMs outperform normal RBMs can indeed only be due to the
optimization procedure. Furthermore, one has to keep in mind that in centered RBMs
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Figure 12: Evolution of the average Euclidean norm of the parameters of the RBMs with
500 hidden units trained on MNIST.
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the variables mean values are explicitly stored in the corresponding offset parameters, or
if the centered gradient is used for training normal RBMs the mean values are transferred
to the corresponding bias parameters. This allows the weights to model second and higher
order statistics right from the start, which is in contrast to normal binary RBMs where
weights usually capture parts of the mean values. To support this statement empirically,
we calculated the average weight and bias norms during training of the RBMs with 500
hidden units on MNIST using the standard and the centered gradient. The results are
shown in Figure 12, where it can be seen that the row and column norms (see Figure 12a
and 12b) of the weight matrix for ddbs, aa

b
s, and d0 are consistently smaller than for 00.

At the same time the bias values (see Figure 12c and 12d) for ddbs, aa
b
s, and d0 are much

bigger than for 00, indicating that the weight vectors of 00 model information that could
potentially be modeled by the bias values. Interestingly, the curves for all parameters of
ddbs and aabs show the same logarithmic shape, while for d0 and 00 the visible bias norm
does not change significantly. It seems that the bias values did not adapt properly during
training. Comparing, d0 with ddbs and aabs, the weight norms are slightly bigger and the
visible bias is much smaller for d0, indicating that it is not sufficient to center only the
visible variables and that visible and hidden bias influence each other. This dependence
between the mean of the hidden variables and the bias of the visible variables can also be
seen from Equation (11) where the transformation of the visible bias depends on the offset
of the hidden variables.

6.9 Comparision with the Natural Gradient

The results in Section 6.7 indicate that one explanation for the better performance of cen-
tering and thus the centered gradient compared to the standard gradient is the decoupling
of the bias and weight parameters. As described in Section 2.2 the natural gradient is
independent of the parameterization of the model distribution. Thus, it is also indepen-
dent of how the mean information is stored in the parameters and should not suffer from
the described bias-weight coupling problem. For the same reason it is also invariant under
changes of the representation of the data distribution (for example variable flipping). That
is why we expect the direction of the centered gradient to be closer to the direction of the
natural gradient than the direction of the standard gradient.

To verify this hypothesis empirically, we trained small RBMs with 4 visible and 4 hidden
units using the exact natural gradient on the 2×2 Bars & Stripes data set. After each
gradient update the different exact gradients were calculated and the angle between the
centered and the natural gradient as well as the angle between the standard and the natural
gradient were calculated. The results are shown in Figure 13 where Figure 13(a) shows the
evolution of the average LL when the exact natural gradient is used for training with different
learning rates. Figure 13(b) shows the average angles between the different gradients during
training when the natural gradient is used for training with a learning rate of 0.1. The angle
between centered and natural gradient is consistently much smaller than the angle between
standard and natural gradient. Comparable results can also be observed for the Shifting
Bar data set and when the standard or centered gradient is used for training (results not
shown).
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Figure 13: Comparison of the centered gradient, standard gradient, and natural gradient
for RBMs with 4 visible and 4 hidden units trained on Bars & Stripes 2×2.
(a) The average LL evolution on the training data over 25 trials when the natural
gradient is used for training with different learning rates, (b) the average angle
over 25 trials between the natural and standard gradient as well as natural
and centered gradient when a learning rate of 0.1 is used, and (c) average LL
evolution on the training data over 25 trials when either the natural gradient,
standard gradient, or centered gradient is used for training.
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Note how fast the natural gradient reached a value very close to the theoretical LL upper
bound of −13.86 even for a learning rate of 0.1. This verifies empirically the theoretical
statement that the natural gradient is clearly the update direction of choice, which should
be used if it is tractable. To further emphasize how quickly the natural gradient converges,
we compared the average LL evolution for the standard, centered and natural gradient,
as shown in Figure 13(c). Although much slower than the natural gradient, the centered
gradient reached the theoretical upper bound of the LL. The standard gradient seems to
saturate on a much smaller value, showing again the inferiority of the standard gradient
even if it is calculated exactly and not only approximated.

To verify that the better performance of natural and centered gradient is not only due
to larger gradients resulting in bigger step sizes, we also analyzed the LL evolution for the
natural and centered gradient when they are scaled to the norm of the standard gradient
before updating the parameters. The results are shown in Figure 13(c). The natural gradient
still outperforms the other methods but it becomes significantly slower than when used with
its original norm. The reason why the norm of the natural gradient is somehow optimal
can be explained by the fact that it ensures constant progress regardless of the curvature
of the manifold of probability distributions as explained in (Desjardins et al., 2013). Like
a Newton step the Fisher metric results in an automatic local step size adaption such that
even a learning rate of 1.0 can be used as illustrated in Figure 13(a).

Interestingly, if the length of the natural gradient and the centered gradient are normal-
ized to the length of the standard gradient and therefore the optimal step size is ignored,
the centered gradient becomes almost as fast as the natural gradient. The fact that the
normalization of the centered gradient increases the resulting learning speed shows that the
norm of the centered gradient is smaller than the norm of the standard gradient. Therefore,
the worse performance of the standard gradient does not result from the length but the
direction of the gradient.

To conclude, these results support our assumption that the centered gradient is closer
to the natural gradient and that it is therefore preferable over the standard gradient (Mel-
chior et al., 2013; Fischer, 2014), which has recently also been confirmed by Grosse and
Salakhudinov (2015).

6.10 Experiments with DBMs

When centering was first applied to DBMs by Montavon and Müller (2012) the authors have
only seen an improvement via centering for locally connected DBMs. Due to our observa-
tions for RBMs and the structural similarity between RBMs and DBMs (a DBM is an RBM
with restricted connections and partially unknown input data as discussed in Section 3.2)
we expect that the observed benefit of centering also carries over to fully connected DBMs.
To verify this assumption and empirically investigate the different centering variants for
DBMs we performed extensive experiments on the big data sets listed in Section 5.1.

Training the models and evaluating the lower bound of the LL was performed as orig-
inally proposed for normal DBMs by Salakhutdinov and Hinton (2009). The authors have
also proposed to pre-train DBMs in a layer-wise fashion based on RBMs (Hinton and
Salakhutdinov, 2012). In our experiments we trained all models with and without pre-
training to investigate the effect of pre-training in both normal and centered DBMs. For
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pre-training we used the same learning rate and the same offset type as in the final DBM
models. Note that we keep using the term “average LL” although it is precisely speaking
only the lower bound of the average LL, which has been shown to be rather tied (Salakhut-
dinov and Hinton, 2009). For the estimation of the partition function we again used AIS
where we doubled the number of intermediate temperatures compared to the setting in
the RBM experiments to 29.000. We continue using the shorthand notations introduced
for RBMs also for DBMs with the only difference that we add a third letter to indicate
the offset used in the second hidden layer, such that 000 corresponds to the normal binary
DBM, and dddbs and aaabs correspond to the centered DBMs using the data mean and the
average of data and model mean as offset, respectively. Due to the large number of experi-
ments and the high computational cost (especially for estimating the LL) the experiments
were repeated only 10 times and we focused our analysis on normal DBMs (000) and fully
centered DBMs (dddbs, aaa

b
s) only.

Again, we begin our analysis with the MNIST data set on which we trained normal and
centered DBMs with 500 hidden units in the first and 500 units in the second hidden layer.
Training was done using PCD-1 with a batch size of 100, a learning rate of 0.001 and in
case of centering a sliding factor of 0.01 for the extensive amount of 1.000 epochs (600000
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Figure 14: Evolution of the average LL on the test data of the MNIST data set for DBMs
with 500 hidden units on the first and second layer. The different variants aaabs,
dddbs and 000 were either trained (a) without pre-training or (b) with pre-training
each DBM layer for 120000 gradient updates (200 epochs). In both cases PCD-1
with a learning rate of η = 0.001 and for centering a sliding factor of 0.01 was
used. The error bars indicate the standard deviation of the average LL over the
10 trials. We skipped evaluating the initial model in (a) and started the LL
evaluation in (b) after the 200 epochs of pre-training to roughly account for the
computation overhead of pre-training
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gradient updates). The evolution of the average LL on the test data without pre-training
is shown in Figure 14(a), while the evolution of the average LL on the training data is
not shown since it is almost equivalent. Both centered DBMs reach significantly higher LL
values with a much smaller standard deviation between the trials than normal DBMs (as
indicated by the error bars) and dddbs performs slightly better than aaabs. These findings are
different to the observations of Montavon and Müller (2012) who reported an improvement
of the model quality in terms of LL through centering only for locally connected DBMs.
This might be due to the different training setup (for example a different learning rate,
batch size, shorter training time, using dddls instead of dddbs, or approximation of the data
dependent part of the LL gradient by Gibbs sampling instead of optimizing the lower bound
of the LL). Figure 14(b) shows the evolution of the average LL on the test data for the same
models with pre-training for 120000 gradient updates (200 epochs). The evolution of the
average LL on the training data was again almost equivalent and is thus not shown. It can
be seen that dddbs has approximately the same performance with and without pre-training
but the performance of aaabs improves by pre-training such that a similar LL level as for dddbs
is reached. Pre-training allows 000 to reach better LL than without pre-training, however it
is still significantly worse compared to the centered DBMs with or without pre-training. By
comparing these results with the results for RBMs with 500 hidden units trained on MNIST
shown in Figure 9(a) we see that all DBMs reach higher LL values than the corresponding
RBM models.

The higher layer representations in DBMs highly depend on the data driven lower layer
representations. Therefore, we expect to see a qualitative difference between the second
layer receptive fields or filters, given by the columns of the weight matrices in centered and
normal DBMs. We did not visualize the filters of the first layer since all models showed
the well known stroke like structure, which can be seen for RBMs in the review paper by
Fischer and Igel (2014) for example. We visualized the receptive fields of the second layer
by the linear back-projection of the second layer filters into the input space given by the
matrix product of first and second layer weight matrix. The corresponding back projected
second layer filters of 000 and dddbs are shown Figure 15(a) and (b), respectively. It can be
seen that many second layer filters of 000 are roughly the same and thus highly correlated.
Moreover, they seem to represent some kind of mean information. Whereas the filters for
dddbs have much more diverse and less correlated structures than the filters of the normal
DBM. When pre-training is used the filters of 000 become more diverse and the filters of
both 000 and dddbs become more selective as can be seen in Figure 15(c) and (d), respectively.
The differences in selectivity of the filters between the different DBM variants can also be
seen from the average mean field activation of the variables in the second hidden layer. As
shown in Figure 16(a) without pre-training the average activation given the training data is
approximately 0.5 for all hidden units of dddbs while for aaabs it is a bit less balanced and for
000 the units tend to be either active or inactive all the time. The results in Figure 16(b)
illustrate that the average activities for all models become less balanced when pre-training
is used, which also reflects the higher selectivity of the filters as shown in Figure 15(c) and
(d). While the second layer hidden activities of dddbs and aaabs stay in a reasonable range,
they become extremely selective for 000 where 300 out of 500 units are inactive most of
the time. Therefore, the filters, the average activation and the evolution of the LL indicate
that normal RBMs have difficulties in making use of the second hidden layer.
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(a) 000 without pre-training (b) dddb without pre-training

(c) 000 with pre-training (d) dddb with pre-training

Figure 15: Random selection of 100 linearly projected filters of the second hidden layer for
(a) 000 and (b) dddb without pre-training and (c) 000 and (d) dddb without 200
epochs pre-training. The filters have been normalized independently such that
the structure can be seen better.
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(b) With pre-training

Figure 16: Ordered average mean field activation of the 500 hidden units in the second
layer of the different DBMs given the training data (a) without pre-training and
(b) with pre-training. Sampling the states or using the conditional probabili-
ties of the variables instead of taking the mean field activation leads to almost
equivalent results.

We continue our analysis with experiments on the Caltech data set on which we again
trained normal and centered DBMs with 500 hidden units on the first and 500 hidden
units on the second hidden layer. Training was also done using PCD-1 with a batch size
of 100, a learning rate of 0.001 and in case of centering a sliding factor of 0.01. Since
the training data has only 41 batches the models were trained for the extensive amount of
10000 epochs (410000 gradient updates). Figure 17 shows the average LL on the test data
(c) without and (d) with 500 epochs pre-training. In addition, Figure 17(a) and (b) show
the corresponding average LL on the training data demonstrating that all models overfitted
to the training data of the Caltech data set. The results are consistent with the results
on MNIST. 000 performs worse than centering on training and test data independently of
whether pre-training is used or not. Furthermore, aaabs seems to perform slightly worse
than dddbs without pre-training, while the performance becomes equivalent if pre-training is
used. But in contrast to the results for MNIST, on the Caltech data set all methods perform
worse with pre-training. This negative effect of pre-training becomes even worse when the
number of pre-training epochs is increased. In the case of 2.000 epochs of pre-training for
example, dddbs and aaabs still perform better than 000 but the maximal average LL among
all models, which was reached by dddbs was only -98.1 for the training data and -141.4 for
the test data, compared to -90.4 and -124.0 when 500 epochs of pre-training were used, and
-87.3 and -118.8 when no pre-training was used. Without pre-training the LL values are
comparable to the results when an RBM with 500 hidden units is trained on Caltech as
shown in Figure 10, illustrating that in terms of the LL a DBM does not necessarily perform
better than an RBM. We also examined the filters and the average hidden activities for the
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(a) LL on the training data without pre-training
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(b) LL on the training data with pre-training
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(c) LL on the test data without pre-training
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(d) LL on the test data with pre-training

Figure 17: Evolution of the average LL on the Caltech data set for different DBMs (aaabs,
dddbs, and 000) with 500 units in the first and 500 units in second hidden layer.
LL on (a) the training data and (c) the test data without pre-training and
the LL on (b) the training data and (d) the test data with 500 epochs (20500
gradients updates) of pre-training. The models were trained using PCD-1 with
a batch size of 100, a sliding factor of 0.01 and a learning rate of η = 0.001.
The error bars indicate the standard deviation of the LL over the 10 trials. We
skipped evaluating the initial model and (a) and (c) start after the 500 epochs
of pre-training to roughly account for the computation overhead of pre-training.
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training data of Caltech. Both led to the same conclusions as the results for MNIST and
are therefore not shown here.

Finally, we also performed experiments on the eight UCI binary data sets described in
Section 5.1 using the same training setup as for the corresponding RBM experiments. That
is, the DBMs with 200 hidden units on the first and 200 hidden units on the second hidden
layer were trained for 5.000 epochs with PCD-1, a batch size of 100, a learning rate of 0.01,
and in the case of centering a sliding factor of 0.01. The LL was evaluated every 50th epoch
and in the case of pre-training the models were pre-trained for 200 epochs. Table 10 shows
the maximum average LL on the test data with and without pre-training. Without pre-
training the results are consistent with the findings for RBMs. dddb performs better than
000 on all data sets except for RCV1 where 000 performs slightly better. The LL values
for the DBMs are comparable but not necessarily better than the corresponding LL values
for RBMs, which are shown in Table 8. In the case of the WEB data set for example the
DBMs even perform worse than the RBMs . When pre-training is used the performance of
all models, centered or normal, is worse than the performance of the corresponding DBMs
without pre-training. For completeness Table 11 shows the maximum average LL on the
training data leading to the same conclusions as the results on test data.

Data set dddbs 000

No pre-training

adult -15.54 ±0.42 (-17.12) -18.44 ±1.15 (-24.92)
connect4 -15.09 ±0.39 (-40.83) -18.15 ±1.14 (-43.84)
dna -89.81 ±0.13 (-92.57) -91.18 ±0.17 (-95.12)
mushrooms -15.24 ±0.60 (-19.68) -17.21 ±1.16 (-27.71)
nips -270.35 ±0.09 (-360.59) -275.43 ±1.81 (-360.56)
ocr letters -30.37 ±0.39 (-32.23) -31.56 ±0.93 (-32.74)
rcv1 -46.83 ±0.08 (-47.26) -46.51 ±0.56 (-47.88)
web -30.02 ±0.59 (-72.88) -30.35 ±1.19 (-79.36)

With pre-training

adult -18.86 ±2.74 (-21.43) -21.64 ±1.64 (-40.42)
connect4 -27.38 ±1.52 (-32.13) -41.21 ±4.07 (-52.04)
dna -89.87 ±0.11 (-94.03) -91.06 ±0.19 (-97.48)
mushrooms -24.23 ±5.43 (-35.07) -21.42 ±6.32 (-35.82)
nips -272.92 ±0.16 (-404.11) -276.88 ±2.33 (-378.76)
ocr letters -36.89 ±1.44 (-39.76) -32.25 ±1.18 (-35.01)
rcv1 -47.79 ±0.84 (-49.30) -46.90 ±0.36 (-48.36)
web -31.10 ±0.14 (-81.93) -32.43 ±1.46 (-47.73)

Table 10: Maximum average LL on test data of the eight UCI binary data sets for DBMs
with 200 units in the first and second hidden layer. For training (top) without
pre-training and (bottom) with 200 epochs of pre-training. PCD-1 with a learning
rate of 0.01 and a batch size of 100 was used. (The best result is underlined.)
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Data set dddbs 000

No pre-training

adult -14.65 ±0.37 (-15.49) -17.88 ±1.16 (-23.04)
connect4 -14.68 ±0.38 (-39.74) -17.82 ±0.63 (-42.78)
dna -62.00 ±1.11 (-62.42) -62.48 ±0.17 (-62.98)
mushrooms -14.74 ±1.54 (-18.61) -16.62 ±1.13 (-26.53)
nips -107.09 ±2.11 (-107.09) -114.28 ±2.81 (-114.28)
ocr letters -29.15 ±0.67 (-30.91) -30.41 ±0.90 (-31.57)
rcv1 -45.75 ±0.07 (-46.18) -45.80 ±0.82 (-47.17)
web -29.37 ±0.59 (-69.70) -29.68 ±1.18 (-77.11)

With pre-training

adult -17.11 ±2.70 (-19.66) -21.42 ±1.63 (-38.21)
connect4 -26.62 ±6.66 (-31.14) -40.53 ±4.13 (-51.29)
dna -59.97 ±0.49 (-60.37) -61.16 ±1.57 (-61.72)
mushrooms -23.89 ±5.27 (-34.11) -20.59 ±6.33 (-34.86)
nips -114.51 ±3.76 (-118.29) -118.90 ±3.68 (-120.94)
ocr letters -35.39 ±1.88 (-37.70) -30.90 ±1.14 (-33.21)
rcv1 -46.54 ±0.87 (-48.07) -45.93 ±0.36 (-47.39)
web -30.41 ±0.15 (-78.45) -31.68 ±1.45 (-44.42)

Table 11: Maximum average LL on training data on the eight UCI binary data sets for
DBMs with 200 hidden units on the first and second layer. For training (top)
without pre-training and (bottom) with 200 epochs pre-training PCD-1, with a
learning rate of 0.01, batch size of 100 was used. (The best result is underlined).

To summarize, the experiments described in this section show that centered DBMs reach
higher LL values than normal DBMs. While pre-training leads to more selective filters in
general, it is often even harmful for the model performance in terms of the LL.

6.11 Experiments with Auto Encoders

The benefit of centering in feed forward neural networks for supervised tasks has already
been shown by Schraudolph (1998). In this section we analyze centering in a special kind
of unsupervised feed forward neural networks, namely centered AEs as introduced in Sec-
tion 4.1. We therefore trained normal and centered three layer AEs on the ten big data sets
described in Section 5.1. To avoid trivial solutions we used tied weights and the number
of output dimensions was 50 percent of the number of input/data dimensions. Since the
data sets are binary we used the sigmoid non-linearity in encoder and decoder and the cross
entropy cost function. Training was done using standard back propagation for 5000 epochs
without any further modification. As for the RBM and DBM experiments, the weight ma-
trices were initialized with random values sampled from a Gaussian with zero mean and
standard deviation 0.01, and the biases and offsets were initialized as described in Sec-
tion 4.2. The batch size was 100, the sliding factor 0.01 and we used a default learning rate
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Data set - Learning rate ddbs 00

Test data

mnist - 0.1 50.21472 ±0.0256 (5000) 50.24859 ±0.0200 (5000)
mnist - 0.5 50.01338 ±0.0316 (5000) 56.36068 ±0.7578 (22)
caltech - 0.01 44.38403 ±0.2257 (2500) 49.21274 ±0.2119 (1968)
caltech - 0.1 44.45882 ±0.1620 (246) 48.59724 ±0.3964 (206)
adult - 0.1 0.38837 ±0.0229 (5000) 0.47460 ±0.0181 (4676)
adult - 0.5 0.36825 ±0.0220 (1526) 0.46086 ±0.0155 (884)
connect4 - 0.1 0.03015 ±0.0025 (5000) 0.03467 ±0.0040 (5000)
connect4 - 0.5 0.02357 ±0.0019 (1431) 0.02856 ±0.0032 (1349)
dna - 0.01 34.34353 ±0.1242 (2161) 34.77299 ±0.1948 (2105)
dna - 0.1 34.35117 ±0.1245 (216) 34.80547 ±0.1823 (210)
mushrooms - 0.1 0.14355 ±0.0117 (5000) 0.14226 ±0.0081 (5000)
mushrooms - 0.5 0.08555 ±0.0167 (3173) 0.09960 ±0.0169 (2936)
nips - 0.01 183.21045 ±0.6355 (2261) 188.65301 ±0.7262 (2107)
nips - 0.1 183.31413 ±0.6081 (226) 189.10982 ±0.6674 (212)
ocr letters - 0.1 5.41182 ±0.1994 (5000) 5.46969 ±0.2138 (5000)
ocr letters - 0.5 4.91528 ±0.1715 (3703) 5.30343 ±0.2737 (1945)
rcv1 - 0.1 12.93456 ±0.1562 (5000) 12.55443 ±0.3097 (5000)
rcv1 - 0.5 12.32545 ±0.3296 (4953) 12.16340 ±1.2188 (2946)
web - 0.1 1.07535 ±0.0174 (1425) 1.22756 ±0.0121 (944)

Training data

mnist - 0.1 50.03172 ±0.0224 (5000) 50.06083 ±0.0167 (5000)
mnist - 0.5 49.84428 ±0.0253 (5000) 55.89110 ±0.7516 (22)
caltech - 0.01 5.71437 ±0.0235 (5000) 6.42052 ±0.0392 (5000)
caltech - 0.1 0.57507 ±0.0030 (5000) 0.62426 ±0.0119 (5000)
adult - 0.1 0.04687 ±0.0024 (5000) 0.03677 ±0.0024 (5000)
adult - 0.5 0.03221 ±0.0030 (1526) 0.04053 ±0.0051 (894)
connect4 - 0.1 0.01465 ±0.0007 (5000) 0.01187 ±0.0006 (5000)
connect4 - 0.5 0.01022 ±0.0002 (1431) 0.00914 ±0.0004 (1349)
dna - 0.01 17.80686 ±0.0812 (5000) 18.08306 ±0.0665 (5000)
dna - 0.1 11.70726 ±0.1018 (5000) 12.08309 ±0.0995 (5000)
mushrooms - 0.1 0.06362 ±0.0022 (5000) 0.05136 ±0.0026 (5000)
mushrooms - 0.5 0.01995 ±0.0007 (3173) 0.01768 ±0.0013 (2936)
nips - 0.01 21.45218 ±0.0614 (5000) 21.94275 ±0.0509 (5000)
nips - 0.1 2.05141 ±0.0067 (5000) 2.06286 ±0.0054 (5000)
ocr letters - 0.1 4.97384 ±0.1865 (5000) 5.00803 ±0.2078 (5000)
ocr letters - 0.5 4.51704 ±0.1642 (3703) 4.88637 ±0.2677 (1945)
rcv1 - 0.1 11.95633 ±0.1226 (5000) 11.62695 ±0.2792 (5000)
rcv1 - 0.5 11.36861 ±0.2974 (4953) 11.27664 ±1.1136 (2947)
web - 0.1 0.06872 ±0.0007 (5000) 0.05554 ±0.0003 (5000)

Table 12: Average minimal reached cost value with standard deviation on test and training
data of MNIST, Caltech and the eightUCI binary data sets for centered and
normal three layer AEs with sigmoid units, cross entropy cost function, and the
number of hidden units set to 50 percent of the number of input units (data
dimensions). The average number of epochs needed to reach the minimal cost
value is given in brackets, and (5000) indicates that convergence was not achieved
during training.

47



melchior, fischer and wiskott

of 0.1 for all experiments. Each experiment was repeated 10 times and we calculated the
average minimal cost value, the corresponding standard deviation and the average number
of epochs needed to reach the minimal cost value. A second set of experiments was per-
formed with a learning rate of 0.5 when the average number of epochs needed to reach the
minimal cost value on the test data was close or equal to 5000 epochs, or with a learning
rate of 0.01 when the average number of epochs needed to reach the minimal cost value on
the test data was less than 500 epochs. The results are given by Table 12, showing that
(except for the RCV1 data set) centered AEs perform clearly better in terms of the average
minimal cost value on the test data than normal AEs. On the training data normal AEs
only perform slightly better on data sets where both models reached very small cost values
anyway. We did not show the results for the validation sets since they are almost equivalent
to the results for test data.

Interestingly, the result that centering only performs worse on the RCV1 data set is
fully consistent with the findings for RBMs and DBMs. We inspected the RCV1 data set
and its first and second order statistics but did not find anything conspicuous compared to
the other data sets that might have explained why for this particular data set centering is
not beneficial. However, learning is much slower for this data set when centering is used,
which can also be seen by comparing the results for learning rate 0.1 an 0.5 in Table 12.

7. Conclusion

This work discussed centering in RBMs and DBMs, where centering is done by subtracting
offset parameters from visible and hidden variables. Our theoretical analysis has yielded
the following results:

1. Centered BMs/RBMs/DBMs and normal BMs/RBMs/DBMs are different parame-
terizations of the same model class (Section 3), such that any normal BM/RBM/DBM
can be transformed to an equivalent centered BM/RBM/DBM an vice versa. This
equivalence generalizes to ANNs in general, which justifies the use of centering in
arbitrary ANNs (Section 4).

2. The LL gradient of centered binary BMs and thus of centered binary RBMs/DBMs
is invariant under simultaneous flip of data and offsets, for any offset value in the
range of zero to one. This leads to the desired invariance of the LL performance of
the model under changes of data representation (Section 3 and Appendix A).

3. Training a centered BM/RBM/DBM can be reformulated as training a normal BM/
RBM/DBM with a new parameter update, which we refer to as centered gradient
(Section 3.1 and Appendix B).

4. From this new formulation follows that the enhanced gradient is a particular form of
centering. That is, the centered gradient becomes equivalent to the enhanced gradient
by setting the visible and hidden offsets to the average over model and data mean of
the corresponding variable (Section 3.1 and Appendix C).

Our numerical analysis has yielded the following results:
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1. Optimal performance of centered binary RBMs/DBMs is achieved when both, visible
and hidden variables, are centered and the offsets are set to the expectations of the
corresponding variable under data or model distribution (Section 6.1, 6.6 and 6.7).

2. Centered binary RBMs/DBMs reach significantly higher LL values than normal binary
RBMs/DBMs (Section 6.7 and 6.10). As an example, centered binary RBMs with 500
hidden units achieved an average LL on the test data of MNIST around -75 compared
to -88 for normal binary RBMs (Figure 9).

3. Initializing the bias parameters such that the RBM/DBM/AE is initially centered
(that is bi = σ−1(〈xi〉)) can already improve the performance of a normal binary RBM.
However, this initialization leads to a performance still worse than the performance
of a centered binary RBM (Section 6.2) and is therefore no alternative to centering.

4. Using the model expectation (as for the enhanced gradient for example) can lead to
a severe divergence of the LL when PCD or PTc is used for sampling. This is caused
by the correlation of offset and gradient approximation (Section 6.4).

5. The divergence can be prevented when an exponentially moving average for the ap-
proximations of the offset values is used (Section 6.5), which also stabilizes the training
for other centering variants especially when the mini batch size is small.

6. Training centered binary RBMs/DBMs leads to smaller weight norms and larger bias
norms compared to normal binary RBMs/DBMs. This supports the hypothesis that
when using the standard gradient the mean value is modeled by both weights and
biases, while when using the centered gradient the mean values are explicitly modeled
by the bias parameters (Section 6.9).

7. The direction of the centered gradient is closer to the natural gradient than that of the
standard gradient and the natural gradient is extremely efficient for training RBMs if
tractable (Section 6.9).

8. Centered binary DBMs reach higher LL values than normal binary DBMs indepen-
dently of whether pre-training is used or not. Thus pre-training cannot be considered
as an alternative to centering (Section 6.10).

9. While pre-training slightly helps normal binary DBMs on MNIST we did not observe
an improvement through pre-training for centered binary DBMs. Furthermore, on
all data sets other than MNIST pre-training led to lower LL values and the results
became worse as longer pre-training was performed for normal and centered binary
DBMs (Section 6.10).

10. The visual inspection of the learned filters, the average second hidden layer activities
and the reached LL values suggest that normal binary DBMs have difficulties in
making use of the third and higher layers (Section 6.10).

11. Centering also improves the performance in terms of the optimized loss for AEs, which
supports our assumption that centering is beneficial not only for probabilistic models
like RBMs and DBMs but also for ANNs in general (Section 6.11).
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Based on our results we recommend to center all units in the network using the data
mean and to use an exponentially moving average if the mini-batch size is rather small
(< 100 for stochastic models and < 10 for deterministic models). Furthermore, we do not
recommend to use pre-training for DBMs since it often deteriorates the results.

All results clearly support the superiority of centered RBMs/DBMs and AEs, which
we believe will also extend to other models. Future work might focus on centering in
BMs and also other probabilistic models such as the neural auto-regressive distribution
estimator (Larochelle and Murray, 2011) or in recurrent neural networks such as long short-
term memory (Hochreiter and Schmidhuber, 1997). An extension to also normalizing the
variance of the units and a comparison to the recently proposed batch normalization (Ioffe
and Szegedy, 2015) would also be of interest.

The implementation of the algorithms proposed and analyzed in this work are part of
the Python library PyDeep publicly available at https://github.com/MelJan/PyDeep.
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Appendix A. Proof of Invariance for the Centered Gradient

In the following we show that the LL gradient of centered binary BMs and thus the LL
gradient for centered binary RBMs and DBMs is invariant to flips of the variables if the
corresponding offset parameters flip as well (see Melchior et al., 2013, for a proof specifically
for RBMs). Since training a normal binary BM using the centered gradient (see Appendix B)
is equivalent to training a centered binary BM, the proof also holds for the centered gradient.

In contrast to an RBM or DBM a BM is a fully connected graphical model and the
energy for a centered BM and binary values x = (x1, ..., xN ) is given by

E (x) = −
∑
i

(xi − µi) bi −
∑
i,j>i

(xi − µi)wij (xj − µj) , (18)

and the corresponding LL gradient w.r.t. the parameters wij and bi is given by

∇wij = 〈(xi − µi)(xj − µj)〉d − 〈(xi − µi)(xj − µj)〉m , (19)

∇bi = 〈(xi − µi)〉d − 〈(xi − µi)〉m = 〈xi〉d − 〈xi〉m . (20)

In the following θ and ∇θ is used to jointly denote all parameters wij and bi and their
derivatives ∇wij and ∇bi, respectively .

We begin by formalizing the invariance property for the energy.

Definition 1 Let there be a binary random variable Xi. The variable X ′i is called ’flipped’
or ’flip of Xi’ if it takes the values x′i = 1− xi for any given state xi of Xi.
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Definition 2 Let there be a centered binary BM with parameters θ, offsets µ, binary ran-
dom variables X = (X1, . . . , XN ), and energy E(x), and a second centered binary BM with
parameters θ̃, offsets µ̃, binary random variables X̃ = (X̃1, . . . , X̃N ) and energy Ẽ(x̃), where
in the latter BM an arbitrary number of variables have been flipped. The energies E(x) and
Ẽ(x̃) are called ‘flip-invariant’ or ‘invariant to flips of variables’ if E(x) = Ẽ(x̃) holds.

Theorem 3 Let the binary parameter fi take the value -1 if the corresponding variable Xi,
has been flipped and 1 otherwise. The energies E(x) and Ẽ(x̃) are ‘flip-invariant’ according
to Definition 2 if the offsets flip simultaneously with the variables, compactly denoted by

x̃i =
1− fi

2
+ fixi , (21)

µ̃i =
1− fi

2
+ fiµi , (22)

and if the parameters of the models are related in the following way

w̃ij = fiwijfj , (23)

b̃i = fibi . (24)

Proof First note that

(x̃i − µ̃i)
(21,22)

=

(
1− fi

2
+ fixi

)
−
(

1− fi
2

+ fiµi

)
=

1− fi
2

+ fixi −
1− fi

2
− fiµi

= (xi − µi)fi = fi(xi − µi) , (25)

so that

Ẽ (x̃)
(18)
= −

∑
i

(x̃i − µ̃i) b̃i −
∑
i,j>i

(x̃i − µ̃i) w̃ij (x̃j − µ̃j)

(23,24,25)
= −

∑
i

(xi − µi) fifi︸︷︷︸
=1

bi −
∑
i,j>i

(xi − µi) fifi︸︷︷︸
=1

wij fjfj︸︷︷︸
=1

(xj − µj)

(18)
= E (x) .

Definition 4 Let there be two BMs with ‘flip-invariant’ energies according to Definition 2.
The gradient of the LL (∇θ or ∇θ̃ respectively) are called ‘flip-invariant’ or ‘invariant to
flips of variables’ if E(x) = Ẽ(x̃) still holds after updating θ and θ̃ to θ+η∇θ and θ̃+η∇θ̃,
respectively, for any learning rate η.

We can now state the following theorem for the parameter updates.
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Theorem 5 The gradient of centered binary BMs with flip invariant energies according
to Definition 2, is also invariant to flips of arbitrary variables if the corresponding offset
parameters flip as well, that is if a flipped variable x̃i = 1− xi implies µ̃i = 1− µi.
Proof

∇w̃ij
(19)
= 〈(x̃i − µ̃i)(x̃j − µ̃j)〉d − 〈(x̃i − µ̃i)(x̃j − µ̃j)〉m
(25)
= 〈fi(xi − µi)(xj − µj)fj〉d − 〈fi(xi − µi)(xj − µj)fj〉m
(19)
= fi∇wijfj ,

∇b̃i
(20)
= 〈(x̃i − µ̃i)〉d − 〈(x̃i − µ̃i)〉m
(25)
= 〈fi(xi − µi)〉d − 〈fi(xi − µi)〉m,
(20)
= fi∇bi .

Comparing these results with Equations (23) – (24) shows that the gradient underlies the
same sign changes under variable flips as the parameters. Thus, it holds for the updated
parameters θ̃ + η∇θ̃ and θ + η∇θ that

w̃ij + η∇w̃ij = fi (wij + η∇wij) fj ,
b̃i + η∇b̃i = fi (bi + η∇bi) ,

showing that E(x) = Ẽ(x̃) is still guaranteed as follows from Theorem 3 and thus that the
gradient of centered RBMs is flip-invariant according to Definition 4.

Theorem 3 and Theorem 5 hold for any value from zero to one for µi, if it is guaranteed
that the offsets flip simultaneously with the corresponding variables. In practice one wants
the model to perform equivalently on any flipped version of the data set without knowing
which version is presented. This holds if we set the offsets to the expectation value of
the corresponding variables under any distribution p∗(xi), since when µi =

∑
xi
p∗ (xi)xi,

flipping Xi leads to µ̃i =
∑

xi
p∗ (xi) (1− xi) = 1−∑xi

p∗ (xi)xi = 1− µi.

Appendix B. Derivation of the Centered Gradient

In the following we show that the gradient of centered BMs can be reformulated as an
alternative update for the parameters of a normal binary BM, which we name ‘centered
gradient’.

We first show that the parameter transformation

wij = ŵij , (26)

bi = b̂i +
∑
j 6=i

ŵijµj , (27)

allows to transform a normal binary BM with energy Ê(x) = −∑i xib̂i−
∑

i,j>i xiŵijxj into
a centered binary BM with energy E(x) = −∑i (xi − µi) bi−

∑
i,j>i (xi − µi)wij (xj − µj)
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and vice versa such that E(x) = Ê(x) + const is guaranteed for all x ∈ {0, 1}n and thus
that the modeled distribution stays the same.

E(x) = −
∑
i

(xi − µi) bi −
∑
i,j>i

(xi − µi)wij (xj − µj)

(26,27)
= −

∑
i

(xi − µi)

b̂i +
∑
j 6=i

ŵijµj

−∑
i,j>i

(xi − µi) ŵij (xj − µj)

= −
∑
i

xib̂i −
∑
i

xi
∑
j 6=i

ŵijµj +
∑
i

µib̂i + µi
∑
j 6=i

ŵijµj

−
∑
i,j>i

xiŵijxj +
∑
i,j>i

xiŵijµj +
∑
i,j>i

µiŵijxj −
∑
i,j>i

µiŵijµj

= −
∑
i

xib̂i −
∑
i,j>i

xiŵijxj︸ ︷︷ ︸
Ê(x)

+
∑
i

µib̂i + µi
∑
j 6=i

ŵijµj −
∑
i,j>i

µiŵijµj︸ ︷︷ ︸
const

−
∑
i

xi
∑
j 6=i

ŵijµj +
∑
i,j>i

xiŵijµj +
∑
i,j>i

µiŵijxj

= Ê(x) + const−
∑
i

xi
∑
j 6=i

ŵijµj +
∑
i,j>i

xiŵijµj +
∑
j,i>j

µjŵijxi

= Ê(x) + const−
∑
i

xi
∑
j 6=i

ŵijµj +
∑
i,j 6=i

xiŵijµj

= Ê(x) + const .

Updating the parameters of the centered BM according to Equations (19) – (20) with a
learning rate η leads to an updated set of parameters w′ij , b

′
i, given by

w′ij
(19)
= wij + η(〈(xi − µi)(xj − µj)〉d − 〈(xi − µi)(xj − µj)〉m) , (28)

b′i
(20)
= bi + η(〈xi〉d − 〈xi〉m) . (29)

One can now transform the updated centered BM back to a normal BM by applying the
inverse transformation to the updated parameters, which finally leads to the centered gra-
dient.

ŵ′ij
(26)
= w′ij

(26,28)
= ŵij + η (〈(xi − µi)(xj − µj)〉d − 〈(xi − µi)(xj − µj)〉m)︸ ︷︷ ︸

=∇cŵij

, (30)
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b̂′i
(27)
= b′i −

∑
j 6=i

ŵ′ijµj

(29,30)
= bi + η(〈xi〉d − 〈xi〉m)−

∑
j 6=i

(ŵij + η∇cŵij)µj

(27)
= b̂i +

∑
j 6=i

ŵijµj + η(〈xi〉d − 〈xi〉m)−
∑
j 6=i

ŵijµj −
∑
j 6=i

η∇cŵijµj

= b̂i + η(〈xi〉d − 〈xi〉m −
∑
j 6=i
∇cŵijµj)︸ ︷︷ ︸

(14)
= ∇cb̂i

. (31)

In case of an RBM the visible units are only connected to hidden units and vice versa such
that the sum in Equation (31) either sums over all visible units or all hidden units leading
to the centered gradient for RBMs given by Equations (13) – (15) (see Melchior et al., 2013,
for a detailed derivation for RBMs).

Appendix C. Enhanced Gradient as a Special Case of the Centered
Gradient

In the following we show that the enhanced gradient can be derived as a special case of
the centered gradient. We show the equivalence for RBMs since the enhanced gradient was
originally proposed for RBMs. However, the derivations for BMs and DBMs are analogous.

By setting µ = 1
2 (〈x〉d + 〈x〉m) and λ = 1

2 (〈h〉d + 〈h〉m) we get

∇cW
(13)
= 〈(x− µ)(h− λ)T 〉d − 〈(x− µ)(h− λ)T 〉m
= 〈xhT 〉d − 〈x〉dλT − µ〈hT 〉d + µλT − 〈xhT 〉m + 〈x〉mλT + µ〈hT 〉m − µλT

= 〈xhT 〉d −
1

2
〈x〉d (〈h〉d + 〈h〉m)T − 1

2
(〈x〉d + 〈x〉m) 〈hT 〉d

−〈xhT 〉m +
1

2
〈x〉m (〈h〉d + 〈h〉m)T +

1

2
(〈x〉d + 〈x〉m) 〈hT 〉m

= 〈xhT 〉d −
1

2
〈x〉d〈hT 〉d −

1

2
〈x〉d〈hT 〉m −

1

2
〈x〉d〈hT 〉d −

1

2
〈x〉m〈hT 〉d

−〈xhT 〉m +
1

2
〈x〉m〈hT 〉d +

1

2
〈x〉m〈hT 〉m +

1

2
〈x〉d〈hT 〉m +

1

2
〈x〉m〈hT 〉m

= 〈xhT 〉d − 〈x〉d〈hT 〉d − 〈xhT 〉m + 〈x〉m〈hT 〉m
= 〈(x− 〈x〉d)(h− 〈h〉d)T 〉d − 〈(x− 〈x〉m)(h− 〈h〉m)T 〉m
(1)
= ∇eW , (32)

and for the derivatives with respect to the bias parameters follows directly that

∇cb
(14,32)

= 〈x〉d − 〈x〉m −∇eWλ

= 〈x〉d − 〈x〉m −∇eW
1

2
(〈h〉d + 〈h〉m)

(2)
= ∇eb ,
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∇cc
(15,32)

= 〈h〉d − 〈h〉m −∇eWTµ

= 〈h〉d − 〈h〉m −∇eWT 1

2
(〈x〉d + 〈x〉m)

(3)
= ∇ec .

Appendix D. Comparison of the Different MNIST Variants

In this section we compare the performance of normal and centered RBMs on differ-
ent variants of the MNIST data set (LeCun et al., 1998). The data set is provided at
http://yann.lecun.com/exdb/mnist/ and consists of pixel values in the range of 0 to 255.

Algorithm-η ddbs 00

MNIST-Probabilities

CD-1-0.1 -156.46 ±2.48 (-157.1) -168.54 ±3.99 (-168.5)
CD-1-0.05 -155.60 ±2.31 (-157.0) -172.34 ±2.53 (-172.4)
CD-1-0.01 -155.40 ±2.24 (-155.4) -171.66 ±1.85 (-173.3)
PCD-1-0.1 -147.42 ±1.06 (-148.3) -166.70 ±3.00 (-183.1)
PCD-1-0.05 -145.42 ±1.24 (-145.7) -160.54 ±4.76 (-162.5)
PCD-1-0.01 -144.78 ±0.43 (-144.8) -148.85 ±0.99 (-149.0)
PT20-0.01 -144.92 ±0.57 (-144.9) -150.97 ±2.45 (-151.1)

MNIST-Sampled

CD-1-0.1 -155.21 ±1.63 (-157.8) -169.95 ±2.61 (-170.1)
CD-1-0.05 -154.84 ±2.01 (-156.2) -170.84 ±2.92 (-171.0)
CD-1-0.01 -154.95 ±1.96 (-155.0) -171.90 ±2.23 (-173.6)
PCD-1-0.1 -145.03 ±1.13 (-146.0) -151.04 ±3.73 (-152.3)
PCD-1-0.05 -144.10 ±1.16 (-144.1) -147.53 ±1.61 (-147.9)
PCD-1-0.01 -143.86 ±0.63 (-143.9) -146.89 ±0.66 (-147.0)
PT20-0.01 -144.01 ±0.63 (-144.2) -149.18 ±1.51 (-149.2)

MNIST-Threshold

CD-1-0.1 -151.94 ±2.38 (-154.0) -168.96 ±4.42 (-169.2)
CD-1-0.05 -151.84 ±3.72 (-152.5) -170.39 ±3.01 (-170.5)
CD-1-0.01 -151.53 ±2.17 (-151.5) -169.15 ±2.01 (-171.7)
PCD-1-0.1 -143.56 ±2.43 (-144.8) -164.34 ±3.30 (-187.2)
PCD-1-0.05 -141.00 ±1.54 (-142.0) -156.87 ±4.15 (-160.3)
PCD-1-0.01 -139.61 ±0.91 (-139.8) -143.70 ±0.95 (-143.8)
PT20-0.01 -140.20 ±1.08 (-140.3) -146.75 ±1.96 (-147.0)

Table 13: Maximum average LL on the test data for centered and normal RBMs with 16
hidden units trained on the three different variants of MNIST averaged over 25
trials. The models were trained for 100 epochs with a batch size of 100 and in
the case of ddbs a sliding factor of 0.01 was used.
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Algorithm-η ddbs 00

MNIST-Probabilities

PCD-1-0.01 -100.32 ±1.10 (-100.3) -111.47 ±1.76 (-111.5)
PCD-1-0.005 -100.04 ±0.98 (-100.0) -108.76 ±1.13 (-109.8)
PT20-0.01 -97.80 ±0.40 (-97.8) -105.93 ±3.31 (-106.5)

MNIST-Sampled

PCD-1-0.01 -92.00 ±1.79 (-92.0) -94.95 ±1.19 (-97.8)
PCD-1-0.005 -90.85 ±0.61 (-91.4) -94.29 ±1.29 (-94.3)
PT20-0.01 -90.13 ±0.74 (-90.1) -98.35 ±2.68 (-99.8)

MNIST-Threshold

PCD-1-0.01 -78.69 ±1.22 (-80.1) -101.06 ±3.37 (-107.1)
PCD-1-0.005 -75.93 ±0.69 (-75.9) -94.72 ±2.07 (-97.8)
PT20-0.01 -74.77 ±1.08 (-75.2) -87.79 ±5.02 (-87.8)

Table 14: Maximum average LL on the test data for centered and normal RBMs with 500
hidden units trained on the three different variants of MNIST averaged over 10
trials. The models were trained for 200 epochs with a batch size of 100 and in
the case of ddbs a sliding factor of 0.01 was used.

Since the data set is not binary it has to be preprocessed when used with binary RBMs. In a
first step the values are usually normalized to lie in [0, 1]. In different studies the normalized
values are then either used directly as input, or the data set is binarized using a threshold of
0.5 or by sampling according to the normalized values (which are treated as the probabilities
for the variables being in state 1). Here, we refer to these three different binarized variants
of MNIST as MNIST-Probabilities, MNIST-Threshold, and MNIST-Sampled, respectively.

Since it is often not mentioned how the data set is binarized it is hard to compare the LL
values reported for MNIST experiments across studies. Furthermore, since the results are
mainly given for big models the LL is usually approximated using AIS, which easily over-
estimates the LL if the setup is not chosen properly. In our experience using a reasonable
base partition function such as one that is based on the MLE for zero weights (Salakhut-
dinov and Murray, 2008) is crucial for AIS not to dramatically overestimate the LL for
RBMs/DBMs. In this work, we ensured that when given the same pseudo random number
generator, our AIS implementation and the MNIST-Sampled data set were the same as
used by Salakhutdinov and Murray (2008).

As a baseline we trained normal and centered RBMs with 16 hidden units on the three
different MNIST variants for 100 epochs using the setup described in Section 6. The
maximum average of the exact LL values for the test data for ddbs and 00 are given in
Table 13. Although the maximum reached values are quite different for the different MNIST
variants, centered RBMs outperformed normal RBMs on all three data sets.

We continued by training normal and centered RBMs with 500 hidden units on the three
different data sets for 200 epochs. The setup for training and evaluating the models was
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Figure 18: Evolution of the LL of single trials on the test data of (a) MNIST-Sampled and
(b) MNIST-Threshold for ddbs and 00 with 500 hidden units. The models were
trained for 1000 epochs with a weight decay of 0.0002 and a momentum of 0.9
that was reduced to 0.5 after 5 epochs. The learning rate was either fixed to
0.01, decayed from 0.01 to 0.001 or from 0.01 to 0.0001 over 1000 epochs.

the same as described in Section 6. The maximum average LL values are given in Table 14,
showing again that the reached LL on the different MNIST variants is quite different and
that centered RBMs reach better values than normal RBMs on all three data sets.

In our experience the use of weight decay, momentum and an annealing learning rate is
crucial to reach a LL that is comparable to the value of -86.34 reported by Salakhutdinov
and Murray (2008). We therefore trained centered RBMs (ddbs) and normal RBMs (00) using
PCD-25 for the extensive amount of 1000 epochs (600000 gradient updates). In addition
a weight decay of 0.0002, and a momentum of 0.9 that was set to 0.5 after 5 epochs was
used. The learning rate was fixed to 0.01 or either decayed from 0.01 to 0.001 or from 0.01
to 0.0001 over 1000 epochs.

The average LL on the test data of MNIST-Sampled for single trials are shown in
Figure 18(a). It can be seen that a decaying learning rate is crucial for 00, which only
reaches a value of −88.0 without decaying learning rate but −85.9 with a learning rate that
decayed from 0.01 to 0.001. ddbs reaches a LL value of −86.2 without and −85.5 with a
learning rate that decayed from 0.01 to 0.001. Although the difference between normal and
centered RBMs become smaller with weight decay, ddbs still reaches a higher LL, seems to
be less depended on the learning rate schedule and allows faster learning. We performed
the same experiments also for the MNIST-Threshold data set. The results are shown in
Figure 18(b), which show qualitatively the same results. The difference between 00 and ddbs
is more prominent on the MNIST-Threshold where 00 reaches a LL value of −67.5 and ddbs
reaches −65.0, which can also be seen from Table 14.
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