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Abstract

A machine learning system is only as good as its features, the representative properties of a phenomenon
that are used as input to a machine learning algorithm. Developing features, or feature engineering, can
be a lengthy, human-in-the-loop process, requiring many time-consuming cycles of writing feature code,
extracting features from raw data, and model training. However, many opportunities exist to improve
this workflow, such as assisting feature code development and speeding up feature extraction.

In this paper, we discuss two projects that take different approaches to accelerate feature engineer-
ing, allowing the engineer to spend more time doing what humans do best: applying domain insight
to engineer high-impact features. ZOMBIE is a general-purpose system that reduces the amount of
time needed to extract features. RACCOONDB is a system that helps users quickly extract features for
nowcasting, or using social media to estimate real-world phenomenon. We also discuss several oppor-
tunities for future research that would improve the experience and output of feature engineers.

1 Introduction

Many of today’s most interesting software systems depend on machine learning algorithms trained on large
datasets; systems like search engines, recommendation systems, and image recognition systems have become
drivers of both technological and economic growth. While the specific details of machine learning systems may
differ, there is often one common thread: a real-world phenomenon is represented by a set of features. Features
aim to capture properties relevant to the chosen learning task. For example, the number of times the phrase
“lost my job” appears on Twitter in a given week may be a good feature for predicting unemployment levels; a
count of the political figures mentioned on a Web page may be a helpful feature to classify it into a category like
politics instead of sports; and a patient’s weight and blood pressure may be indicators of a risk for heart disease.

The quality of the features is paramount: a machine learning system will ultimately be only as good as its
features [2, 20]. That is, if the features fail to sufficiently capture the variation among specific examples of the
target phenomenon, the accuracy of the system will suffer. Historically, features have been written by humans,
taking advantage of experts to impart domain knowledge to trained models. More recently, deep learning meth-
ods have been successful at automatically discovering good features, especially in problem domains that are
challenging for humans, such as image and signal processing [13, 18, 35].
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Figure 1: Feature engineering loop.

While both approaches are important to the field of data science [25], in this paper we will focus on systems
designed to support the lengthy and often tedious cycle of human-in-the-loop feature engineering, which
has been a growing focus of research in the database and systems communities [2–5, 8, 30, 34, 40]. Feature
engineering is an iterative, data-centric process that we have described in detail in previous work [2, 3], and it
has a general workflow followed by many different projects (e.g., [5, 21, 22, 49]).

1.1 Human-in-the-Loop Feature Engineering

In this paper, we will discuss two feature engineering projects that we have personally worked on. ZOMBIE

(Section 2), a general-purpose feature engineering system, speeds up feature extraction from raw data for general
supervised learning tasks, such as document classification or linear regression-based predictors. RACCOONDB
(Section 3) targets a specific problem domain, speeding up the creation of features for nowcasting models,
which estimate current values of real-world phenomena based on social media messages. Though each targets
a different type of machine learning task, both involve the high-level human-in-the-loop process illustrated in
Figure 1. This loop takes place while the machine learning system is being developed, before the system’s final
deployment. It can be described as follows:

1. Write feature code: The feature engineer writes code to extract features that represent salient properties
of the items in a corpus of raw data. For example, when classifying Web pages, a feature may simply
count the number of times a category name appears in the document or perform more complicated func-
tions like named entity recognition using natural language processing techniques. Or, when predicting
unemployment levels, a feature might be derived from topics mentioned on social media. The feature
engineer may create a set of feature extractors, creating many feature values per raw data item.

2. Extract features: The feature code is applied to the raw data to extract the features for each raw data
item, often using a bulk data processing system like MapReduce [19] or Spark [47]. When the corpus is
large (e.g., a Web crawl or social media database) or when the feature code is computationally complex
(e.g., involving natural language processing for document classification or comparison of time-varying
signals of topic frequencies in social media), this step can take hours or longer to complete. In this step,
each item is also labeled; the label may come from an existing database, be added by a human expert, or
created by algorithmic means. The output of this step is a set of labeled feature vectors used to train the
machine learning system.

3. Train and evaluate the model: Using the labeled set of examples constructed in Step 2, a machine
learning system is trained with an appropriate algorithm; a naı̈ve Bayes classifier could be chosen for
our document classification example, while our unemployment predictor may use linear regression. Once
trained, the model’s quality—and thus the effectiveness of the features—is evaluated using an appropriate
metric, usually measured over a set of test data. For our document classification example, we may measure
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the percentage of test examples that were correctly classified, while for our unemployment predictor, we
may use the root mean square error in the test predictions. If the quality is less than what the application
requires, the feature engineer begins the process again from Step 1.

A feature engineer can go around this loop many times when developing features for a high-quality machine
learning system. The impact of a particular feature to a model is very difficult to predict without actually training
the model. First, because datasets are typically large and noisy, it is difficult for the engineer to know how to
accurately specify a feature without repeatedly testing it. Further, within feature sets, it is difficult to know
whether a new feature will bring any new information to the model [2]. Compounding the tedium, each iteration
of the loop can itself take a long time to complete because each step can be lengthy: the engineer must write
complicated code, apply it to a large raw dataset, and train a machine learning model. Thus, when designing a
system that assists the user in human-in-the-loop feature engineering, we can speed up the engineer’s workflow
by either reducing the number of loop iterations or by speeding up each iteration.

1.2 Goals of a Feature Engineering System

A successful feature engineering system can take several approaches to speed up the feature engineering loop
described in Section 1.1. These include:

Assistance writing feature code — Helping the feature engineer design features and write feature code can
lead to fewer, shorter iterations around the loop. For example, RACCOONDB uses query expansion principles
to automatically improve the applicability of feature code. Feature-focused data visualization tools can help
engineers better understand data distribution and feature coverage. Development tools for data cleaning and ex-
traction [28,49], as well as domain specific languages targeted at developing features from massive datasets [39],
can reduce the time needed to write feature code. Deep learning tools can also be used to automatically create
feature extractors, though often at a cost of human interpretability of the resulting features [13, 18, 35].

Faster feature extraction — Extracting features from raw data more quickly can reduce the amount of down-
time a feature engineer faces. In many machine learning applications, the amount of data available is far greater
than is needed to train a model well enough to evaluate feature effectiveness. For example, when using a Web
crawl corpus, pages from e-commerce sites will likely provide little training information when the task is to
classify documents as sports, politics, or technology. Pruning or otherwise avoiding the processing of irrelevant
raw data items, as is done by both ZOMBIE and RACCOONDB, can greatly reduce the time needed to complete
an iteration of the feature engineering loop.

Quicker model training — Because some types of machine learning models can take a very long time to train,
speeding this up can greatly reduce the time needed to evaluate the quality of feature code. Approaches here
may include scalable, parallelized algorithms [30, 36] or training a fast, approximate model that is good enough
to evaluate the feature code.

Further, researchers have begun investigating several additional areas that improve the feature engineer’s
experience: finding and and collecting appropriate raw data from diverse sources [14]; labeling raw data through
crowdsourcing or algorithmic means [21]; and automatically configuring hyperparameters in complex machine
learning models [43]. Systems that continue work in these areas would be a benefit to the feature engineer.

1.3 Continuing Relevance of Database Research

Feature engineering may seem to be primarily a machine learning concern, but in fact, database research—
especially systems-focused research—is highly relevant. The database community has long focused on optimiz-
ing data-centric workflows, and traditional approaches can be starting points for improving feature engineering.
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When performing query optimization, operation execution is often dynamically ordered to reduce the number
of tuples examined in a given query. In feature engineering, similar techniques may be employed to reduce the
number of raw data items processed or to minimize the size of the training set used to train a model. Likewise,
traditional indexing techniques allow for quick access to specific parts of large datasets. In feature engineering
systems, methods like these can be used to quickly access parts of a large raw data corpus that have high utility
to a particular learning task, allowing for faster feature extraction or training of the machine learning model.

Evaluating the effectiveness of feature code can be recast as a query over the raw data that produces a quality
measure Q as a result. A high-precision value of Q may not be needed if a fast, lower-precision value can
be computed, suggesting that techniques similar to those used in approximate query answering systems (e.g.,
BlinkDB [1]) may be useful. Extracting features from large datasets often involves parallel execution using
systems like MapReduce [19] and Spark [47]. Extending these systems to include optimization techniques from
parallel databases, as well as making them more supportive of machine learning workloads, as is being done
with MLlib [36] and MLbase [30], will certainly accelerate feature engineering workflows.

Feature extraction in many cases is an extension of data cleaning and transformation: raw data is often in
a semi-structured format—e.g., log files, sensor output, and, to an extent, Web pages—and extracting features
involves cleaning and transforming that data into a usable format. Data transformation and extraction tools such
as Wrangler [28] and DeepDive [49] are currently very helpful in extracting useful data from these sources,
but more specialized tools integrated into a feature engineering workflow and geared towards machine learning
tasks would be a boon to feature engineers. For cases where data extraction is not straightforward, tools that
assist in querying raw data or writing extraction programs using query synthesis (e.g, [16]) or query expansion
(e.g, [29]) principles can speed up the feature engineer’s work. Finally, data visualization (e.g., [45]) tools can
help view raw data in terms of machine learning tasks to help feature engineers design more effective features.

In the remainder of this paper, we will discuss two projects that take different approaches to accelerate the
feature engineering loop, allowing the feature engineer to spend more time doing what humans do best: applying
domain insight to engineer high-impact features. In Section 2, we go over the optimizations used by ZOMBIE [3]
to reduce the amount of time needed to extract features. In Section 3, we show how RACCOONDB [5] allows a
user to quickly derive nowcasting features from social media. We also present an informal case study in Section 4
that further demonstrates how RACCOONDB helps users quickly estimate real-world phenomena. Finally, in
Section 5, we discuss several opportunities for future research that would improving feature engineering.

2 ZOMBIE: Accelerating Runtime through Input Selection

ZOMBIE [3] is a general-purpose feature engineering system designed to reduce the amount of time needed to
evaluate the effectiveness of feature code. In particular, ZOMBIE was designed with our faster feature extraction
goal from Section 1.2 in mind: it significantly shortens the time needed to complete an iteration of the loop shown
in Figure 1 by reducing the time needed to apply the code to the raw data (Step 2).

Our Approach — ZOMBIE builds on ideas from query optimization, approximate query processing, and in-
dexing to reduce overall feature code execution time through input selection: it dynamically learns which raw
inputs are most useful to the machine learning system being trained and selects those items to be processed first.
It then stops early once the machine learning system is trained adequately enough to accurately judge its quality.
The resulting model is trained with only a small subset of high-impact raw data items; ZOMBIE learns which
items in the corpus are likely to be redundant or irrelevant to the trained model, eliminating the need to process
them. In this section, we will summarize ZOMBIE’s methods and experimental results. Complete system details
and results can be found in our full paper [3].
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Figure 2: Effects of input selection. ZOMBIE selects more useful raw inputs, yielding a faster learning process.

2.1 Input Selection

ZOMBIE is targeted at feature engineers building systems for supervised learning (e.g., for classification or
regression). While developing features, the engineer may be willing to accept a slightly less-precise evaluation
of model quality (Step 3 of Figure 1), if that quality value can be determined quickly. ZOMBIE is designed
to exploit this tradeoff and generate a fast, approximate measure of the trained model’s quality. To see how,
consider Figure 2a, which shows the learning curves of a classification system if it were continually re-trained
as new training examples are added to the training set (that is, as raw data items are processed by the feature code
and labeled to produce training examples). The gray line for the NAÏVE scan shows the learning curve if the
corpus is randomized, as it would be for a typical bulk scan of the data using a data processor like MapReduce or
Spark. The system’s accuracy increases quickly with the initial training examples, but each new example added
to the training set has diminishing returns. The system could clearly stop early and get a close estimate of the
model’s final accuracy, represented by the point at EARLY.

ZOMBIE, however, takes this further by purposely selecting the next raw input to process, as opposed to the
random draw of NAÏVE. The inputs chosen are those predicted to have a high utility towards training the model.
The utility of an individual raw data item varies between learning tasks, as well as between feature code changes
within the same task, making a high-quality static index identifying useful items impossible to create. Doing
so would require extracting the current features from the entire corpus for analysis, which is exactly the time-
consuming process we wish to avoid. Instead, in a one-time, offline pre-processing step, ZOMBIE organizes the
raw data into groups of similar items called index groups, which are then used at runtime to identify groups of
potentially useful items. ZOMBIE learns which index groups are most likely to contain useful items and selects
items from those for processing. Through our experiments, we found that standard clustering methods, like the
k-means algorithm, created general purpose index groups that were useful across a range of learning tasks.

The input selection process results in a trained model using just a small subset of the available raw corpus.
This is illustrated in Figure 2b, which shows three different input selection methods. NAÏVE is a simple bulk
scan over the entire raw data set, whose items are depicted by the multi-colored blocks, where more lightly
colored blocks represent raw data items that are more useful to the learning task. The EARLY method uses the
same early stopping method as ZOMBIE, but it is run using the same random layout as the full NAÏVE bulk scan.
A representative subset of high- and low-quality items are processed. ZOMBIE, on the other hand, draws items
from the index groups shown at the bottom of the figure, which have been clustered into groups with different
utility values.1 Once ZOMBIE learns which index groups contain the most useful items, raw data items are drawn

1In practice, the index groups are not so cleanly separated, but the method is still successful if there is even a small difference in
average utility between the groups.
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Figure 3: ZOMBIE’s basic architecture, which combines Steps 2 and 3 of the feature engineering loop in Figure 1. The
system’s novel components are the physical index of index groups and the bandit-based input selector. These parts work
with standard machine learning components to reduce the time needed to generate features from raw data.

from them, allowing the machine learning model to be trained using much less data.
Because the utility values of the index groups are unknown at the start of each iteration of the feature engi-

neering loop, ZOMBIE faces a classic exploration versus exploitation tradeoff when trying to find the highest-
utility index groups in order to maximize the processing of useful items. Thus at runtime, ZOMBIE uses a multi-
armed bandit approach to determine which index groups contain the highest-utility raw data items. ZOMBIE

draws items from these groups to process with the feature code to generate a new training example, retrain-
ing the machine learning model with each addition to the training set. Once the trained model has reached an
appropriate stopping point (determined by observing a plateauing of the learning curve), the system stops.

2.2 System Design

Figure 3 shows the basic architecture of ZOMBIE, which combines Steps 2 and 3 of the feature engineering loop
in Figure 1. When the system is initialized, the raw data is organized into a task-independent set of index groups,
created using a general clustering method appropriate for the data. We create an inverted index I, where the keys
are unique identifiers for each group and each key’s posting list is an unordered set of raw data items. ZOMBIE’s
input selector uses a standard upper confidence bound (UCB) multi-armed bandit strategy [11] to explore the
index groups in I and exploit the ones determined to have the highest utility to the learning task. The feature
functions are applied to each item selected for processing to create a feature vector for the training set, which
is provided to the machine learning algorithm to generate a model. A quality function Q evaluates the model
and maintains statistics on the model’s improvement with each new item. The output of Q is used as the reward
to update the input selector’s multi-armed bandit, and the process is repeated. This output is also monitored to
detect a plateauing of the learning curve, at which point the processing is stopped and the final quality measure
is presented to the feature engineer.

2.3 Summary of Experimental Results

Task Speedup

2-class classify 5.5x
6-class classify 7.8x
Regression 1.7x

Table 3: ZOMBIE’s speedup results
vs. a bulk scan with early stopping
on several machine learning tasks.

ZOMBIE was tested on several different machine learning tasks, using feature
functions of varying complexity. Compared to a baseline method of a random
bulk scan of the raw data that used the same plateau-based early stopping
method, ZOMBIE showed an average of nearly 2x speedup for regression
tasks and up to an 8x speedup for classification tasks (Table 3), meaning that
each iteration of the feature evaluation loop was significantly shorter when
using ZOMBIE. Compared to a full, single-processor bulk scan, as might be
done in practice, ZOMBIE yielded up to a 90x speedup. For each of the tasks
in Table 3, we used the same raw data corpus (1 million Wikipedia pages),
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index groups (k-means clusters), and feature set (counts of 40 specific words in each document). The range
in speedup values highlights how the applicability of a set of index groups can vary between learning tasks.
Our index groups represented the variability in the token-based features well, so when the features were highly
relevant to the learning task, ZOMBIE could quickly find the high-utility raw data items, as it did in the document
classification tasks. The feature set was less relevant for the regression task, so there were few actual high-utility
items, making it difficult for ZOMBIE to provide more than a modest speedup. Still, the processing time was cut
nearly in half compared to the early stopping baseline. For detailed experimental results, including evaluation
of index group creation methods and design choices for the multi-armed bandit, see our full paper [3].

2.4 Related Work

ZOMBIE [3] draws on work from a diverse set of fields. Feature engineering and feature selection have been
the focus of some recent research in the database community [2, 30, 48]. ZOMBIE’s goal of approximating the
feature quality metric is similar to approximate query answering systems [1,12,23]. The practice of selecting the
inputs for a training set based on their predicted utility is related to active learning [42], though in active learning
the goal is typically to minimize the amount of labels needed to generate, based on a pre-existing feature set. We
have also presented a demonstration development environment that uses ZOMBIE’s input selection method [4].

3 RACCOONDB: Finding Features in Social Media

RACCOONDB [5] is a feature engineering system we designed for a specific problem domain: generating
nowcasting features for economic and social science models. Nowcasting is the process of extracting trends
from social media to generate a time-varying signal that accurately describes and quantifies a real-world phe-
nomenon. For example, the weekly trend of US unemployment claims can be modeled using the frequency of
tweets about unemployment-related topics [7]. Nowcasting has been used to model flu activity [24], mortgage
refinancing [10], and more [17, 41, 46]. These models, however, have been typically created as one-off and
highly manual endeavors, with researchers tediously searching through a social media corpus to find topics that
are appropriate proxies for their target phenomena. By focusing on this specific problem, RACCOONDB is able
to be more aggressive than a general feature engineering system could be with improving the nowcasting feature
engineering loop.

The process used to created these models follows the feature engineering loop in Figure 1: the researcher
writes code or a query—based on either textual or time series matching—to specify her desired topics (Step
1). Next, she executes the code or query over a large social media corpus to generate a training set based
on these topics (Step 2). Finally, she uses the training set to build a model of the target phenomenon, and
then evaluates its predictiveness using a holdout dataset (Step 3). This process is repeated many times by the
researcher, in part because the social media corpus can be very diverse, making it difficult for the researcher
to know precisely which topics to select. And because the corpus can be very large (over 150 million distinct
topics in our experiments), each iteration can be lengthy, taking dozens of minutes to many hours, depending on
the system used.

Our Approach — RACCOONDB targets two of the goals of feature engineering systems we discussed in Sec-
tion 1.2: assistance writing feature code and faster feature extraction. First, we used query expansion tech-
niques to assist users in writing queries (i.e., “feature code”) that find relevant topics, even when their initial
queries inadequately describe their target phenomena. Second, we used a number of query optimization tech-
niques to assist with faster feature extraction, allowing queries to run in interactive time and users to quickly
modify their queries to improve their results. In the remainder of this section, we will briefly describe the de-
sign of RACCOONDB and present several experimental results. For an in-depth discussion of nowcasting and
RACCOONDB’s design and technical evaluation, see our full paper [5].
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Figure 4: In Step 1 of (a), users provide refined feature code in the form of a two-part query using the interface in (b).
In Step 2, RACCOONDB generates a set of topics that serve as a refined training set. In Step 3, RACCOONDB generates
several results, which the user explores in real-time with the slider interface in (b).

3.1 System Design

RACCOONDB is a system that allows a user to query a database of topics extracted from social media messages
to produce a nowcasting result. Each topic represents a collection of similar messages (e.g., those discussing
the loss of a job) and contains both a textual label (e.g., “job loss”) and a time-varying signal with the frequency
these messages appear (e.g., daily). It is this set of tuples that RACCOONDB uses to answer nowcasting queries.

Assistance Writing Feature Code — Figure 4a shows how RACCOONDB fits in the feature engineering
loop. First, the user writes a two-part query (Step 1) that declaratively describes her target phenomenon both
semantically—as a text string—and as a time-varying signal (Figure 4b). This can be considered a refined ver-
sion of the feature code in Figure 1. Ideally, this signal would represent historical ground truth data for the
target phenomenon, but when this is not available, the user can use her domain knowledge to describe this in a
distant supervision manner [37]. For example, if targeting box office sales, she may indicate peaks during the
summer when blockbuster movies are generally released. Because users may not have perfect knowledge about
the target, RACCOONDB employs query expansion principles during feature extraction (Step 2) to expand the
semantic part of the query and allows partial time series to be input as the signal part. This makes RACCOONDB
more robust to error in the nowcasting query, as our quality experiments in Section 3.2 show.

Further, during evaluation (Step 3), RACCOONDB assists users with evaluating their models in two ways.
Since users may have more confidence in either of their semantic or signal query components, multiple models
are trained, each weighting the query components differently. During evaluation, users can explore these models’
results in real time with a signal vs. semantic weighting slider (Figure 4b). Additionally, for users who lack
ground truth data and provide a query signal that only roughly estimates their target phenomena, RACCOONDB
features a query quality alarm. This alarm uses a model trained on a set of labeled low- and high-quality queries,
alerting users if the model classifies their query as low quality.

Faster Feature Extraction — Processing this two-part, computationally intensive query over a huge corpus of
social media can take a significant amount of time if done naı̈vely. For instance, our experiments in Section 3.2
show that popular data systems like Apache Spark and PostgreSQL took dozens of minutes to many hours to
query 150 million topics. Our goal in designing RACCOONDB was to return results in interactive time to allow
users to quickly hone their nowcasting results. We accomplished this goal (with queries returned often in about
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one second) through a number of optimization techniques (Step 2).
First, RACCOONDB uses semantic-based candidate pruning to avoid the expensive scoring of many topics.

This works by first semantically expanding the user’s query with a thesaurus-based method. Each word in each
topic (as well as the query) is expanded into a set of synonyms, and a similarity score is computed based on the
overlap of the expanded sets of words. This score is used to rank candidate topics for potential inclusion in the
query answer. Computing this score for every topic is very expensive, so RACCOONDB prunes the candidates
by analyzing the graph of synonym sets in the thesaurus, as well as by dynamically computing a threshold score
below which candidates are excluded. In practice, this can reduce query computation time by over 90%.

Second, RACCOONDB uses signal-based candidate pruning to further avoid fully scoring many topics. To
do this, RACCOONDB employs confidence interval pruning to limit the amount of expensive correlation com-
putations it performs. Correlations are first calculated using a very low-resolution version of the topic and query
signals (20 data points, rather than nearly 200). Using the standard 95% confidence interval for Pearson corre-
lations, we eliminate all topics whose upper confidence bound was less than the lower confidence bound of the
k-th highest ranked topic based on the low-resolution correlation. The full, expensive correlation was calculated
for the remaining topics. When combined with our semantic-based pruning, this further reduces runtimes to
interactive speeds (averaging 3.6 seconds with 1 core and 1.2 seconds with 30 cores in our experiments).

Finally, RACCOONDB takes advantage of several low-level optimizations. Semantic similarity and signal
correlations are implemented as vector operations, allowing the system to use SIMD operations. Signal and
topic label data is stored using compact integer representations, speeding up lookup times. The topic database
is partitioned, allowing many calculations to be highly parallelized.

3.2 Experimental Results

PostgreSQL Spark RACDB

1 core > 6 h – 3.6 s
30 cores – 1173 s 1.2 s

Table 4: Average nowcasting query processing
times for PostgreSQL, Apache Spark, and RAC-
COONDB.

We performed a number of experiments that tested RAC-
COONDB’s output quality and runtime performance. In this
section, we will briefly summarize the runtime results and
present a novel evaluation of querying RACCOONDB with
less than perfect information. The experiments center around
estimating several different target phenomena (box office
sales, flu activity, etc.), which we chose because of the avail-
ability of historical ground truth data and their use in past
nowcasting research. The topics we used were n-grams of up to four words in length extracted from 40 bil-
lion tweets collected over four years. An in-depth discussion of these experiments and others is available in our
full paper [5].

One of the goals of RACCOONDB is to process nowcasting queries in interactive time—something we have
found traditional data processing systems are unable to do. Table 4 compares the query processing times for
RACCOONDB and two popular data systems (PostgreSQL and Apache Spark), using two different levels of
parallelization. We averaged runtimes across our six target phenomena. Because PostgreSQL and Spark are
very inefficient at nowcasting query processing, there runtimes are quite poor. In contrast, RACCOONDB is able
to process queries orders of magnitude faster, achieving interactive runtimes using few resources.

3.2.1 Evaluating Quality

The feature engineering loop is human-driven, and while that human may be an expert in the problem domain,
she may be less informed about what constitutes quality features for a nowcasting model. When this is the
case, further iterations of feature engineering are often needed to narrow in on the high-quality features. In
the following experiments, we show that RACCOONDB can still produce quality results under different levels
of user knowledge and with varied amounts of error in the user’s query. These experiments are compared to a
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Figure 5: Our less-informed users EqWidth (EW), EqAmp (EA), and SeasonalPeaks (SP), compared to the fully-informed
user (red diamond).
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(b) RACCOONDB user interface

Figure 6: Effects of various types of error in the user signal query.

baseline distant supervision user model, where we assumed the user did not have access to accurate ground truth
signal data and created the query signal based on a rough estimate of the target phenomenon. To simulate this,
we created signals based on the actual ground truth signals by finding major peaks in the signal and synthesizing
partial user signals consisting only of smooth representations of the actual peaks.

Performance of Less-Informed Users — To test how resilient RACCOONDB is to varying levels of user knowl-
edge, we created three variants of our distant supervision user model, referred to as our less-informed user mod-
els. Assuming that high-quality semantic components are relatively easy for a user to construct, we focused on
the more difficult part: the query signal. For the EqWidth user model, our simulated users only know when major
peaks occur in the signal and not how long they last, so the synthesized peaks all have the same three-month
width. For EqAmp, users have no intuition about peak height, so the synthesized peaks have the correct width,
but all have equal amplitudes. Finally, for SeasonalPeaks, users only know about peaks within the last year
(2014), so the synthesized peaks from 2014 are seasonally repeated over previous years (2011 - 2013).

Figure 5 shows the accuracy of our different less-informed user models using RACCOONDB. Displayed in
the figure are EqWidth (EW), EqAmp (EA), and SeasonalPeaks (SP). In most cases, the less-informed user
models still perform reasonably well compared to the distant supervision user model. Certain target phenomena
are not as resilient to these variations though. For example, unemployment has a significant drop in semantic
relevance when using the EqAmp user model. This is due to a multi-year downward trend in unemployment
during this time period that reflected a general improvement in the US economy. Since EqAmp did not reflect this
trend, RACCOONDB selected some unrelated topics in addition to the unemployment-related topics, obtaining
a poor 0.63 semantic relevance. On average, though, the user models do not show a large decrease in accuracy:
EqWidth’s semantic and signal relevance decreases by just 6% and 8%; EqAmp by just 13% and 7%; and
SeasonalPeaks by just 15% and 12% respectively.
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MANUAL Query Ground Truth
Correlation

“solar panels” 0.13
“solar panel installation” 0.00
“solar installations” -0.22
“solar savings” -0.19
“solar” 0.06
“solar city” 0.30
“alternative energy” -0.54
“photovoltaics” -0.37
“solar energy” -0.10
“purchase solar” -0.16
“solar manufacturing” -0.22
“home solar” -0.36

RACCOONDB Query

User signal + “solar panels” 0.73
User signal + “solar panel energy” 0.75
User signal + “solar panel installation” 0.71
User signal + “solar revenue” 0.79
User signal + “solar” 0.80

(a) User queries
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Figure 7: (a) Case study queries for predicting solar panel installations using a MANUAL approach and RACCOONDB,
along with correlations with a holdout ground truth signal; user signal is a user-chosen rough estimate for the target and is
the quarterly revenue for Solar City Corporation. (b) RACCOONDB’s result signal and topics for the “solar” query.

Resilience to User Query Errors — We also set out to demonstrate RACCOONDB’s resilience to errors within
a user’s query. For instance, the user may have intuition about where her target trend peaks but may be off by
several weeks. We introduced two types of errors to the distant supervision user model signals to simulate this.
For the first, we shifted the peaks in weekly increments, between -12 and +12 weeks. Figure 6a shows how error
increases with respect to a non-shifted signal. As would be expected, the result quality worsened as the shifts
increased in either direction. However, the error was not catastrophic: even if a user is off by a few weeks with
her estimated peaks, she could still achieve decent results. It is worth noting the behavior of boxoffice, where
its results began to improve again when shifted more than six weeks into the future. This occurred due to the
bimodal nature of movie box office sales, which peak in both the summer and winter months. With enough error
added, the user’s signal query began to accurately describe a different peak in the actual box office data.

The second error we explored is with regards to the width of each peak. We scaled the peak widths from
5% up to 200% of the original peak widths from our distant supervision user model signals (Figure 7b). Results
were similar to our peak shifting experiment, where only the extreme errors resulted in a poor-quality result.
RACCOONDB gives users some room for error when defining their query signals.

3.3 Related Work

The idea of RACCOONDB [5] as an optimized, general nowcasting query system draws upon our experience with
designing previous nowcasting systems [7–9] and various other areas of database research: feature selection [26,
48], query optimization [45], and multi-criteria ranking [27]. We have also presented a demonstration system
highlighting the user interaction of RACCOONDB [6].
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4 A RACCOONDB Case Study

While our experiments have validated our technical claims for RACCOONDB, we wanted to see how useful our
system is in a real-world use case, where a researcher wants to estimate a novel target phenomenon. How does
the output quality and time required by the user compare to a traditional approach to nowcasting? To test this, we
assigned one of our authors to be a test subject to perform such a task, while the other two authors were assigned
to choose a target phenomenon, with the ground truth data for the target hidden from the test subject. Note that
this study should not be confused with a formal user study; this is instead a simple, informal evaluation.

The chosen target was “US solar panel installations in the last five years,” which would be evaluated against
a ground truth signal of weekly photovoltaic installation counts from the Open PV Project [44]. The test subject
was instructed to estimate this target using two different approaches. In the first (MANUAL), he was instructed to
follow a traditional approach to nowcasting, manually searching for topics by keyword in our topic database and
then use the signals of the topics found to build a model to estimate the target. In the second, he was instructed
to use our RACCOONDB demonstration system [9] to estimate the target.

The test subject started the case study by spending several minutes searching online for a rough estimate of
the target’s trend, and he found the quarterly revenue for Solar City Corporation, which he assumed would share
a similar trend with the target. Table 7a summarizes the test subject’s queries for both estimation approaches.
When using MANUAL to estimate the target, the test subject queried for several minutes, trying to find topic
signals that matched the Solar City revenue signal, but he had very little success in his searches, averaging just
0.23 correlation (using absolute value) with the ground truth signal.2 When using RACCOONDB over the course
of a few minutes, he submitted five queries with various keywords and included the Solar City revenue signal
with each query. When presented with the results, he adjusted the signal vs. semantic weighting slider to find the
result with “relevant-looking” topics and a signal that “matched well” with the revenue signal. Figure 7 shows
the user-chosen RACCOONDB result for his “solar” query. Across his five queries and chosen results, the results
averaged 0.75 correlation with the ground truth signal.3

While the total time spent querying with the two approaches was not drastically different (under 10 minutes
for MANUAL and under 5 minutes for RACCOONDB), the test subject was able to find a high-quality result
with his first RACCOONDB query; subsequent queries were simply explorations into improving that result. In
contrast, the test subject submitted many reasonable queries with MANUAL and still received very low-quality
results. When processed by RACCOONDB, many of these same queries (e.g., “solar panels”) returned high-
quality results due to RACCOONDB’s use of query expansion principles and its two-part query. This case study,
while informal, provides additional confidence in RACCOONDB’s real-world usage.

5 Other Opportunities

Human-in-the-loop feature engineering will likely remain an important part of building successful machine
learning systems. The feature engineering loop shown in Figure 1 contains many areas that are prime opportu-
nities for research by the database and systems communities.

Step 1 of the feature engineering loop—writing feature code—is where the feature engineer applies their
domain expertise and creativity to create effective features. RACCOONDB assists the user in this area by seman-
tically expanding the user’s textual query, allowing more coverage over a diverse dataset than a less-informed
user may be able to provide. Tools like FeatureInsight [15] have begun to help feature engineers visualize the
effects of features on classification problems, but more advanced feature visualization systems (perhaps a vi-
sualization query system like SeeDB [45]) could help feature engineers discover subtle properties of raw data

2We also tried performing PCA on the chosen topics’ signals and using the first factor as the target’s estimate—similar to what
RACCOONDB does to aggregate topics into a final estimate—but the results did not improve.

3Certain scientific fields will find this correlation to be quite low, but social sciences generally find anything above 0.5 to be strong.
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that would make effective features. Other potential directions include incorporating automated or assisted data
cleaning and transformation directly into the feature engineering workflow; integrating a data cleaning system
(e.g., [28, 31, 38]) with real-time feedback from a machine learning pipeline; and applying deep learning meth-
ods [13, 18, 35] to automatically create feature extractors.

Related to feature code development is the problem of labeling training examples in datasets that are too
large to feasibly label by hand. Research in distant supervision techniques [37] and label generation from noisy
human-provided data [21] has shown promise. Further reducing this bottleneck would reduce the end-to-end
time needed to create a successful machine learning system.

A source of significant downtime for a feature engineer is waiting for feature code to be applied to a large
dataset. ZOMBIE attacks this problem by automatically finding a good subset of the data to process, while RAC-
COONDB takes advantage of application-specific properties of the data to aggressively prune its large corpus for
each query. Other optimization approaches might include caching and shared computation [45] that take into
account the evolution of feature code: feature sets may change incrementally, allowing some results from previ-
ous iterations of the feature engineering loop to be reused. On the other hand, raw data items that have the same
features on one iteration of feature code may have vastly different features on another. Efficiently partitioning
the raw data and parallelizing the computation under these dynamic conditions also pose interesting challenges.

Training a machine learning system can also be a lengthy part of the feature engineering workflow. Several
projects have targeted training large models in a distributed fashion, such as MLlib [36] and MLbase [30, 43],
as well as model selection management systems [32]. Further, determining the ideal hyperparameters for a ma-
chine learning model has seen some attention (e.g., from the MLlib team) but remains an open problem. Feature
selection [26] (as opposed to feature engineering) is important to optimizing the performance of machine learn-
ing systems and has been looked at by several research groups [33,48]. The goals of these projects are generally
orthogonal to those of feature engineering; they aim to quickly train and configure the final machine learning
model, rather than help the feature engineer evaluate the effectiveness of a particular feature set. Applying these
optimization methods to evaluating feature effectiveness may require a different set of system requirements and
novel techniques, such as developing approximate machine learning models.

6 Conclusion

Feature engineering is an import area of research that is inherently data-centric. In this paper, we presented two
examples of systems aimed at improving the feature engineer’s workflow by minimizing runtime and assisting
with the creation of effective features from large raw datasets. The database community is in an ideal posi-
tion to contribute to new feature engineering projects with its decades of experience in managing, optimizing,
visualizing, and otherwise working with data.
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