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Boundary detection of optic disk by a modi%ed ASM method
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Abstract

A new algorithm to automatically detect the boundary of optic disk in color fundus images is proposed. The optic disk is
located by principal component analysis (PCA) based model, which is employed to initialize active shape model (ASM) to
detect the disk boundary. ASM is modi%ed with two aspects: one is the self-adjusting weight in the transformation from shape
space to image space; the other is exclusion of outlying points in obtaining shape parameters. The modi%cations make the
proposed algorithm more robust and converge faster than the original ASM method, especially in the case where the edge of
optic disk is weak or occluded by blood vessels.
? 2003 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

Color retinal images captured from fundus camera play
an important role in the mass screening and diagnosis of
eye diseases. Extraction of main structures in retinal images
is fundamental and useful for automatic processing of reti-
nal images. Boundary detection of optic disk is elementary
among all the structures not only because optic disk acts
as landmark and reference to other structures but also be-
cause the shape of optic disk itself can be used to assess
the progress of eye diseases such as glaucoma. However, it
is not a simple task to detect the shape of optic disk accu-
rately and reliably, as some parts of the boundary are not
well de%ned and some parts are obscured by blood vessels.

Model based method has attracted much interest in
the application of facial and medical images. Deformable
model is widely investigated especially in the segmentation,
matching and tracking of medical structures [1]. The de-
formable model is characterized as a model that deforms the
shape to match a known object in a given image. It can be
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classi%ed into either free-form models or parametric mod-
els. For free-form deformable models, there is no global
structure of the template except some general regulation
constraints. The active contour or ‘snakes’ model [2] is a
typical one. For parametric deformable models, the
deformations are controlled by a set of parameters that can
determine a speci%c characteristic shape and its variation.
Active shape model (ASM) introduced by Cootes and
Taylor [3] belongs to parametric deformable model, which
combines point distribution model (PDM) and an itera-
tive re%nement procedure. ASM can describe the shape of
non-rigid objects, therefore it is eEcient in many applica-
tions especially in the extraction of anatomical structures.
Though a high degree of a priori knowledge is available, the
anatomical structures are complex and individually variable.

In one approach, Hough transform was employed to ob-
tain the estimated outer circle of optic disk based on the
result of edge detection [4,5]. The edge of optic disk was
enhanced to detect edge points before Hough transform
was applied. The outer circle of the optic disk was deter-
mined by the parameters having the maximum counts. In
another approach, optic disk contours were estimated by the
HausdorF-based [6] matching between the detected edges
and the template of circle with diFerent sizes in Ref. [7].
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These are the simplest top-down strategies which can result
in the approximate circle of the optic disk boundary. The
obtained circle will not exactly match the optic disk bound-
ary, since the normal optic disks are not round but vertically
slightly oval, not to mention the change of its shape due to
certain diseases. Snakes was applied to detect the exact con-
tour of optic disk in Refs. [8,9]. The major advantage of the
algorithm is its ability to bridge discontinuities in the im-
age feature being located. The boundary detected by Morris
and Donnison [8] bulged inwards where optic disk bound-
ary crossed blood vessels. This drawback was later consid-
ered by the snake algorithm proposed in Ref. [9], where the
stiFness criterion was included and the energy function was
minimized diFerently. However, the algorithm was sensitive
to the preprocessing, and the method was not fully automatic
as well because a manual initialization was required.

In this paper, a new method of fully automatic extraction
of optic disk in color retinal images is proposed. The op-
tic disk is located by principal component analysis (PCA)
based model, which is used to initialize ASM automatically.
This is the %rst time that the ASM is applied to the feature
extraction in fundus images. It takes advantage of top-down
strategy to get robust result. The original ASM is modi%ed
in two aspects. Firstly, adjustable weight is applied in the
transform between model space and image space instead of
%xed weight factors. Secondly, the mismatched points are
not used in the projection onto shape space to obtain shape
parameters. Such improvement makes the algorithm more
favorable for the case of weak edges or noises. The investi-
gated algorithm is not restricted to fundus images but can be
applied to other applications involving deformable shapes
as well.

2. Locating optic disk by PCA

The optic disk is located by PCA-based model [10], which
is described in detail in [11]. The %rst step is the training
procedure to obtain ‘disk space’. A square sub-image around
optic disk is cropped from each fundus image for training.
The sub-images are resized to L× L pixels and their inten-
sity is rescaled to the same range to form a training set. Each
training image can be viewed as a vector of L2. L is set to
90 in our application, because most of the optic disk diam-
eters are able to %t well into this size though they are in the
range of 65–100 pixels. The technique of PCA is employed
to the training set to get the modes of variation around the
average image. Ten optic disk images are carefully selected
as the training set and the %rst six eigenvectors correspond-
ing to the largest six eigenvalues are chosen to represent
the training set. The subspace de%ned by the eigenvectors is
termed as disk space. The model obtained by PCA statisti-
cal analysis is put to use in the localization of optic disk in
new fundus images.

For each test image, the pixels with the highest 1%
gray levels in intensity image are selected, as optic disk

occupies 1–3% of the whole retinal image. The selected
pixels are clustered by the Single Pass method [12]. The
clusters having centroids within a speci%ed distance are
combined. For each cluster having more than 100 pixels
after combination, an optic disk candidate region is de%ned
as a square of 120 × 120 pixels with the centroid of the
cluster as its center. At each pixel in the candidate regions,
a sub-image of L×L pixels (scale=1) with the pixel as the
center is obtained automatically. The Euclidean distance
between the corresponding pixels of the sub-image and its
reconstruction from disk space is calculated to locate optic
disk. DiFerent scales (0.8–1.1) are applied in order to de-
tect the optic disk of diFerent sizes. The pixel (Lx; Ly) with
the minimum distance among all the scales is located as the
center of optic disk, as the distance indicates the similarity
of optic disk.

3. Deriving PDM

PDM, which was %rst proposed by Cootes and Taylor
[3], is a method for building model by learning patterns of
variability from a training set of correctly annotated shapes.
The model allows deformation in certain ways that are con-
sistent with the training set. The PDM can thus be used to
locate new instance of such shapes in other images.

A shape in a 2-D image can be described by the position
of a set of n landmark points which can also be represented
as a point in the 2n-D landmark space. The landmark points
are manually annotated on the edge of main blood vessels
inside optic disk or on the disk boundary in a set of training
images.m training shapes will form a distribution ofm points
in the 2n-D space. PCA of the distribution is carried out to
derive a statistical description of the shape and its variations
as shown in the following. The model thus obtained is called
PDM.

The training shapes need to be aligned into a common
coordinates before PCA transform. The aligning of shapes is
aimed to minimize the sum of squared distances between the
landmark points on diFerent shapes. Denoting two shapes
in the training set as x1 and x2, each shape can be described
as a vector of n coordinate pairs
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to origin in x1 and x2. The aligning of the two shapes is
done by the transform 
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The best parameter vector �(s; �; tx; ty) of the transformation

 to align shape x2 and x1 can be selected by minimizing
the following expression (3) using a routine least-squares
approach, i.e., the parameter � is obtained by 9E�=9�= 0:

E� = (x1 − 
(x2))T(x1 − 
(x2)): (3)

PCA is then performed on the aligned training shapes. A
shape can be approximated by

x = Jx + �b; (4)

where Jx is the mean shape of the aligned training set,
b = (b1; b2; : : : ; bt)T is a vector of shape parameters,
� = (�1; �2; : : : ; �t)∈R2n×t is the set of eigenvectors cor-
responding to the largest t eigenvalues of the covariance
matrix S. Denoting the training shape after alignment as
x̂i = 
(xi) = (x̂i1; ŷ

i
1; x̂

i
2; ŷ

i
2; : : : ; x̂

i
n; ŷ

i
n)

T,

S =
1

m− 1

m∑
i=1

(x̂i − Jx)(x̂i − Jx)T: (5)

The eigenvalue of S is equal to the variance of the shapes
described by the corresponding eigenvector. The eigenvec-
tors provide the mode of variation, a way in which the land-
mark points move together as the shape varies. PDM is de-
rived by formula (4), which is a statistical description of the
shape and its variation of the training set. The space de%ned
by formula (4) is referred to as shape space. In the appli-
cation of optic disk boundary detection, a shape instance
is represented by the positions of 48 points, i.e., n = 48.
This is a proper number to describe the boundary accord-
ing to our tests and observation. Fig. 1 shows an example
of the landmarks in one training image and its correspond-
ing shape instance. Fourteen points (point 1–8, 25–30) are
selected on the main blood vessels inside optic disk to con-
strain the representation of the shape model of optic disk.
The other points (9–24 and 31–48) are chosen evenly on
the boundary of the optic disk. Eight shapes of optic disk
are employed here to train the PDM, i.e., m=8. The model
obtained for the left eye and the eFect of varying each of
the %rst four model parameters in turn between ±3 stan-
dard deviations are presented in Fig. 2. The variance of the
shapes in the training set can be approximately described
by the %rst t modes, where t is chosen as four in this ap-
plication. These %rst four modes represent 93% of the total
variance of shapes in the training set which can be veri%ed
from

k =

∑t
i=1 �i∑m
i=1 �i

× 100%; (6)

where k represents the proportion of the total variation, �i
is the ith largest eigenvalue of covariance matrix S. A new
shape can be generated by formula (4) with the proper shape
parameter vector b. The advantage of the PDM is its ability
to learn the characteristic pattern of a shape class and its
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Fundus image No.14

Fig. 1. Landmarks of the optic disk on the fundus image of a left
eye. (a) A fundus image with annotation of 48 landmark points.
(b) The corresponding shape instance.

ability to deform in a way that reLects the variation in the
training set.

4. ASM and a modi ed ASM

4.1. ASM

ASM method is an iterative searching procedure to %t
the PDM in a new image to %nd the modeled objects. The
algorithm is termed as ‘active shape model’ because the
model deforms to %t the data better, but only in the ways
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Mode 1:      –3 b1 �1

Mode 2:      –3 �2 b2                                          +3

+3

�2

Mode 3:      –3 �3 b3                                          +3 �3

Mode 4:      –3 �4 b4                                          +3 �4

�1

Fig. 2. The %rst four modes of variation from −3 to +3 standard deviation, the middle column shows the mean shape of the aligned
training set.

that are consistent with the shapes in the training set [3].
The procedure includes the following %ve steps:

4.1.1. Initialization
The space de%ned by the input image is referred to as

image space, compared with shape space described by for-
mula (4). The shape model in the shape space is denoted
by the lowercase and shape instance in the image space is
represented by uppercase in this paper. The transform de-
%ned in formula (2) can also be used to transform the shape
model from shape space to image space. The model instance
in image space is initialized by choosing proper pose pa-
rameter vector �(s; �; tx; ty) and shape parameter vector b.
The mean shape of the PDM derived in formula (4) is em-
ployed as the primitive shape model in shape space, i.e.
bi = 0; i = 1 ∼ t. The initialization of ASM is performed
automatically in a new image according to the localiza-
tion of the optic disk (Lx; Ly) obtained in Section 2, where
s = 1; � = 0; tx = Lx; ty = Ly.

4.1.2. Matching point detection
To each landmark point on the model in the image space,

the best matching point is searched, to where the landmark
point will be moved. The pro%le normal to the model bound-
ary is searched while the pro%le tangent to the boundary is
also considered to %nd the matching points in the application
of boundary estimation of optic disk. Fourteen points (point
1–8, 25–30) in the model should be matched to the edge of
blood vessels inside optic disk and the other points (9–24
and 31–48) should be %tted to the boundary of the optic disk
according to the criterion for selecting the landmark points.

The intensity distribution of a blood vessel’s cross-
sectional pro%le can be modeled as a negative step gate
function or Gaussian function, while the intensity distri-
bution along the pro%le normal to the disk boundary can
be simpli%ed as a positive or negative step function. The
pro%le in the direction from the center to outside of optic
disk is calculated since the location of optic disk center
is known approximately. Thus, the pro%le of the edge can
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Fig. 3. Practical %rst derivatives of intensity distribution across
blood vessel (a) and the edge of optic disk (b).

be modeled only by the negative step function and not
the positive step function. The %rst derivative D′(x) of the
function could be used to distinguish between blood ves-
sel and disk edge. The %rst derivative D′(x) of a pixel is
approximated by the intensity diFerence of the two pixels
adjacent to it along the pro%le in the practical image. Fig.
3 shows the %rst derivative D′(x) of intensity distribution
across blood vessels and across the boundary of optic disk
in a typical fundus image. The presence of blood vessel is
identi%ed by a negative pulse followed by a positive pulse
within the width range of blood vessels as compared with
a single negative pulse where disk edge appears.

Some blood vessels inside the optic disk run in the sim-
ilar direction to the normal of the model boundary, so the
%rst derivative of the intensity distribution pro%les along
the normal and tangent to the model boundary are both em-

ployed to avoid matching the points wrongly between the
edge of optic disk and blood vessels. For landmark points
1–7 and 26–30 (refer to Fig. 1), the point on the strongest
edge or nearest edge of blood vessel along the normal pro-
%le through the landmark point is identi%ed as the match-
ing point. For the landmark points 8 and 25, the strongest
edge on the normal pro%le belonging to the blood vessel’s
edge on its tangent pro%le is detected as the matching point.
For landmark points 9–24 and 31–48, the strongest edge on
the normal pro%le that does not belong to blood vessel on
the tangent pro%le is determined as the matching point. The
matching points that cannot be searched successfully are es-
timated from the nearby matching points. The original land-
mark points will be used as the matching points for those
which cannot be estimated by the nearby matching points
when their nearby matching points are also not available.

4.1.3. Transformation
Find the pose parameter vector �(s; �; tx; ty) that maps the

shape model in shape space to the new matching points in
image space by the transform 
 de%ned by formula (2). The
parameter �(s; �; tx; ty) of the transform 
 can be obtained
by minimizing the following expression:

E� = (Y − 
(x))T(Y − 
(x)); (7)

where Y is the set of matching points in image space, x is
the shape model in shape space.

4.1.4. Model update
The inverse of the transformation obtained in Section

4.1.3 is used to transform the matching points Y back to y
in the shape space. The shape parameter vector b is updated
by projecting the transformed matching points y onto the
shape space

b= �T(y − Jx); (8)

where y is the transformed matching points to shape space,
� and Jx are the same de%nitions as in formula (4). The
constriction to b is applied by

|bi|6 3
√
�i; i = 1 ∼ 4: (9)

This is selected as a suitable limit to bi since most of the
population lies within three standard deviations of the mean
[3]. Thereafter a new shape model can be generated by sub-
stituting the shape parameter vector b into formula (4).

4.1.5. Convergence evaluation of the shape model
Denoting the derived shape model of the nth iteration

and (n− 1)th iteration in the image space as X n and X n−1,
respectively, the convergence is evaluated according to the
following formula:

EX = ‖X n − X n−1‖¡�T for a small constant �T ; (10)

where EX is the Euclidean distance between X n and X n−1.
As EX oscillates sometimes, the shape model is thought to
be converged if condition (10) is satis%ed in the last %ve
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Fig. 4. Diagram of the adjustment of Wi .

iterations. The iteration stops when the shape model is con-
verged and at the same time there are less than 10 landmark
points in the shape model whose matching points cannot be
detected directly. This is to guarantee the obtained model
%ts the practical disk edge well. Otherwise the algorithm is
iterated from Section 4.1.2 until a preset number is reached.

4.2. A modi8ed ASM

Though ASM is quite robust in detecting the modeled
shape, the resultant shape is not satisfactory in some cases.
Some matching points may be misplaced in the detection
due to weak edges or noises, which make the obtained shape
not properly %t the boundary in the image. Two aspects
are proposed in this paper to improve the original ASM
algorithm.

4.2.1. Self-adjusting weight transform
The proposed transform 
 from the shape space to the im-

age space is de%ned in the same way as formula (2). Param-
eter vector �(s; �; tx; ty) is selected to minimize a weighted
sum of squares measure of point diFerence, which can be
obtained by 9E�=9�= 0, where E�, being diFerent from Eq.
(3), is de%ned as follows:

E� =
n∑
i=1

(Yi − Xi)
TWi(Yi − Xi)

=
n∑
i=1

(Yi − 
(xi))
TWi(Yi − 
(xi)); (11)

where Yi and Xi are the positions of ith point of the matching
points and the shape model in the image space, respectively.
Also xi is the shape model in the shape space, and Wi is the
weight factor.

For each iteration, the transform 
 is performed twice:
once for the initialized weight factor Wi and once for the
adjusted Wi. Weight factor Wi is initialized to diFerent val-
ues according to how its corresponding matching point Yi
is obtained in that iteration. As described in Section 4.1.2,
the matching point is either estimated from nearby matching
points or set to the landmark point when direct detection is
not successful. Largest Wi will be set to those having their
matching points detected directly; Smaller Wi will be as-
signed to the points having their matching points estimated

from the nearby matching points; For those having their
matching points updated by the original landmarks, the cor-
responding weight Wi is set to zero to eliminate their eFect
in the transformation. In our application, Wi is initialized as

Wi =




1 Yi can be detected;

0:7 Yi can be estimated by

nearby matching points;

0 Yi is updated by Xi:

(12)

The pose parameter vector � is calculated and the shape
model is transformed to the image space by the parameter
vector �, which is the %rst transformation in the iteration. In
the second transformation, the weight factor Wi for which
matching point can be detected or estimated in the iteration
is adjusted according to Ei, which is Euclidean distance be-
tween the matching point Yi and the corresponding trans-
formed shape model Xi in the image space presented in

Ei = (Yi − Xi)
T(Yi − Xi)

= (Yi − 
(xi))
T(Yi − 
(xi)); (13)

where Yi; xi ∈R2×1; i=1; 2; : : : ; n.Wi is set to be piece-wise
reciprocal ratio of the Euclidean distance Ei. In the appli-
cation of boundary estimation of optic disk, Wi is adjusted
from formula (14). It can be set to other proper values in
other applications

Wi =




1; Ei ¡ 5;

5=Ei; 56Ei6 15;

1=Ei; Ei ¿ 15:

(14)

The adjustment process of Wi can be depicted as a closed
loop block diagram in Fig. 4. The pose parameter vector
�(s; �; tx; ty) is updated by minimizing formula (11) with
the adjustedWi described in formula (14). The shape model
in the shape space is transformed to the image space again
by applying the newly obtained pose parameter vector
�(s; �; tx; ty).

With the procedure as described above, the initialization
and adjustment of weight factor Wi is not %xed or kept the
same in each iteration. The eFect of the pose parameter
obtained using the initialized Wi is employed to adjust Wi.
Thus the concept of feedback is used, for which it is called
self-adjusting weight transform. By this improvement, the
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misplaced matching points will not aFect the transform as
much as the correct matching points so that a better param-
eter vector � is obtained to align the shape model to the
matching points in image space.

4.2.2. Exclusion of outlying points in obtaining shape
parameter vector b

The mismatched points not only aFect the pose parame-
ters but also the shape parameter vector b when projecting
the transformed matching points onto the shape space. If
the obtained shape instance is compared with the matching
points set, they may not %t very well because of the con-
straint of the shape parameter vector b and the inLuence of
the misplaced matching points. When the Euclidean distance
Ei between the matching point and the corresponding point
on the shape model updated by the original ASM method is
larger than a certain value, the matching point is considered
to be an outlying point or a misplaced matching point. Those
outlying points will not be used in the procedure of obtain-
ing shape parameter vector b. In other words, the dimension
of landmark space is decreased from 2n to 2(n−nm), where
nm is the number of misplaced matching points in the itera-
tion. The shape parameter vector b is therefore determined
only by the matching points that %t the boundary well

b= �̃T(ỹ − J̃x); (15)

where b∈Rt; �̃∈R2(n−nm)×t ; ỹ∈R2(n−nm); J̃x∈R2(n−nm). ỹ is
the matching points set in the shape space after the outly-
ing points are excluded. �̃; J̃x are the eigenvectors and mean
shape in the 2(n− nm) dimensional space corresponding to
� and Jx in formula (4).

The %nal shape is estimated as in formula (4) by recon-
structing the shape instance in 2n−D landmark space with
the same parameter vector b obtained from formula (15), by
which the achieved shape model will match the boundary
of optic disk better than the original ASM especially in the
case that more than one matching points are misplaced.

5. Evaluation

The accuracy of an obtained shape instance is evaluated
by comparison with a reference shape. The reference shape
is annotated manually under the supervision of ophthalmol-
ogists. Mean corresponding distance is employed here to as-
sess the accuracy. Distance to the closest point (DCP) for a
point ai on shape A to shape B [13,14] is de%ned by

DCP(ai; B) =
n

MIN
j=1

‖bj − ai‖: (16)

The mean absolute distance (MAD) between the two shapes
[14] is derived by

MAD(A; B)

=
1
2

(
1
n

n∑
i=1

DCP(ai; B) +
1
n

n∑
i=1

DCP(bi; A)

)
: (17)

Fundus image No.35

Fig. 5. Optic disk is located by PCA based model, where ‘+’
indicates localization of the center of optic disk.

MAD is a semi-metric, as it does not ful%ll the metric con-
dition for triangle inequality. In the application of optic disk
boundary detection, positions of landmark points 8–25 and
31–48 in both the reference shape and the obtained shape
instance are used to calculate MAD, which evaluates the
performance of the applied algorithm.

6. Results and discussion

Thirty-%ve 24 bits color fundus images of 512 ×512 pix-
els are tested by the proposed algorithm. These images are
all we obtained from clinics, which were captured by a Top-
con retinal camera. Six of them are normal fundus images
and the other 29 are fundus images with lesions. The pro-
posed algorithm is applied to fundus images of both right
eyes and left eyes. The PCA-based model used in locating
the optic disk and the PDM in the boundary detection for
the right eyes are horizontal mirror images of those for the
left eyes.

The center of optic disk to be used for initializing ASM
method is located by PCA based model. All the optic disks
can be located successfully in the tested 35 images. One of
the localization results is illustrated in Fig. 5. It can be seen
that the center of the optic disk is identi%ed successfully
even in the presence of bright lesions whose area is larger
than that of optic disk. In such case, it is usually detected
wrongly by bottom-up image processing strategy. The cor-
rect localization of optic disk is important for initialization
of shape model at a good starting point in ASM, because
the ASM algorithm only searches for the matching points
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Fundus image No.3

(a)

(b) (c)

Fig. 6. Example of ASM method. (a) Initialization of the shape model in image space. (b) The matching points. (c) ‘.’-shape model obtained
(MAD = 2:6771 pixels), ‘x’-reference shape.

around the current position. The shape model will diverge
to in%nity or converge to an incorrect place with a bad ini-
tialization.

ASM comprises initialization of PDM and iterative
searching to %t the model to a retinal image. Fig. 6 shows
an example of initialization and the achieved shape instance
by ASM method. Only the sub-image around optic disk is
presented in the %gure in order to show the model clearly. In
this example, shape model is successfully acquired by ASM
method though a couple of matching points does not match
the edge of optic disk. By modifying the pose parameter
vector � and shape parameter vector b rather than the model
points directly, the shape model is restricted and will not
deviate too much from the shape model attained from the
training shapes. Here it is shown that ASM method has ad-
vantage of top-down strategy and is not sensitive to noises.

The original ASM method could not get satisfactory
boundary when the edge of optic disk is weak and occluded

by vessels. A modi%ed ASM is proposed to eliminate the in-
Luence of the misplaced matching points on transform and
in obtaining shape parameter vector b. One example can be
seen in Fig. 7. It can be noted in Fig. 7(c) that the boundary
at the upper part cannot be detected correctly by ASM.
Since the edge at that part is weak, several matching points
are located incorrectly such that they aFect the %nal result.
Satisfactory result can be obtained by the modi%ed ASM,
which is illustrated in Fig. 7(d). In the modi%ed ASM, the
transform from model space to image space and the proce-
dure of obtaining shape parameter vector b are both carried
out twice. The %rst round is to identify those misplaced
matching points and the second round is to weaken their
eFect in the transform and exclude them in the projection
to model space. The concept of feedback is employed here.
Better pose parameter vector �(s; �; tx; ty) and shape param-
eter vector b are obtained and the result %ts the boundary
in the image better. Another example is illustrated in
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Fundus image No. 35

(a) (b)

(c) (d)

Fig. 7. The modi%ed ASM compared with ASM. (a) Initialization. (b) Matching points obtained by ASM. (c) Shape model obtained by
ASM (MAD = 5:0193 pixels, 305 iterations). (d) Shape model obtained by the modi%ed ASM (MAD = 3:6984 pixels, 12 iterations). ‘x’
in (c) and (d) indicates the reference shape.

Fig. 8. The shape model could not converge even after 1000
iterations and showed the tendency to converge to the wrong
place. The modi%ed ASM could obtain a more suitable
result in the same image and required only 33 iterations.

The comparison result of the modi%ed ASMwith the orig-
inal ASM is presented in Table 1. Among the 35 images, the
%rst eight images in the table are employed as the training
set to derive PDM. The modi%ed ASM detects the boundary
of optic disk successfully in 33 of the images. The origi-
nal ASM fails in seven of them where G (Great improve-
ment) is marked in the table to indicate that the modi%ed
ASM gains much better results than the original ASM. In
the other 26 images, the modi%ed ASM also achieves better
than or at least as good as the results of ASM. The modi-
%ed ASM needs less iterations in all the images except two
cases (image Nos. 15 and 32). The edges of the optic disk

in these two cases are very weak such that there are more
than ten points in the shape model that their matching points
cannot be detected directly. The boundary detection results
by the modi%ed ASM are nevertheless better than ASM in
these two images as indicated by the MAD value. Fig. 9 il-
lustrates the convergence of EX by ASM and the modi%ed
ASM in image No.24 where both methods obtain satisfac-
tory results. It can be seen that the modi%ed ASM converges
much faster than the original ASM. All these tests show that
the modi%ed ASM is more robust and time eEcient. Both of
the modi%ed ASM and the original ASM failed in two cases
(image Nos. 12 and 16), where a large part of the disk edge
cannot be identi%ed even by human eyes. A large area of le-
sion presents near the optic disk in one case (image No.12)
and in another case (image No.16) the blood vessels obscure
most part of the edge of optic disk. The manual outlining
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Table 1
The performance comparison between the modi%ed ASM and ASM

Image no. Iterations Iterations MAD MAD Results
ASM Modi%ed ASM ASM Modi%ed ASM

1 18 16 5.0448 4.3641 S
4 48 14 4.6473 2.2862 S
14 828 15 5.6567 2.5938 S
18 35 6 3.6437 2.2859 S
23 17 6 2.3275 2.2757 S
31 22 6 3.1453 2.7814 S
32 797 1000 4.2982 3.7551 S
35 305 12 5.0193 3.6984 S
2 46 18 3.1265 2.2987 S
3 245 7 2.6771 2.1603 S
5 84 6 2.2409 3.7083 S
6 399 9 4.5827 2.8439 S
7 67 8 4.7695 2.6716 S
8 14 8 4.0350 2.8698 S
9 71 8 3.7133 3.9858 S
10 1000 8 8.4531 3.1544 S/G
11 15 9 2.8921 2.9592 S
12 66 54 21.4686 14.7338 F (1)
13 51 6 3.3051 2.5307 S
15 247 1000 3.6638 2.8408 S
16 1000 468 61.6681 35.6483 F (2)
17 18 6 4.3589 3.2120 S
19 9 7 3.1432 2.0288 S
20 11 7 7.7570 3.9748 S/G
21 1000 33 13.9465 3.1769 S/G
22 55 24 13.3337 2.9144 S/G
24 88 6 3.6359 2.7279 S
25 317 8 7.3253 3.5710 S/G
26 600 12 5.3209 2.9303 S
27 33 16 3.3229 3.2292 S
28 182 25 5.4281 2.9681 S
29 671 28 7.8496 5.3080 S/G
30 63 13 3.6428 3.1416 S
33 15 6 4.1671 2.8198 S
34 747 11 44.7091 1.8876 S/G

F: fail; S: success; G: great improvement; MAD: mean absolute distance. (1) A large part of disk edge could not be identi%ed even by
human eyes due to large area of lesions. (2) Blood vessels obscure most part of the edge of optic disk.

of the blur part of disk edge in these two images was per-
formed according to experience and its symmetric part of
edge. The modi%ed ASM obtains better result than the orig-
inal ASM in both of these two cases. More constraints such
as the size of the optic disk could be further investigated to
improve the performance of the algorithm.

7. Conclusion

A new and robust algorithm is proposed in this paper to
detect the boundary of optic disk automatically. The PCA
based model is implemented for the localization of the optic
disk for the %rst time, which enables the automatic initial-
ization of ASM. PDM is obtained from the training set and

it is used to search the best %t to a fundus image in ASM
algorithm. The modi%ed ASM is later proposed to eliminate
the inLuence of the misplaced matching points in the trans-
form and in obtaining shape parameters. The result is com-
pared with the original ASM method, which shows that the
modi%ed ASM is more robust and converges faster than the
original ASM. The improvement makes the algorithm more
favorable for the cases of weak edges and in the presence of
noises where several matching points are misplaced. More
images will be tested when more clinical data are available.
The achieved result is useful for the further investigation
of automatic understanding of fundus images and will fa-
cilitate the clinical diagnosis. It is certain that the proposed
algorithm will not be limited only to fundus images but it
should be applicable to other images as well.
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Fundus image No.21

(a)

(b)

Fig. 8. The modi%ed ASM can obtain more robust result than
ASM method. ‘.’-obtained shape; ‘x’-reference shape. (a) Result
of ASM (MAD = 13:9465 pixels, 1000 iterations). (b) Result of
the modi%ed ASM (MAD = 3:1769 pixels, 33 iterations).

8. Summary

A new algorithm to detect the boundary of optic disk au-
tomatically in color fundus images is proposed in this paper.
The optic disk is located by PCA based model. The pixel
with the minimum distance in the candidate regions among
all the scales is located as the center of optic disk. Once its
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Fig. 9. The convergence of the shape model. (a) Example of Ex
by ASM. (b) Example of Ex by the modi%ed ASM.

location is known, the PDM for the estimated shape of optic
disk is initialized for further application of the ASM. This
is the %rst time that the ASM is applied to the feature ex-
traction in fundus images. In the matching point detection,
the %rst derivative of the intensity along the normal and tan-
gent pro%le of the model boundary is used to distinguish
between blood vessel and disk edge. The original ASM is
modi%ed with two enhanced aspects: one is the self-adjusting
weight factor in the transformation from shape space to im-
age space; the other is exclusion of outlying points in the
obtaining of shape parameters. In the modi%ed ASM, the
transform from model space to image space and the proce-
dure of obtaining shape parameter vector are both carried out
twice. The concept of feedback is employed here to avoid
the inLuence of the misplaced matching points. Thirty-%ve
color fundus images obtained from clinics were tested by
both the original ASM and the modi%ed ASM. The accu-
racy is evaluated by the MAD between the obtained shape
instance and the reference shape. The test shows that the
proposed modi%cations not only make the algorithm con-
verge faster but also make it more robust than the original
ASM method. The improvement makes the algorithm more
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favorable for the cases of weak edges and in the presence of
noises where several matching points are misplaced. More
images will be tested when more clinical data are available.
The results obtained can oFer further improvement to the
automatic processing and understanding of fundus images.
The proposed algorithm should also be applicable to a vari-
ety of other similar applications.
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