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Complex Modal Analysis of the
Swimming Motion of a Whiting
The kinematics of the transverse motion of a swimming fish are analyzed using a complex
modal decomposition. Cinematographic images of a swimming whiting (Gadus merlan-
gus) were obtained from the work of Sir James Gray (1933, “Studies in Animal Locomo-
tion III. The Propulsive Mechanism of the Whiting (Gadus merlangus),” J. Exp. Biol., 10,
pp. 391–402). The position of the midline for each image was determined and used to
produce planar positions of virtual markers distributed along the midline of the fish.
Transverse deflections of each virtual marker were then used for the complex orthogonal
decomposition of modes. This method was applied to images of a whiting before and after
amputation in a Newtonian frame of reference and an “anterior-body-fixed” frame as
well. The fish motions were well represented by a single complex mode, which was then
used as a modal filter. The extracted mode and modal coordinate were used to estimate
the frequency, wavelength, and wave speed. The amputated fish was compared to the non-
amputated fish, and the amount of traveling in the respective waveforms was quantified.
The dominant complex mode shape and the estimated modal frequency were employed to
reanimate the fish motion. [DOI: 10.1115/1.4023056]

1 Introduction

We study the kinematics of the swimming motion of a whiting
(Gadus merlangus or Merlangius merlangus) that was examined by
Sir James Gray [1,2]. The motion of a fish during swimming is of
interest for several reasons. Some species of fish have a natural
ability to swim very efficiently. A greater understanding of their
movement allows for better appreciation of fish themselves, as well
as valuable insight to a very efficient form of underwater locomo-
tion. The work in this area can also be applied to the development
of modern technology, such as in biomimetic robotic fish [3–7].

In this paper, we perform complex modal analysis to further an-
alyze and quantify the motion of the fish. The fish is seen as an
oscillating structure, and the many degrees of freedom are the
positions of points along the midline of the fish. The method
applied is a complex orthogonal decomposition [8], which is a
generalization of proper orthogonal decomposition [9]. The pur-
pose is to demonstrate how the analysis method can be applied to
fish motion data. In this example we look at a brief moment of
swimming of an individual fish, rather than assess an average rep-
resentation of swimming patterns of all whitings, and compare the
movements of the fish with and without its tail fin.

The contributions of this work are in the description of ani-
mated fish swimming motion in terms of complex modes and
modal coordinates and in providing an analysis tool for extracting
this modal information from images. This new perspective ena-
bles a thorough and compact representation for fish kinematics.

1.1 Background on Fish Kinematics. Brief historical
accounts [10,11] mention early studies, for example, by Aristotle,
who thought the fish propelled themselves with their pectoral
(side) fins, and by Borelli, a disciple of Galileo, who showed that
the fish he studied could swim without the pectoral fins and
instead relied on motions of the tail. Pertinent interest in fish
motion has emerged since the start of the 20th century. Modern
analyses began with Breder [12], who classified body/caudal-fin
swimming motions. The classifications of undulatory swimming
still used today range from anguilliform, subcarangiform, carangi-

form, thunniform, and/or ostraciform swimming [11,13,14]. The
subjective descriptions of these motions vary progressively from
large undulation in the anterior through posterior for anguilliform
to subtle anterior motion in the subcarangiform motion to solely
caudal (tail) fin motion in the thunniform motion. Lindsey [11]
provided a chart comparing motion characteristics and body types
associated with these classes of motion. Not all authors have used
the same classifications.

In the 1930 s, Gray studied swimming fish in a set of important
papers on fish locomotion [1,2,15]. In his work [1,2], he used a se-
ries of photographs, and interpretive sketches, to portray the
movements of the bodies of various fish while swimming. In Ref.
[2], he focused on the role of the caudal fin in the whiting species.
The whiting is illustrated in Fig. 1. Gray experimented with the
caudal fin’s role by amputating the caudal fin of one whiting fish
and comparing the swimming motion with its prior nonamputated
(intact) motion. Gray had estimated that the caudal fin accounts
for 40% of the intact fish’s propulsion. However, he observed that
the amputated fish did not swim at a significantly different speed
than the intact fish and suggested that the amputated fish makes
up for the lost caudal fin by changing its movement pattern so that
energy is transferred by movement in the rest of its body.

Videler and Hess [14,16] sensed the motions of mackerel and
saithe cinematographically, and processed the images into time
series data, which were then analyzed in a variety of ways. They
fit the motion at various locations, head to tail, on the body to
Fourier series, including both sine and cosine terms. We’ll come
back to this later. Gillis [17] studied moving images of aquatic un-
dulatory locomotion in fish and amphibians, in the spirit of Gray’s
work, and placed heavy emphasis on the effects of the tail angles
while swimming.

Fig. 1 An illustration of the whiting
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Studying the body motions during undulatory swimming is im-
portant because the body kinematics are often used as input to
computational models of the fluid flow around the fish. Wolfgang
et al. [18] used experimental flow-visualization techniques to
study the flow around a swimming giant danio and compared the
experiments to a three-dimensional numerical model of the flow
velocity field based on prescribed motions of the midline. Boraz-
jani and Sotiropoulos, in a series of papers, modeled a virtual car-
angiform mackerel [19] and an anguilliform lamprey [20], each
case numerically tethered at constant flow velocity, based on an
incompressible Newtonian fluid modeled with the Navier–Stokes
equations and solved by a hybrid Cartesian/immersed boundary
method. Next they studied the effects of body shape and motion
type [21]. In these studies, the imposed kinematics were quantified
using a midline displacement function hðx; tÞ ¼ aðxÞ sinðkx� xtÞ,
which describes a traveling wave with wave speed c ¼ x=k and
spatially dependent wave amplitude a(x), where x is the position
along the length of the fish, head to tail, k is the wave number
(2p over wavelength), and x is the oscillation frequency. In the
anguilliform case, aðxÞ was fit to an exponential function match-
ing the data from Tytell and Lauder [22] based on American eels,
and the wave number k was set based on the value used for a
robotic lamprey [4]. In the carangiform case, the wave amplitude
aðxÞ was expressed as a quadratic fit to the amplitude observations
of Videler and Hess [16], with a wavelength based on studies by
Videler and Wardle [23].

1.2 Complex Modal Decomposition. The method we use to
analyze the motion of the fish is the complex orthogonal decom-
position (COD), developed for structures [8] and since applied to
the movements of worms [24] and waves in beams [25]. COD is a
generalization of the well-known proper orthogonal decomposi-
tion (POD). POD, similar to singular value decomposition (SVD)
and principal components analysis (PCA), is a tool for extracting
modes that optimize the signal energy distribution in a set of
measured time series. It has been used to characterize spatial co-
herence in turbulence and structures [9,26,27], the dimension of
the dynamics [26,28,29], empirical modes for reduced order mod-
els [30,31], and in system identification [32,33]. POD, SVD, and
PCA have been compared for structural applications [34]. In spe-
cific circumstances, the POD produces the normal modes of a
structure [35–38]. POD is particularly useful if extracting standing
wave components but is less suited for decomposing nonstanding
wave components. The COD leads to complex modes that can be
used to describe nonstanding and traveling waves.

SVD has been used to study the fluid wake of a fish [39]. In
contrast, our work focuses on the body. Both COD and SVD are
able to dissect the motion into modes and indicate a measure of
energy associated with the modes.

The application of COD involves solving the eigenvalue prob-
lem Rw ¼ kw, where R is a complex “correlation matrix” built
from time history measurements of a structure, in this application,
the transverse displacement measurements along the body of the
fish. The eigenvectors w of R are called “complex orthogonal
modes” (COMs), and indicate mode shapes that represent the
characteristic movement of the fish. The eigenvalues k, which are
the “complex orthogonal values” (COVs), indicate the mean
squared amplitude of modal coordinates. The largest COV corre-
sponds to the dominant waveform of the swimming fish. Using
the results of COD, we will then be able to calculate other impor-
tant information of the swimming mechanics of the fish, such as
frequency and wave number (or wavelength). Other geometric
properties of the mode could also be quantified, such as the ampli-
tude profile, and the tail angle of the fish as it swims through time,
a quantity that Gillis [17] focused on.

In this paper, following Gray [2], we analyze the movement of
an intact and an amputated fish. Image processing is first applied
to images from Gray’s 1933 paper [2]. Transverse deflections of
the midline of the fish are determined and become the subject of

this analysis. Indeed, Gray’s results of more than 75 years ago still
contain information that becomes accessible as new analysis tech-
niques are developed.

2 Methods

Gray’s papers [1,2] incorporated photos of multiple species of
fish as they swam through time. For this study, we focused on the
photos of the movement of the whiting, before and after amputa-
tion [2]. The analysis in this work involved image processing to
convert Gray’s photographs of swimming fish into displacement
data of the midline of the fish. The COD was then applied to the
transverse displacement data. In this section, we discuss our pro-
cess for obtaining transverse deflection data and then the decom-
position analysis.

2.1 Image Processing. The whiting images were taken every
0.05 s [1] and were placed over 7.62 cm (3 in.) square grids so that
the various positions of the fish could be easily compared. Inspec-
tion of the photos shows that the intact fish was about 30.48 cm
(12 in.) in length, while the amputated fish was about 26.7 cm
(10.5 in.) long.

The photos of the fish were scanned from Gray’s paper [2] at a
resolution of 118 pixels per cm (300 pixels per in.). Individual fish
images were created with a common background, based on the
grid in the original images, to provide a fixed coordinate system.
Approximate midlines of the bodies of all individual fish images
were created manually with Adobe Illustrator (Fig. 2). This

Fig. 2 A sample of midlines superposed onto fish images
obtained from Gray [2]. (a) Prior to tail amputation. (b) After
amputation.
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manual approach seemed to produce cleaner transverse displace-
ment data than did our attempt to use programmed image process-
ing methods. It is expected that small errors incurred at this step
will be modally filtered by the COD [24]. The midlines were then
saved as black-and-white images. Representing each fish image,
each computer-generated midline was loaded into a MATLAB pro-
gram. This program assigned each pixel of the midlines a value
corresponding to black or white in an array. Each column and row
of the image array represented an x̂ coordinate and a ŷ coordinate.
The program recognized the x̂ and ŷ coordinates of the midline
pixels. The length of the midline was determined, and then the x̂
and ŷ coordinates of m equally spaced virtual markers were estab-
lished along the midline. The idea of using virtual markers on
images of an organism follows work on the motion studies of
nematodes [40,41]. The intact whiting was tagged with m ¼ 49
virtual markers, while the amputated whiting had m ¼ 43 virtual
markers, such that the virtual markers were spaced by approxi-
mately 6.35 mm (0.25 in.) from head to tail.

A set of virtual marker locations was assembled for each fish
image, thereby producing x̂ and ŷ time histories for each virtual
marker. In the computations, the fish images were essentially ori-
ented with a horizontal fish axis (a 90-deg counterclockwise rota-
tion of the images shown in the figures), and so the x̂ coordinate
information is referred to as “axial,” and ŷ coordinate information
is referred to as “transverse.” The positions of the virtual markers
were then used to monitor the fish’s movements as it swam.

Gray’s set of photographs of the intact whiting represented
slightly more than a full cycle. Close inspection of these images
suggested that the fish spent about the first half cycle swimming
nearly straight forward. During the second half cycle, the right
pectoral fin flipped forward and pulled back while the heading
veered slightly to the left. Our aim is to quantify its straight for-
ward locomotion pattern through one cycle. Henceforth, we incor-
porated the first half cycle, assumed symmetry, and regenerated
the second half cycle, thereby obtaining a single cycle of domi-
nantly straight forward locomotion. From further inspection and
trial decompositions, we determined that six images (we used the
first six snapshots) best approximated a half cycle, such that
n ¼ 12 for a full cycle.

Gray’s photographs of the amputated whiting depicted slightly
more than a half cycle of motion. Assuming symmetry between
two half cycles of motion, we reconstructed the second half cycle
to create a full cycle of motion. We used the data from images 2
through 11, such that the half cycle included 10 data, and thereby
n ¼ 20 for a full cycle of amputated fish motion.

We completed both motion cycles by taking the images of the
first half cycle of motion and duplicating them by flipping them
about the neutral axis of swimming. As such, the second half
cycle was a mirror image of the first half cycle. If the transverse
deflection data were flipped about an arbitrary axis, the oscillatory
motion of the virtual markers would undergo jumps at the half
cycle instants. To prevent this distortion, the neutral axis of swim-
ming was determined by finding the mean of the marker positions
at the first and seventh time samples (for the intact swimmer). If
the sampling is nearly commensurate with the oscillation period,
the seventh sample would represent the start of the second half
cycle, and would serve as the cyclic opposite of the first sample,
regardless of the phase of the oscillation. Thus, a marker’s neutral
position was approximated as the mean of the first and seventh
time samples (for the intact fish). The neutral axis values of each
virtual marker was subtracted from its half-cycle time series, so
that the transverse data neutral axis was translated approximately
to y ¼ 0, and then the data were reflected about the new neutral x
axis to complete the cycle. (Another option for determining the
neutral axis would be to fit a line to the means of the half cycle
endpoints. In this case, the virtual marker neutral axis points had a
very small variation with a trend, instead of a random distribution,
and so the marker means themselves were used.) The neutral axis
was a constant axis, and therefore, the resulting full cycle of trans-
verse motion remained in a fixed Newtonian ðx; yÞ frame.

A superposition of one cycle of samples of the fish markers, af-
ter the treatments above, is shown in the upper half of Fig. 3(a)
for the intact fish, and Fig. 4(a) for the amputated fish. The lower
half of Fig. 3 shows the transverse displacements of the odd vir-
tual markers of the intact fish as functions of time. The large oscil-
lations of tail motion and the smaller amplitude oscillations of
markers on the body are apparent, as are the relative phases of os-
cillation, which show increasing lag toward the tail.

Drawings by Gray [2] rendered from his photographs show
body movements relative to the anterior of the fish body. To draw
comparisons between our results and Gray’s observations, we also
prepared transverse deflections relative to the fish’s anterior. The
fish is clearly not rigid, so this body-fixed deflection was esti-
mated. Noting that the flexure of the anterior of the body was
small, we fit a straight line to the first 20 markers in both the intact
and amputated motions. The flexural deflections transverse to the
“anterior-body-fixed” axis were then estimated with an assump-
tion that the body angle was small.

2.2 Complex Modal Decomposition. A one-dimensional
COD was applied solely to the transverse data of the fish. To
apply COD, we first needed to convert the sampled real transverse
oscillations yðtÞ into complex analytic signals zðtÞ. We did this by
the half-spectrum inversion method, in which the Fourier trans-
form ~Yk xð Þ of each signal is digitally approximated by the fast
Fourier transform (FFT) and then multiplied by two. The values

Fig. 3 Intact fish transverse displacements. The top shows
snapshots of all the midlines of the intact whiting through one
full cycle (from two half cycles). The bottom shows time traces
of the odd virtual markers. Column (a), after image processing,
and (b) using only the dominant mode acquired after COD.

Fig. 4 (a) Snapshots of all the midlines of the amputated whit-
ing through one full cycle (from two half cycles) after image
processing. (b) Representations of the midlines using only the
dominant mode acquired after COD.
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of 2 ~Yk xð Þ at the negative frequencies are then set to zero to pro-
duce the one-sided ~Zk xð Þ, and the inverse FFT is applied to obtain
zkðtÞ [8,42]. The complex analytic signals zkðtÞ can also be
obtained by applying the Hilbert transform to ykðtÞ to get yHkðtÞ,
and then building zkðtÞ ¼ ykðtÞ þ iyHkðtÞ [8,42].

The zðtÞ vector, whose elements zkðtÞ represent signals for each
virtual marker, when sampled through time, comprises the m� n
complex ensemble matrix Z for transverse motion. The ith row of
Z represents the time history of the ith virtual marker, and the jth
column is the jth time sample. The m� m complex “correlation”
matrix was then constructed as R ¼ Z�ZT=n, where the overbar
indicates a complex conjugate. Matrix R is Hermitian, so the
eigenvalues (COVs) ki are real and the eigenvectors (COMs) wi

are orthogonal (unitary), that is, �wT
i wi ¼ 1 for two of the same

normalized eigenvectors, and �wT
i wi ¼ 0 for two different eigen-

vectors [8]. The rank of R is bounded by the minimum of n and
m, which in our case is n. As such, at most, n meaningful modes
can be expected. Indeed, fewer than n meaningful modes are
expected, as many modes tend to have insignificant participation
and are noise dominated. Since our fish undergoes a single cycle
of motion, we expect a mode corresponding to the fundamental
frequency of undulation, with higher modes corresponding to har-
monics, most of which will be small noisy contributions.

Once the COMs, wi, are obtained, we can look at the motion
associated with these modes. The premise is that the total motion is
a sum of modal motions (e.g., see Ref. [43]), such that, in ensemble
form, Z ¼WQ, where the W is the complex “modal matrix”
whose columns are the dimensionless normalized modal vectors
wj, and the rows of Q are samplings of the complex “modal coor-
dinates.” Then, this complex modal coordinate ensemble is

Q ¼W�1Z ¼ �WTZ

Ensemble matrices Z and Q both have units of length. Reduced
modal motion can be constructed as Zr ¼WrQr , where
Wr ¼ ½w1;…;wr� � is m� r, r < m, and the rows of Qr are sam-
plings of the associated modal coordinates qjðtÞ, j ¼ 1; :::; r. Then
r � n matrix Qr ¼ �WT

r Z, and hence,

Zr ¼Wr
�WT

r Z (1)

is the m� n modally reduced motion ensemble. If a small number
of modes are “active,” then Zr � Z. This process can be used as a
filter to “purify” the response based on the deterministic modal ac-
tivity. The modal filter is not perfect because noise will also infil-
trate the dominant modal coordinates. But the modal filter can be
effective.

It may be useful to sketch an interpretation of a complex modal
motion. The harmonic motion in a complex mode z1ðtÞ ¼ eatu;
where z1 is a vector of complex analytic particle positions, t is
time, a ¼ cþ xi, and u ¼ cþ di is a complex mode, with c;x; c
and d being real scalars and vectors, can be expressed in real form
(for example, by combining with its complex conjugate, �z1ðtÞ) as

y1ðtÞ ¼ ect½cosðxtÞc� sinðxtÞd� (2)

Thus, a complex mode induces an oscillation with a continual
cyclic transition between the shapes c and d. The relative sizes
and degree of independence of c and d dictate the “amounts” of
standing and traveling in the wave.

Indeed, the work of Videler and Hess [14,16] on the kinematics
of saithe and mackerel was founded on a similar concept, without
the terminology “complex modes.” Videler and Hess expressed
the motion in a Fourier series comprised of discretizations of asso-
ciated functions cjðxÞ and djðxÞ, which play the role of real and
imaginary part vectors c and d, as coefficients of time varying har-
monic terms cosðjxtÞ and sinðjxtÞ for a given point x along the
midline. In their work, the elements of vectors c and d were esti-
mated from measurement Fourier coefficients and splines for up

to three odd harmonics. The COD presented here is a method of
efficiently packaging a similar estimation using complex modal
vectors that result from an eigenvalue problem.

The nondimensional nonsynchronicity index, or “traveling
index” for mixed traveling waves, quantifies the independence
between the real and imaginary parts c and d of a COM as the re-
ciprocal of their relative condition number. A traveling index
value of zero indicates no independence between the real and
imaginary vectors, thus, a standing wave and a traveling index
value of 1 represents complete independence between the two
vectors, meaning a “fully” traveling wave [8].

Furthermore, we can dissect the COM vector as w ¼ ws þ wt,
where ws is a purely standing addend, and wt is a purely traveling
(or nonsynchronous) addend. Then ws ¼ cs þ ids and
wt ¼ ct þ idt. For example, if kck�kdk, then the standing
addend of d is the vector addend that is parallel to c, such that
ds ¼ d � ecec, where ec ¼ c= k c k is the unit vector in the direc-
tion of c. Then the traveling vector addend of d is dt ¼ d� ds,
which is the part that is normal to c. The traveling addend of c is
the piece of c of the same size as dt, such that ct ¼k dt k ec.
Finally, the standing part of cs ¼ c� ct: Then the modal motion

Zr ¼ wQ1 ¼ wsQ1 þ wtQ1 ¼ Zs þ Zt

is now separated into standing and traveling parts. (This break-
down is not unique, and there may be a way to optimize it.)

The eigenvalues k of R produce mean squared amplitudes, in
units of length squared, of the modal coordinates. Examination of
the kj can indicate how many modes are active and significant.
Since �wT

j wj ¼ 1, the average of the mean amplitude squared of
the markers on the fish is kj=m. Thus, kj=m provides an estimate
of the mean modal amplitude squared of deflection along the mid-
line of the fish (see also Ref. [24]). The eigenvalues can also be
used as indicators of the modal “signal energy.”

COD can be performed with the goal of isolating a single mode of
interest, and then representing the mode by the real and imaginary
parts of the extracted complex mode, quantifying the motion parame-
ters based on the complex mode and modal coordinate, enabling vis-
ualization and computation of additional quantities of interest, and
“purifying” or isolating the motion in terms of the extracted mode.
This is the aim of the current study. Another goal of COD can be to
extract multiple modes and study properties of the modal spectrum,
which can be a topic of future study for fish movement.

3 Results

We applied the image processing, data analysis, and COD, as
discussed above, to both the intact and amputated fish in Newto-
nian and anterior-body-fixed frames. This section shows results of
the COVs, COMs, and further analysis including the use of the
modal coordinates.

3.1 Newtonian Frame. The COVs were used to establish
modal dominance. For the intact whiting fish, the primary COV
had a value of 51.5 cm2 (7.98 in2), and the next highest values
were 0.716 cm2 (0.111 in2) and 0.0497 cm2 (0.0077 in2). The rest
of the COVs were well below 10�13 cm2. As such, the primary
mode dominated with 98.5% of the signal energy. The scaled
kj=m indicates a mean squared amplitude of 1.05 cm2 (0.163 in2)
on average per marker, or a root mean squared amplitude of about
1.03 cm (0.404 in.) on average per marker. The dominant swim-
ming mode may contain effects of the fish’s small deviation from
steady swimming, and errors of the digitization of the photo-
graphic images. If it is part of a nonlinear mode, the second mode
may include higher-order information about the mode. It may also
contain effects of the fish’s small deviation from steady swimming
and errors of the digitization of the photographic images.

The COVs for the amputated whiting were 83.9, 0.826, 0.148,
0.0437, and 0.0217 cm2, and smaller. Once again, the dominant
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eigenvalues suggest that the amputated-fish motion can be well
approximated by one mode, as the dominant mode had 98.8% of
the signal energy. The dominant mode suggests a root mean
squared amplitude of 1.40 cm (0.550 in.) on average per marker.

The eigenvector (COM) associated with the greatest eigenvalue
(COV) corresponds to the shape of the dominant complex mode.
For the intact fish, the dominant COM w1 in the complex plane,
and also as both the real and imaginary parts of the complex
mode, are plotted in Fig. 5. The traveling (or nonsynchronicity)
index of the dominant mode for the intact whiting fish was
0.5205, which indicates significant, but not pure, traveling.

The first modal coordinate of the intact fish was extracted as
Q1 ¼ �wT

1 Z and is plotted in Fig. 6 in the complex plane and as an
oscillation via its real part. The complex modal coordinate goes
through nearly a single period, as the next sample would come
close to the starting point (and be part of the next cycle). This ex-
amination of the modal coordinate for various values of n helped
determine n ¼ 12 as a nearly complete cycle of oscillation.

Applying the modal coordinate according to Eq. (1) produces
the single-mode motion shown in Fig. 3(b). Comparison with Fig.
3(a) shows how noise from the raw motion is removed from the
modally filtered motions. The modally filtered transverse displace-
ment histories of the odd virtual markers results in a smoother
motion in comparison with the raw marker-displacement histories
of Fig. 3(a).

The dominant complex mode of the amputated whiting is
shown in Fig. 7. Applying the modal coordinate according to Eq.
(1) produced the single mode motion shown in Fig. 4(b). Again,
comparison with the raw motions in Fig. 4(a) suggests that the
motions are dominantly of a single mode and that small noise
from the raw motions is removed from the modally filtered
motions. The traveling index was 0.5209. The index suggests a
similar amount of nonsynchronicity, which we take to be travel-
ing, in the movements of both the intact and amputated fish in the
Newtonian frame. We will discuss this later.

The first modal coordinate of the amputated fish is plotted in
Fig. 8 in the complex plane and as an oscillation via its real part.

Again, the complex modal coordinate goes through nearly a single
period, as the next sample would come close to the starting point.
This examination of the modal coordinate for various values of n
helped determine how many images to include in the complete
half cycle. In comparison with the intact fish, the amputated fish
modal coordinate shows a more sawtoothed waveform in the plot
of the real part versus time (Fig. 8(b)).

We estimated the frequency, wave number, and wavelength,
from the primary COM and modal coordinate. The frequency f
was estimated from the mean whirl rate of the dominant modal
coordinate in the complex plane (Fig. 6(a)). The mean frequency
through the full cycle for the intact whiting was f ¼ 1:6462 cycles
per second. This compares closely to the frequency of the nearly
one-period time record of 1=ð12DtÞ ¼ 1:6667 Hz.

Wave speed c can be estimated from estimates of frequency
and wavelength L, as c ¼ Lf . The wavelength can be obtained
from an estimate of the wave number via k ¼ 2p=L. Calculating
the wave number was a delicate issue. The spatial waveforms are
not harmonic and may not make a full cycle across the length of
the fish. Particularly, that of the amputated fish seems to display
only about a half cycle across the length of the fish. Inspection of
the spacing of zero crossings of the real and imaginary parts of the
intact whiting’s complex mode suggests that the wavelength
varies in space. Inspection of the real and imaginary parts of the
amputated whiting’s complex mode suggests that the two parts
have different wavelengths. These features make it difficult to
estimate the wavelength from the peak-to-peak characteristic of
an oscillatory waveform, and points us toward estimating the local
wave number from spatial local whirling rates as done in Refs.
[24,25]. One whirl corresponds to a wavelength.

Estimating wavelength, if to be considered in relation to wave
speed, may make more sense for the traveling part of the wave.
Traveling and standing addends were separated and reanimated as
Zt ¼ wtQ1 and Zs ¼ wsQ1 (in ensemble form) and are shown in
Fig. 9 for the intact whiting. To the casual eye, the “traveling”
addend in Fig. 9(a) does not seem to have a traveling advantage
over the full modal oscillation shown in Fig. 3(b), but its traveling

Fig. 5 (a) Represents the dominant COM of the intact whiting
in the complex plane. The endpoint close to the origin repre-
sents the head. (b) The real (solid line) and imaginary (dashed
line) parts of the dominant COM, plotted against the fish
midline.

Fig. 6 (a) The modal coordinate of the intact fish in the com-
plex plane. (b) The real part of the modal coordinate versus
time.

Fig. 7 (a) The dominant COM of the amputated whiting in the
complex plane. The lower endpoint represents the head. (b)
The real and imaginary parts of the dominant COM plotted
against the fish midline.

Fig. 8 (a) The modal coordinate of the amputated fish in the
complex plane. (b) The real part of the modal coordinate versus
time.
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(nonsynchronicity) index of one is about double that of the full
modal oscillation. The standing addend in Fig. 9(b) is clearly
standing. The sum of these addends produces the motion in Fig.
3(b). The distribution of the local wavelength is shown in Fig. 10
for the traveling addend.

We sought wave number estimations of the normal swimming
motions and found that the estimated wave number was not uni-
form. In the tail area, where we expect most of the thrust, the wave-
length fluctuates around about 25 cm/cyc (10 in./cyc). The wave
speed is then about 41 cm/s (16 in/s), well above mean observed
speed of the fish (13 cm/s) for this interval of its swimming.

The mean frequency from the whirl rate of the amputated fish’s
complex modal coordinate was 0.9809 cyc/s, which is consistent
with the frequency of 1.0 Hz that would be associated with a 20-
image cycle. The separated traveling and standing aspects of the
motion are shown in Fig. 11. Wavelengths obtained from the full
complex mode and from the traveling addend (Fig. 10), calculated
in the same way as for the intact fish, show large variability across
the length of the fish. The mean full complex wavelength, which
due to its coarseness may not be highly relevant for relating to the
propulsion of the fish, was 76 cm/cycle, while that of the traveling

addend was 89 cm/cycle, corresponding to mean wave speeds of
about 76 and 89 cm/sec.

3.2 Anterior-Body-Fixed Frame. We also looked at decom-
positions from data in the anterior-body-fixed reference frame.
The real and imaginary parts of the primary mode shapes of the
intact and amputated fish are shown in Fig. 12. The traveling
index of the intact fish’s primary mode in the body fixed frame
was 0.483, while that of the amputated fish was 0.0463, suggest-
ing that, relative to the anterior of the body, the intact fish pro-
duces much more traveling in the waveform through its body than
does the amputated fish. The highly standing nature of the primary
mode of the amputated fish is also apparent in the figure, wherein
the imaginary part is nearly zero. Modulation of the mode, then, is
dominated by modulation of the real part.

The single-mode motions are shown in Fig. 13 as a superposi-
tion of the deflections transverse to the body-fixed axis in the
upper graphs and time histories of these transverse deflections of
the odd virtual markers in the lower graph. The propagation of a
traveling wave is much more apparent in the intact fish than the
amputated fish, both in the superposed transverse deflections and
in the posterior marker histories.

4 Discussion

We saw that the estimated wavelength varies across the axis of
the fish. Indeed, from Euler–Bernoulli beam theory, the wave-
length is expected to be a function of frequency, dependent on
beam parameters such as the Young’s modulus E, area moment of
inertia I, and mass density [44]. The fish is inhomogeneous, such
that the values of I and E (should it be defined) would not be uni-
form. Thus, for a fish forced at a given frequency, it would not be
unreasonable to produce an inhomogeneous wavelength. The
roughly estimated wave speeds well exceeded the swimming
speed.

Previous works on hydrodynamical modeling have used fish
motion profiles with uniform wavelength and wave speed and an

Fig. 9 The separated traveling and standing parts of the fish
motion. The superposed snapshots of (a) the traveling part of
the primary modal motion of the intact whiting, and (b) the
standing part of the primary modal motion.

Fig. 10 The local wavelength of the traveling part of the pri-
mary mode at each point along the midline of (a) the intact fish,
(b) the amputated fish

Fig. 11 The separated traveling and standing parts of the
amputated fish motion. (a) The reanimated traveling part of the
primary modal motion, and (b) the reanimated standing part of
the primary modal motion.

Fig. 12 The real and imaginary parts of the primary mode of
the deflections transverse to the anterior-body-fixed axis. (a)
Intact fish, (b) amputated fish.
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experimentally observed amplitude aðxÞ as a good first approxi-
mation, but the option of using complex modal oscillations may
help in refinement of the hydrodynamical modeling. For this pur-
pose, the motion can be reanimated using a complex exponential
with the estimated frequency, modulating the complex mode
shape, according to yðtÞ ¼ ReðAei2pxtÞ, where A is the square root
of the COV, and x is the identified modal frequency. A simulated
transverse deflection is shown in Fig. 14 for both the intact and
amputated fish. In this way, modal motions can be simulated
indefinitely, at a time step of choice. Small motion axial effects

can be easily incorporated by integrated foreshortening [24] of a
nearly inextensible fish or by doing two-dimensional decompositions.

Gray made interesting observations from photos of the ampu-
tated swimmer. The absence of the caudal fin, according to Gray,
did not inhibit the fish from swimming effectively, even though the
motion was observed to be quite different. The intact fish swam
at about 13 cm/s (5.2 in/s, or about one half length per second),
while the amputated fish swam at about 11.7 cm/s (4.6 in/s). Gray
made the subjective comment that he saw “very little evidence of a
transmitted wave along the muscular tail.” Gray’s sketch of the ani-
mated motion of the amputated fish supports this comment, as the
sketch shows the oscillation of the tail, relative to the anterior half
of the body drawn fixed, visually indicates a standing wave. Our
computations of the primary mode shape, and its traveling index, in
the anterior-body-fixed frame also quantify and support Gray’s
comments, as do the visual single-mode features of Fig. 13. While
the amputated fish did not produce the transmitted wave along the
muscular tail, it produced a transmitted wavy motion relative to a
fixed frame, in which the traveling index is significant, and the
motion has significant traveling and standing addends. Indeed,
Gray believed that the amputated animal generated thrust from the
interaction of its body with the water as a result of its movement
relative to a fixed frame. The whiting fish has a full set of dorsal
and ventral fins (Fig. 1), and any action of these fins during the
swimming motion has not been isolated from Gray’s images nor
referenced in Gray’s paper.

Gray concluded that mechanical action of the water and caudal
fin helps realize the traveling wave in the intact fish. We might
speculate that while the caudal fin in the intact fish contributes
thrust in the swimming direction of the nonamputated fish, it may
act as a nonproportional damping element for the transverse
deflection of the fish and thereby mechanically contribute to the
complex nature of the mode. It may be worth considering that a
strong swimming fish such as a carangiform swimmer may reso-
nate the mode shape of its body in interaction with the water when
swimming. Exploiting resonance may allow the fish to achieve
significant oscillation amplitudes with minimal effort and thereby
play a role in how the fish can swim efficiently.

Decompositions can be made under other variations in data was
processing. When the transverse component of the fish centroid
was removed from each frame, the modal motion (not shown)
resembled that of Borazjani and Sotiropoulos [19] more closely.

Much of the interpretation of our results is dependent on the ac-
curacy of the transverse deflections we obtained from the images
and the conditions of Gray’s work. For example, the single cycle
of data from Gray [2], as it was noted by Videler [14], were
obtained when the pectoral fins were extended, indicating that the
fish was not swimming in its most efficient manner. Although lim-
ited data were used, the usefulness and feasibility of the approach
can be seen. For this cycle of a given swimmer, a single mode
was sufficient to represent the dominant characteristics of the
transverse deflection of the midline. But we were not able to quan-
tify long-term average swimming behavior of the fish. E. g., we
do not capture modal characteristics during transient swimming,
such as burst swimming or start up, turning, and breaking. Even
with steady swimming, it would still be beneficial to examine
large datasets. The computational tool is easily feasible for much
larger time records, such as those in Refs. [24,25].

5 Conclusion

This work demonstrated the application of a modern vibration
analysis tool to the photographic images of a swimming fish by
Gray, thereby expanding on his studies of fish movement. We
processed Gray’s images to obtain transverse deflections of the
midline of the fish and then conducted a complex modal decom-
position to quantify the motion pattern. The method, applied in
both the Newtonian frame and an anterior-body-fixed frame,
enabled quantitative comparison between the swimming pattern

Fig. 13 The single mode transverse deflections in a anterior-
body-fixed frame. The top figures are superposed snapshots,
and the bottom figures are odd marker histories, for columns
(a) the intact fish, (b) the amputated fish.

Fig. 14 The single mode reanimated motion, based on a com-
plex exponential modulation of the extracted dominant mode at
the frequency defined by the mean whirl rate of the complex
modal coordinate. (a) Intact fish, (b) amputated fish.
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of a fish with and without its caudal fin. Interpretations of these
quantities were consistent with Gray’s subjective interpretations.

The decomposition produced a complex modal vector whose
real and imaginary vector parts contain information on the mixed
standing and traveling wave characteristics. In each case, intact
and amputated, the motion was dominated by a single mode. Mea-
surement noise and minor fluctuations were “modally filtered”
and the single-mode motion was examined. The frequency of os-
cillation was cross checked using the complex modal coordinate.
The complex mode and frequency can be used to reanimate the
motion indefinitely at any time step. Results suggest a wavelength
that varies with the location along the axis of the fish, which is not
surprising if the fish is considered with reference to a nonuniform
slender beam.

Quantifying the mechanics of the swimming motion serves
multiple purposes. It gives us a better understanding of the motion
of a fish as it swims, which is of value for the understanding of ef-
ficient water borne motion, application to biomimetic robotic
locomotion, and for the knowledge and appreciation of fish them-
selves. The kinematics are important as input to fluid mechanics
analyses. Perhaps the methods here can be applied as input in
future refinements of hydrodynamical models.

In this work, new information was extracted from old images
collected by Gray in the 1930 s. Computations also quantified and
supported several of Gray’s insights. The work demonstrates a
method that can be added to the toolbox for quantifying fish kine-
matic parameters. It would be interesting, and feasible, to apply
the method to longer time series data of transverse midline deflec-
tions during steady or unsteady swimming. Quantification of aver-
age steady behavior can be applied to classification of the types of
swimming motion and its variation among species or even
individuals.
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