
Combining Information from Distributed Evolutionary k-means

Murilo Coelho Naldi
Department of Exact and Technological Sciences

Federal University of Viçosa - UFV
Rio Paranaı́ba, Brazil

murilocn@ufv.br

Ricardo José Gabrielli Barreto Campello
Institute of Mathematics and Computer Sciences

University of São Paulo - USP
São Carlos, Brazil

campello@icmc.usp.br

Abstract—One of the challenges for clustering resides in
dealing with huge amounts of data, which causes the need
for distribution of large data sets in separate repositories.
However, most clustering techniques require the data to be
centralized. One of them, the k-means, has been elected one
of the most influential data mining algorithms. Although
exact distributed versions of the k-means algorithm have been
proposed, the algorithm is still sensitive to the selection of
the initial cluster prototypes and requires that the number
of clusters be specified in advance. This work tackles the
problem of generating an approximated model for distributed
clustering, based on k-means, for scenarios where the number
of clusters of the distributed data is unknown. We propose
a collection of algorithms that generate and select k-means
clustering for each distributed subset of the data and combine
them afterwards. The variants of the algorithm are compared
from two perspectives: the theoretical one, through asymptotic
complexity analyses; and the experimental one, through a
comparative evaluation of results obtained from a collection
of experiments and statistical tests.

Keywords-clustering; k-means; distributed data sets;

I. INTRODUCTION

Data clustering is a fundamental conceptual problem in
data mining, in which one aims at determining a finite set
of categories to describe a data set according to similarities
among its objects. The solution to this problem often consti-
tutes the final goal of the mining procedure — having broad
applicability in areas that range from image and market
segmentation to document categorization and bioinformatics
(e.g. see [1], [2]).

Many clustering algorithms have been proposed in the
literature [1], [3]. Among them, the k-means methods has
been investigated for more than half a century [4]. Recently,
k-means has been elected one of the top ten most influential
data mining algorithms for being simple, scalable and easy
to adapt for different application domains [3]. However,
k-means is sensitive to the selection of the initial cluster
prototypes, as it may converge to suboptimal solutions if the
initial prototypes are not properly chosen [1]. In addition,
it requires that the number of clusters, 𝑘, be specified in
advance. This can be quite restrictive in practice, since the
number of clusters in a data set is generally unknown, espe-
cially in real-world applications involving high dimensional
and/or distributed data.

In order to circumvent k-means limitations, approximation
algorithms include the hybridization of k-means with some
sort of general purpose meta-heuristic adapted to the clus-
tering problem. Evolutionary algorithms are meta-heuristics
widely believed to be able to provide satisfactory suboptimal
solutions to NP-hard problems at acceptable time. From a
combinatorial optimization perspective, clustering problems
can be formally classified as NP-hard [5]. Probably for
this reason, several evolutionary approaches for clustering
problems have been proposed in the literature [5], [6].

A challenge for clustering resides in the substantial growth
of data generated in many fields over the years. This growth
causes a need for the distribution of large data sets in sep-
arate repositories, also called data sites. In many scenarios,
the data are naturally distributed, i.e., have been generated
and stored in different data sites. Large distributed data sets
demand computational techniques that are able to extract
relevant information with good computational performance
and scalability. However, most clustering techniques require
the data to be centralized, which may not be feasible in many
cases due to computational limitations. Moreover, there is
another complicating factor, which is the need to preserve
the privacy of data among data sites, a legal obligation
in some countries in Europe, the United States and other
countries [7].

The present work tackles the problem of generating a
model for distributed clustering, based on k-means, for
scenarios where the number of clusters of the distributed
data is unknown. For such, we propose the generation and
selection of k-means clustering locally in each data site
and, after that, the combination of the obtained clusters
into a single global solution that represents the whole data
set. The variants of the algorithms are compared from
two perspectives: the theoretical one, through asymptotic
complexity analyses; and the experimental one, through a
comparative evaluation of results obtained from a collection
of experiments and statistical tests.

The remainder of this article is organized as follows:
in Section II, a brief review of the related work is made.
Then, a collection of k-means based algorithms to cluster
distributed data are proposed in Section III. This collection
of algorithms is experimentally compared in Section IV. The

2012 Brazilian Symposium on Neural Networks

1522-4899/12 $26.00 © 2012 IEEE

DOI 10.1109/SBRN.2012.11

43

main conclusions are then summarized in Section V.

II. RELATED WORK

The adaptation of a (centralized) clustering technique
for distributed data sets can be divided into two different
approaches. The first approach consists of generating an
exact distributed model of the clustering algorithm, i.e.,
distributing the algorithm in such way that its result will
be identical to the centralized (original) version of the
algorithm. Alternatively, it is possible to obtain a clustering
result that approximates those obtained by the centralized
version of an algorithm. This second approach is known as
approximated models [8] and they are developed to have bet-
ter computational performance or reduced data transmission
in comparison to the correspondent exact model.

An exact distributed version of the k-means algorithm was
proposed in [9], which consists of multiple transmissions
and updates of centroids (clusters’ means) among data sites.
Although this exact version guarantees the same results
of the centralized k-means, the multiple transmissions can
make the algorithm excessively slow, especially if k-means
is executed multiple times in order to estimate the initial
cluster prototypes or the number of clusters in the data.

Approximated algorithms can significantly reduce the
number of transmissions and the amount of data transmitted,
as the algorithm is based on data representatives or approxi-
mations instead of the data itself [8]. The main idea consists
of applying parts of the algorithm on different subsets of
the data set and, after that, combing the results into a single
solution. The method used to combine the results depends
on the type of data distribution. The most typical scenario
consists of different objects of the data set distributed among
data sites. In this scenario the objects share the same feature
space. Markov chains and the Monte Carlo method are
used in [10] to combine clustering information and obtain
a final clustering model of the data set. Another approach
unifies locally clustering solutions (obtained in the data
sites) into a global solution based on the distance among
their representatives (e.g. centroids) [11]. A similar idea is
employed in [12] for collaboration problems.

III. COMBINATIONS OF DISTRIBUTED CLUSTERING

(CDC)

The Combinations of Distributed Clustering (CDC) is
a collection of algorithms aimed to combine distributed
information about the data set into a final clustering solution.
They are composed by data nodes and a master node. A data
node is a fraction of the CDC algorithm responsible for all
processing which involves direct access to a subset of the
data. Each data node is responsible for one subset of the
data and no subset can be processed by more than one data
node. In general, each data site has, at least, one data node.
Data nodes are capable of transmitting information to other
data nodes or to the master node. Differently from the data

nodes, the master node does not have direct access to the
data set (or part of it). Instead, it receives information from
the data nodes and combines this information into a global
clustering solution.

Generally speaking, the CDC algorithms have two main
steps: the first is the generation of clustering models and the
second combines the models obtained in the first step. These
steps will be presented in Sections III-A and III-B.

A. Generation of Clustering Models

The first step of the CDC algorithms consists of clustering
locally the subsets of the distributed data set, i.e., to generate
data clusters for each of the data nodes separately. In the
present work, the k-means algorithm will be used in this
step in order to generate hard partitional clusters (here called
partitions for the sake of simplicity) for the subsets in each
data site. A partition of a data set X = {x1,x2, ...,x𝑛},
composed of 𝑎-dimensional feature or attribute vectors x𝑗 ,
is a collection C = {C1,C2, ...,C𝑘} of 𝑘 non-overlapping
data subsets C𝑖 (clusters) such that C1∪C2∪ ...∪C𝑘 = X,
C𝑖 ∕= ∅ and C𝑖 ∩C𝑙 = ∅ for 𝑖 ∕= 𝑙. In order to circumvent
the k-means limitations presented in Section I, we used the
F-EAC [13] algorithm to estimate the number of clusters
and the correspondent centroids of k-means with linear
computational cost.

The F-EAC was developed to evolve partitions generated
by the use of 𝑘-means and evolutionary operators. These
partitions are represented by individuals, that in turn are cod-
ified by genotypes. The set of genotypes is called population.
Algorithm 1 presents the main F-EAC steps, in which 𝑔 is
the current generation, 𝑃𝑔 is the current population, ∣𝑃 ∣ is
the population size and SC is the stopping criterion.

The Simplified Silhouette validation criteria [14] is used
here as the fitness function (Step 6). An elitist strategy
keeps the best solution (Step 9) [15]. The other solutions are
chosen by a selection operator (e.g., proportional selection
such as the roulette selection [15] − Step 10).

One parameter of F-EAC is the population size ∣𝑃 ∣.
Empirical evidence suggests that this type of algorithm is
robust for distinct value choices for this parameter [13],
[16], [17] and values such as ∣𝑃 ∣ = 10 enable the algorithm
to obtain good partitions in reasonable computational time.
This value will be adopted in the present work.

The F-EAC uses two cluster oriented mutation operators.
The first eliminates one or more clusters, adding its objects
into the clusters with the closest centroids. The second
splits one or more clusters into two new clusters each.
The proportion of application between the two operators is
adjusted dynamically based on the performance obtained by
each one in the previous generation. This work considers the
performance of the operators individually for each genotype,
which is a simple way of doing this. If the usage of one
operator generated a child with fitness higher than its father,
this operator will be used in the mutation of this child

44

Algorithm 1 F-EAC.
1: 𝑔 ← 1;
2: initialize randomly a population 𝑃𝑔;
3: repeat
4: for 𝑖 = 1, ..., ∣𝑃 ∣ do
5: apply the 𝑘-means algorithm to each genotype;
6: evaluate each genotype according to the fitness

function;
7: end for
8: if SC is not satisfied then
9: apply elitist strategy;

10: select genotypes from 𝑃𝑔;
11: for all selected genotypes do
12: select which clusters will be mutated by propor-

tional selection;
13: apply the mutation operators in the selected

clusters to create new genotypes;
14: end for
15: copy the new genotype to the next population 𝑃𝑔+1

and increments 𝑔;
16: end if
17: until SC is satisfied
18: return 𝑃𝑔;

afterwards. Otherwise, the other operator will be used. If
the genotype belongs to the initial population or was selected
by elitism, it has 50% of chance of being mutated by each
operator.

Some possible stopping criteria SC for F-EAC (applied
in Step 17) are: the definition of a maximum number
of generations, a threshold for population diversity, and
others [5]. The stopping criteria adopted in the experiments
presented in this work are discussed in Section IV. Once the
F-EAC stops during the first step of the CDC algorithms,
the centroids of the fittest (best evaluated) partition of the
data subset and the number of objects in each cluster of this
partition are transmitted to the master node.

For a more detailed description of the F-EAC algorithm,
please refer to [13], [17].

B. Combinations of Clustering Models

After receiving the centroids and the number of objects in
each cluster from every data node, the master node generates
a combined partition of the data set. Because the centroids
share the same feature space (as the objects of the data
set), it is possible to cluster these centroids with clustering
algorithms in order to obtain a meta-partition.

Be 𝑀𝑋 = {c1, c2, ..., c𝑐} the set of centroids from
all data nodes, resulted from the the first step of CDC
algorithms, where 𝑐 is the total number of centroids. A meta-
partition is a collection 𝑀𝜋 = {𝑀𝐶1,𝑀𝐶2, ...,𝑀𝐶𝑚𝑘} of
meta-clusters 𝑀𝐶𝑖 for which 𝑀𝐶1∪𝑀𝐶2∪ ...∪𝑀𝐶𝑚𝑘 =
𝑀𝑋 , 𝑀𝐶𝑖 ∕= ∅ and 𝑀𝐶𝑖 ∩ 𝑀𝐶𝑙 = ∅ for 𝑖 ∕= 𝑙. The

meta-partition can be converted into a global partition of
the original data set, replacing each centroid by the objects
it represents.

During the creation of the meta-partition, it is possible to
adjust the position of the meta-centroid — i.e. the centroid
of the meta-cluster — to become the mean of the objects
represented in this meta-cluster. For such, the meta-centroid
is calculated as the average of the centroids weighted by
the number of objects they represent. Thus, the 𝑗-th meta-
centroid is calculated as presented in Equation (1):

mc𝑗 =

∑

c𝑖∈𝑀𝐶𝑗

c𝑖∣𝐶𝑖∣
∑

c𝑖∈𝑀𝐶𝑗

∣𝐶𝑖∣ (1)

where ∣𝐶𝑖∣ is the cardinality of the cluster for which c𝑖 is
the centroid.

In this work, three algorithms were chosen to combine the
set of meta-centroids 𝑀𝑋: the algorithm F-EAC (Algorithm
1) and the hierarchical algorithms single-link and complete-
link [1]. As the hierarchical clustering is a nested sequence
of hard partitional clusterings, each level of the hierarchy
is evaluated with the Simplified Silhouette index (the same
used as the fitness function for F-EAC) and the best partition
is chosen as the final solution. In CDC algorithms, the
calculation of the Simplified Silhouette index is exact, i.e.,
it obtains the same result as the centralized version of
the index. This is done by transmitting the meta-centroids
from the master node to the data nodes and retrieving the
Simplified Silhouette value of each object from the data
nodes.

C. Complexity of the CDC Algorithms

Assuming that the 𝑖-th data node has 𝑛[𝑖] objects, the first
step of the CDC algorithms has a computational complexity
equivalent to the F-EAC [17], i.e., 𝑂(𝑔𝑡 ⋅ ∣𝑃 ∣ ⋅ 𝑡 ⋅ 𝑘𝑚𝑎𝑥 ⋅
(𝑛[1] + 𝑛[2] + ... + 𝑛[𝑑𝑛]) or 𝑂(𝑔𝑡 ⋅ ∣𝑃 ∣ ⋅ 𝑡 ⋅ 𝑘𝑚𝑎𝑥 ⋅ 𝑛),
where 𝑔𝑡 is the F-EAC number of generations, ∣𝑃 ∣ is the
population size, 𝑡 is the number of k-means iterations,
𝑘𝑚𝑎𝑥 is the maximum number of clusters codified by a
genotype during the evolutionary search, 𝑑𝑛 is the number
of data nodes, and 𝑛 is the number of objects in the
distributed data set. If executed in parallel, this complexity
is reduced to 𝑂(𝑔𝑡 ⋅ ∣𝑃 ∣ ⋅ 𝑡 ⋅ 𝑘𝑚𝑎𝑥 ⋅ 𝑛𝑚𝑎𝑥), where 𝑛𝑚𝑎𝑥 is
the maximum number of objects in a data node. Moreover,
if 𝑛𝑚𝑎𝑥 ≈ 𝑛/𝑑𝑛, then the complexity of the CDC first
step is 𝑂(𝑔𝑡 ⋅ ∣𝑃 ∣ ⋅ 𝑡 ⋅ 𝑘𝑚𝑎𝑥 ⋅ 𝑛/𝑑𝑛). The second step of
the CDC algorithms has the computational complexity of
the clustering algorithm adopted in this step. However, the
number of clustered objects is the total number of centroids
resulted from the first step (𝑐). Hierarchical algorithms have
computational complexity 𝑂(𝑐2 ⋅ log 𝑐) [1]. If the F-EAC
was adopted, the computational cost of the second step is
𝑂(𝑔𝑡 ⋅ ∣𝑃 ∣ ⋅ 𝑡 ⋅ 𝑘𝑚𝑎𝑥 ⋅ 𝑐) [17].

45

The CDC algorithms memory allocation cost in the first
step is 𝑂(𝑘𝑚𝑎𝑥 ⋅ ∣𝑃 ∣ ⋅ 𝑛𝑚𝑎𝑥). In the second step, this cost
is 𝑂(𝑘𝑚𝑎𝑥 ⋅ ∣𝑃 ∣ ⋅ 𝑐) if the F-EAC algorithm is adopted.
Otherwise, if the hierarchical algorithms are used, the dis-
similarities between centroids cause the memory allocation
cost of 𝑂(𝑐2).

The amount of data transferred among the data nodes and
the master node by the CDC algorithms is also related to
the clustering algorithm used in their second step. To apply
the Simplified Silhouette index, the meta-centroids must be
transmitted to the data nodes, thus increasing the amount
of data transmitted by the algorithms. If the hierarchical
algorithms are adopted, the total number of meta-centroids
is 2+ 3+ ⋅ ⋅ ⋅+ 𝑘𝑚𝑎𝑥 ≈ 𝑘𝑚𝑎𝑥(𝑘𝑚𝑎𝑥 +1)/2, which requires
transmissions with sizes of order 𝑂(𝑘2𝑚𝑎𝑥 ⋅ 𝑎 ⋅ 𝑑𝑛). If the
F-EAC is adopted, then the data transmission is estimated
as 𝑂(𝑔𝑡 ⋅ ∣𝑃 ∣ ⋅𝑘𝑚𝑎𝑥 ⋅𝑎 ⋅𝑑𝑛) in the worst case. It is important
to note that the transmission cost of the algorithm does not
depend on the number of objects in the data set, which makes
the algorithm scalable in relation to this aspect.

IV. EXPERIMENTS

Experiments with a collection of data sets were carried out
to evaluate the CDC algorithms. This evaluation compares
different CDC variants, concerning three aspects: the quality
of the resulted partitions, the execution time, and the total
amount of data transmitted between data nodes. The quality
of the resulted partitions is measured with the Jaccard exter-
nal index [18] in relation to the known clusters or “golden
truth”. The execution time and amount of data transmitted
was measured using Matlab software in computers with quad
core 3.0 Ghz processors and 12 GB of RAM memory. These
calculations consider that the data nodes executed in parallel
and that the data was transmitted concurrently. It is important
to note that the experiments presented in this section aims
at comparing each of those aspects independently, as the
execution and transmission time are machine dependent.

A collection of 80 artificial data sets created by a ellip-
soidal cluster generator in [19] was chosen for the experi-
ments presented here. Each data set of the collection was
distributed among data nodes in two ways: balanced and
unbalanced. The balanced distribution consists of distribut-
ing the data set among data partitions maintaining the same
proportion of objects each known cluster has in relation to
the original data set. When this proportion is not maintained,
the distribution is considered unbalanced. For a detailed
description of the methods for data distribution adopted here,
please refer to [20].

A. Parameters and Variants

In the experiments presented here, two stopping criteria
SC will be adopted for the F-EAC (Step 17 of Algorithm
1). The first consists of finding a partition with fitness value
equal or higher than a reference value 𝑣𝑟. To calculate the

𝑣𝑟 value for a data set or subset, the following procedure
was executed:

1) Initialize 𝑖← 1.
2) Execute k-means 100 times with random initial proto-

types and the 𝑘 value as the known number of clusters.
3) Each partition resulted from Step 2 is evaluated with

the same validation criteria used by the F-EAC.
4) The best validation value is stored in v[𝑖].
5) If 𝑖 < 31 then 𝑖← 𝑖+ 1 and return to Step 2.

6) Calculate the reference value as 𝑣𝑟 =
30∑

𝑖=1

v[𝑖]
30 .

Additionally, a maximum number of generations 𝑔𝑚𝑎𝑥 =
100 is adopted as a second stopping criterion. The F-EAC
initial population is composed of partitions with number
of clusters 𝑘 randomly chosen in the interval [2, 𝑛1/2], a
commonly used rule of thumb for k-means based evolution-
ary algorithms [21], [16], [17]. Comparing the results for
the different population sizes adopted in [17], it is possible
to observe that larger populations tend to make F-EAC
converge to good solutions in fewer generations, which,
by their turn, are more computationally costly than those
related to smaller populations. These results suggest that the
algorithm is reasonably robust to the choice of the population
size ∣𝑃 ∣, especially if one considers that its effectiveness
in solving the clustering problem is barely affected by this
choice. Experiments in [17] show that ∣𝑃 ∣ = 10 obtains
good results and will be adopted here. During the F-EAC,
the k-means convergence is attained when no significant
difference is observed between the values of the centroids in
two consecutive iterations, for which a threshold of 10−3 is
adopted in this work, and a maximum number of iterations
𝑡 is also imposed to the algorithm. Empirical evidence
suggests that 𝑡 = 5 or less repetitions will suffice [17]. So,
this value is also adopted here.

When hierarchical algorithms are applied on the combi-
nation of clusters, the CDC algorithms result on a hierarchy
composed of nested partitions with number of clusters from
2 to 𝑛1/2 and there is no other stopping criterion. Here,
every level of the hierarchy is evaluated with the Simplified
Silhouette index and the correspondent partition with the
best result is chosen.

In the following experiments, four variants of the CDC
algorithms were compared for 2 types of data set distribu-
tions:

1) CDC-sl: hierarchical single-link applied on a set of
F-EAC clusters, balanced data set distribution.

2) CDC-sl (U): the same as the previous variant, for
unbalanced data set distribution.

3) CDC-al: hierarchical average-link applied on a set of
F-EAC clusters, balanced data set distribution.

4) CDC-al (U): the same as the previous variant, for
unbalanced data set distribution.

5) CDC-FEAC: F-EAC applied on a set of F-EAC clus-
ters, balanced data set distribution.

46

6) CDC-FEAC (U): the same as the previous variant, for
unbalanced data set distribution.

7) CDC-FEAC (10g): F-EAC applied on a set of F-EAC
clusters, balanced data set distribution. This variant
has a third stopping criterion for the F-EAC at the
combination of clusters. The algorithm stops after 10
consecutive generations without improvement on the
fitness value of the best partition.

8) CAD-FEAC (10g)(U):the same as the previous variant,
for unbalanced data set distribution.

B. Results

The CDC variants were executed 30 times for each data
set and the mean and standard deviation error values of
the Jaccard index, the execution time and amount of data
transferred were compared. The (non-parametric) Friedman
test [22] was applied o verify the statistical significance of
the differences between the mean values, since the ANOVA
test assumes that the compared samples are drawn from
populations with normal distributions and similar variances
[23], which could not be done here. When the null hypoth-
esis of the test was rejected, which indicates that there is
statistical evidence to support that the compared means are
different, a post-hoc multiple comparison procedure [24]
was applied using Matlab

R⃝
to find which differences did

exhibit statistical significance. To maintain the actual level of
statistical confidence in 95%, a Bonferroni adjustment [25]
was applied to the critical values from the 𝑡−distribution to
compensate for multiple comparisons. The best results and
results which are not statistically different from the best one
are presented in bold in Tables I, II and III for distributions
in 5, 20, and 80 data nodes, respectively.

CDC Variant Jaccard Time (s) Transmission (KB)

1 CDC-sl 0.7816 (0.1503) 3.14 (2.07) 255.44 (183.42)
2 CDC-sl (U) 0.7499 (0.1843) 4.91 (7.69) 212.05 (183.89)
3 CDC-al 0.7974 (0.1582) 3.19 (2.08) 255.44 (183.42)
4 CDC-al (U) 0.7725 (0.1865) 4.94 (7.69) 212.05 (183.89)
5 CDC-FEAC 0.7634 (0.1425) 15.28 (15.60) 2055.53 (3235.86)
6 CDC-FEAC (U) 0.7469 (0.1684) 26.28 (22.06) 2882.62 (3628.17)
7 CDC-FEAC (10g) 0.7469 (0.1482) 8.05 (5.05) 865.79 (939.65)
8 CDC-FEAC (10g) (U) 0.7242 (0.1729) 11.03 (9.34) 948.26 (974.23)

Table I
MEAN AND STANDARD DEVIATION VALUES OBTAINED BY THE

COMPARED ALGORITHMS WHEN APPLIED TO THE COLLECTION OF DATA

SETS DISTRIBUTED AMONG 5 DATA NODES.

The results in Table I indicate that the variants of the CDC
algorithms that adopt hierarchical clustering algorithms at
the second main step presented the best results when the data
sets were distributed among 5 data nodes. The variant with
the best Jaccard mean values is the CDC-al, followed closely
by the CDC-sl. When computational time is considered,
the results between these variants are inverted. They also
presented the lower amount of data transmitted.

Comparing Tables I and II, the quality of the CDC-sl
and CDC-al partitions were reduced when the number of

CDC Variant Jaccard Time (s) Transmission (KB)

1 CDC-sl 0.5711 (0.2542) 1.66 (0.92) 1290.41 (840.20)
2 CDC-sl (U) 0.5878 (0.2525) 2.07 (2.16) 1283.34 (836.64)
3 CDC-al 0.6940 (0.2520) 2.26 (1.49) 1290.41 (840.20)
4 CDC-al (U) 0.6874 (0.2552) 2.18 (2.22) 1283.34 (836.64)
5 CDC-FEAC 0.7650 (0.1531) 9.76 (10.44) 7857.03 (11479.87)
6 CDC-FEAC (U) 0.7776 (0.1672) 14.89 (12.97) 15154.84 (19411.24)
7 CDC-FEAC (10g) 0.7541 (0.1584) 5.27 (3.55) 3686.41 (3802.90)
8 CDC-FEAC (10g) (U) 0.7596 (0.1719) 5.57 (3.81) 4351.37 (4639.09)

Table II
MEAN AND STANDARD DEVIATION VALUES OBTAINED BY THE

COMPARED ALGORITHMS WHEN APPLIED TO THE COLLECTION OF DATA

SETS DISTRIBUTED AMONG 20 DATA NODES.

data nodes increased. This reduction may be a result from
the overlap between clusters, evidenced by the increased
(almost three times) number of clusters in the CDC first
step (please refer to [20] for a more detailed explanation).
The same cannot be said about the CDC-FEAC variants,
which resulted in the best partitions, as presented in Table II.
Although the CDC-FEAC (10g) variants resulted in Jaccard
mean values which are not as good as those obtained with
the original CDC-FEAC, they are close. Additionally, the
stopping criterion of 10 generations without improvement
allowed computational and transmission savings.

CDC Variant Jaccard Time (s) Transmission (KB)

1 CDC-sl 0.2664 (0.2410) 0.97 (0.65) 5127.95 (3342.77)
2 CDC-sl (U) 0.2789 (0.2478) 0.91 (0.61) 5124.81 (3338.31)
3 CDC-al 0.5327 (0.2694) 3.76 (3.58) 5127.95 (3342.77)
4 CDC-al (U) 0.5725 (0.2571) 2.50 (2.05) 5124.81 (3338.31)
5 CDC-FEAC 0.7052 (0.2241) 18.41 (15.49) 61525.95 (74502.38)
6 CDC-FEAC (U) 0.7481 (0.1906) 18.07 (14.31) 68201.59 (80820.47)
7 CDC-FEAC (10g) 0.6921 (0.2283) 5.53 (3.60) 16158.76 (16939.77)
8 CDC-FEAC (10g) (U) 0.7348 (0.1910) 5.30 (3.28) 17386.12 (18348.24)

Table III
MEAN AND STANDARD DEVIATION VALUES OBTAINED BY THE

COMPARED ALGORITHMS WHEN APPLIED TO THE COLLECTION OF DATA

SETS DISTRIBUTED AMONG 80 DATA NODES.

Once more, the increasing of the data nodes (20 to 80)
reduced the mean quality of the CDC-sl and CDC-al, as
indicated by the Jaccard mean values in Tables II and
III. Nevertheless, the CDC-FEAC variants had lower qual-
ity variation, which indicates robustness in relation to the
number of data nodes and centroids resulted from the first
step of the algorithms. However, their computational time
and the amount of data transmitted were higher than those
resulted from the variants based on hierarchical algorithms.
It is possible to reduce these costs with the use of the 10
generation limit, with the drawback of some quality loss.

In relation to the type of distribution, the unbalanced dis-
tribution only reduced the quality of the partitions obtained
with 5 data nodes. For 20 and 80 data nodes, the quality of
the partitions was better or very close to the quality resulted
from the variants applied on balanced data. This indicates
that the CDC algorithms seems to be able to obtain good
results even if the data set known clusters are distributed

47

with unbalanced known clusters.

V. CONCLUSION

This work proposed the generation and selection of k-
means clustering locally in each data site and the combi-
nation of the obtained clusters into a single global solution
that represents the whole data set. The experiment results
obtained from the 8 CDC variants compared showed that,
when the hierarchical algorithms are adopted, this combina-
tion has lower computational time and data transmission.
However, the adoption of the F-EAC at the second step
of the algorithms showed to be robust to variations in the
data distribution. The use of the limit of 10 generations
without improvement on the quality of partitions reduced
the cost of the algorithm, causing minor quality loss. This
version should be recommended for scenarios where the
performances of the CDC algorithms are unknown.

ACKNOWLEDGMENT

The authors acknowledge the Brazilian agencies CNPq,
FAPEMIG and FAPESP for the financial support.

REFERENCES

[1] A. K. Jain, M. N. Murty, and P. J. Flynn,
“Data clustering: a review,” ACM Computing Surveys,
vol. 31, no. 3, pp. 264–323, 1999. [Online]. Available:
citeseer.ist.psu.edu/jain99data.html

[2] R. Xu and I. Wunsch, D., “Survey of clustering algorithms,”
IEEE Transactions on Neural Networks, vol. 16, no. 3, pp.
645–678, May 2005.

[3] X. Wu, Top ten algorithms in data mining. Taylor & Francis,
2009.

[4] D. Steinley, “K-means clustering: A half-century synthesis,”
British Journal of Mathematical and Statistical Psychology,
vol. 59, pp. 1–34(34), May 2006.

[5] E. Falkenauer, Genetic Algorithms and Grouping Problems.
John Wiley & Sons, 1998.

[6] E. Hruschka, R. J. G. B. Campello, A. A. Freitas, and
A. C. Ponce Leon F. de Carvalho, “A survey of evolutionary
algorithms for clustering,” Systems, Man, and Cybernetics,
Part C: Applications and Reviews, IEEE Transactions on,
vol. 39, no. 2, pp. 133–155, March 2009.

[7] H. Hijmans, “Recent developments in data protection at
european union level,” ERA-Forum, Online First, vol. 12, pp.
1–13, 2010.

[8] K. Hammouda and M. Kamel, “Hierarchically distributed
peer-to-peer document clustering and cluster summarization,”
Knowledge and Data Engineering, IEEE Transactions on,
vol. 21, no. 5, pp. 681–698, May 2009.

[9] I. S. Dhillon and D. S. Modha, “A data-clustering algorithm
on distributed memory multiprocessors,” in Revised Papers
from Large-Scale Parallel Data Mining, Workshop on Large-
Scale Parallel KDD Systems, SIGKDD. London, UK:
Springer-Verlag, 2000, pp. 245–260.

[10] S. Merugu and J. Ghosh, “A privacy-sensitive approach to
distributed clustering,” Pattern Recognition Letters, vol. 26,
no. 4, pp. 399–410, 2005.

[11] Y. Dong, S. Cao, K. Chen, M. He, and X. Tai, “Pfhc:
A clustering algorithm based on data partitioning for
unevenly distributed datasets,” Fuzzy Sets and Systems,
vol. 160, no. 13, pp. 1886 – 1901, 2009, theme:
Information Processing and Applications. [Online]. Avail-
able: http://www.sciencedirect.com/science/article/B6V05-
4V17CJH-9/2/b11420094ccdb7cb14556f98923efb63

[12] W. Pedrycz and P. Rai, “Collaborative clustering with the use
of fuzzy c-means and its quantification,” Fuzzy Sets Syst., vol.
159, no. 18, pp. 2399–2427, 2008.

[13] V. Alves, R. Campello, and E. Hruschka, “Towards a fast
evolutionary algorithm for clustering,” in IEEE Congress on
Evolutionary Computation, 2006, Vancouver, Canada, 2006,
pp. 1776–1783.

[14] E. R. Hruschka, R. J. G. B. Campello, and L. N. de Cas-
tro, “Evolving clusters in gene-expression data,” Information
Sciences, vol. 176, no. 13, pp. 1898–1927, 2006.

[15] M. Mitchell, An Introduction to Genetic Algorithms. MIT
Press, 1998.

[16] R. J. G. B. Campello, E. R. Hruschka, and V. S. Alves, “On
the efficiency of evolutionary fuzzy clustering,” Journal of
Heuristics, vol. 15, no. 1, pp. 43–75, 2009.

[17] M. C. Naldi, R. J. G. B. Campello, E. R. Hruschka, and A. C.
P. L. F. Carvalho, “Efficiency issues of evolutionary k-means.”
Applied Soft Computing., vol. 11, no. 2, pp. 1938–1952, 2011.

[18] P. Jaccard, “Nouvelles recherches sur la distribution florale,”
Bull. Soc. Vandoise des Sci. Nat., vol. 44, pp. 223–270, 1908.

[19] J. Handl and J. Knowles, “An evolutionary approach to
multiobjective clustering,” IEEE Trans. on Evolutionary Com-
putation, vol. 34, pp. 56–76, 2007.

[20] M. Naldi, “Técnicas de combinação para o agrupamento cen-
tralizado e distribuı́do de dados,” Ph.D. dissertation, Instituto
de Ciências Matemáticas e Computação , ICMC-USP, 2011.

[21] M. Pakhira, S. Bandyopadhyay, and U. Maulik, “A study of
some fuzzy cluster validity indices, genetic clustering and
application to pixel classification.” Fuzzy Sets Systems, vol.
155, no. 2, pp. 191–214, 2005.

[22] M. Hollander and D. A. Wolfe, Nonparametric Statistical
Methods. Wiley-Interscience, 1999.

[23] J. Demšar, “Statistical comparisons of classifiers over multiple
data sets,” J. Mach. Learn. Res., vol. 7, pp. 1–30, 2006.

[24] Y. Hochberg and A. C. Tamhane., Multiple Comparison
Procedures. John Wiley & Sons, 1987.

[25] O. J. Dunn, “Multiple comparisons among means,”
Journal of the American Statistical Association, vol. 56,
no. 293, pp. 52–64, 1961. [Online]. Available:
http://www.jstor.org/stable/2282330

48

