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Summary

� Given the dual role of many plant traits to tolerate both herbivore attack and abiotic stress,

the climatic niche of a species should be integrated into the study of plant defense strategies.
� Here we investigate the impact of plant reproductive strategy and components of species’

climatic niche on the rate of chemical defense evolution in the milkweeds using a common

garden experiment of 49 species.
� We found that across Asclepias species, clonal reproduction repeatedly evolved in lower

temperature conditions, in species generally producing low concentrations of a toxic defense

(cardenolides). Additionally, we found that rates of cardenolide evolution were lower for

clonal than for nonclonal species.
� We thus conclude that because the clonal strategy is based on survival, long generation

times, and is associated with tolerance of herbivory, it may be an alternative to toxicity in

colder ecosystems. Taken together, these results indicate that the rate of chemical defense

evolution is influenced by the intersection of life-history strategy and climatic niches into

which plants radiate.

Introduction

Herbivores consume up to one-fifth of the total primary produc-
tion of plants (Marquis, 1984; Strong et al., 1984), and to resist
herbivory, plants have evolved a wide variety of defense traits,
including toxic secondary metabolites that reduce plant palatabil-
ity and tissue consumption (Schoonhoven et al., 2005). The ben-
efit of investment in defense, however, depends on the overall
abiotic or biotic context of plant growth, such as resource avail-
ability, climatic conditions, abundance of herbivores, and the
degree of food plant specialization in herbivores (Coley et al.,
1985; Strauss et al., 2002; Lankau, 2007). Along with this recog-
nition, relatively few broad-scale comparative studies have tackled
the understanding of plant defense evolution in the context of
environmental niches. Although across-clade studies have found
support for the impact of environment on defense evolution (En-
dara & Coley, 2011), only within-clade studies can identify
specific evolutionary patterns. For example, Pearse & Hipp
(2012) showed that oak leaf defense production follows clines of
temperature and humidity gradients, in which higher defenses
are associated with regions of low temperature seasonality, mild

winters, and low minimum precipitation. Similarly, Moreira
et al. (2014) found that patterns of pine defense induction are
associated with temperature clines, in which species from warmer
climates invested more in inducible defenses, and less in constitu-
tive defenses. [Correction added after online publication 17
September 2015: ‘colder’ was changed to ‘warmer’ in the
preceding sentence.]

Considering the environmental niche of species as a driver of
plant defense strategies is further justified by the dual role of
many plant traits to tolerate biotic as well as abiotic stresses (Ras-
mann et al., 2014). Indeed, regrowth after damage is probably a
generalized plant response to many types of tissue injury, includ-
ing fire, trampling, frost, and herbivory (Belsky et al., 1993).
Specifically, clonality, as an extension of perenniality, appears to
have been favored by highly disturbed and more unstable envi-
ronments, including alpine areas (de Witte & Stoecklin, 2010),
fire-prone ecosystems (Bond & Midgley, 2001; Litsios et al.,
2014), or anthropogenically disturbed habitats (Fahrig et al.,
1994). In this context, clonal growth represents an important
alternative means by which plants can propagate themselves from
carbon storage organs after strong perturbations (Fischer &
Stocklin, 1997), including herbivory (Schmid et al., 1988b;
Pennings & Callaway, 2000), or under prolonged stress (de Witte*Shared first authorship.
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et al., 2012). As a consequence, and following strategic resource
allocation theory (van der Meijden et al., 1988; de Jong & van
der Meijden, 2000), a tradeoff between clonal ability and chemi-
cal defense investment has been predicted (Agrawal et al., 2015).

Across the globe, tropical areas have greater herbivore diversity
than temperate ones (Schemske et al., 2009), and warm tropical
climate is tightly correlated with high insect species richness
(Currano et al., 2010). Therefore, it has been classically postu-
lated that plants at higher latitudes or elevations experience lower
herbivore pressure and should invest less in defenses against her-
bivores (Coley & Aide, 1991; Pennings et al., 2009; Schemske,
2009; Pellissier et al., 2012, 2014). Accordingly, tropical plants
have been shown to produce more toxic alkaloids (Levin & York,
1978), latex (Lewinsohn, 1991), and cardenolides (Rasmann &
Agrawal, 2011) than their temperate relatives. They also have
tougher leaves of lower nutritional quality than temperate species
(Coley & Aide, 1991). Additionally, arctic and alpine plants
show reduced amounts of secondary metabolite production (Pel-
lissier et al., 2014) and resistance to herbivores (Pellissier et al.,
2012) than their tropical counterparts, although counter-exam-
ples exist (Moles et al., 2011).

Therefore, if clonal species are favored in more unstable and
unpredictable abiotic conditions, where herbivore pressure is
reduced, plants should decrease their chemical defense arsenal,
but invest more in their resprouting abilities, such as the develop-
ment of underground vegetative mode of reproduction (Schmid
et al., 1988a; Stowe et al., 2000; Wise & Abrahamson, 2005).
Here we investigate the relationship between clonal reproduction,
chemical defense investment, and plant distribution along tem-
perature and precipitation gradients within milkweed species in
the genus Asclepias (Apocynaceae). Chemical defense in milk-
weeds has been well studied and played a major role in the devel-
opment of theories about plant–herbivore interactions (Brower
et al., 1972; Malcolm, 1995; Zalucki et al., 2001; Agrawal &
Fishbein, 2008; Agrawal et al., 2009a; Mooney et al., 2010;
Dobler et al., 2012). Milkweeds contain bitter-tasting steroids
known as cardiac glycosides (or cardenolides) that gain toxicity
by disrupting the sodium and potassium flux in animal cells
(Malcolm, 1991; Agrawal et al., 2012). In addition to being a
well-studied system, Asclepias spp. are spread across a tremendous
habitat and climatic range in the New World, and contain both
nonclonal and clonal species (Woodson, 1954; Rasmann &
Agrawal, 2011).

We tested the following hypotheses. Clonal species should
occupy more unstable and unpredictable abiotic conditions.
Given the expected decrease in herbivore pressure in colder con-
ditions, plant investment in chemical defense should be lower in
species living in temperate zones. If clonality allows increased
tolerance of herbivory, and because tolerance and defense are
generally negatively correlated, we expect a tradeoff between
clonality and chemical defenses, assuming those strategies are
redundant. Because clonal and nonclonal lineages may represent
alternative strategies associated with different generation times,
climatic environments, and herbivore pressure, different rates of
defense evolution are predicted among the two life-history
strategies.

Materials and Methods

Plant traits measurement

Seeds of 49 Asclepias species (six to 12 plants per species; see list
of species names in Supporting Information Table S1) were col-
lected by the authors, their colleagues, or purchased from native
nurseries (Rasmann & Agrawal, 2011), and grown in a growth
chamber (14 : 10 h, 24 : 18°C, day : night, 60% relative humid-
ity) in potting soil (Metro-Mix Sun Gro Horticulture Canada
CM Ltd, Vancouver, British Columbia, Canada). Plants were
watered ad libitum and fertilized (N : P : K, 21 : 5 : 20, 150 ppm
N (w/w)) once every week (for details, see Agrawal et al., 2009a;
Rasmann & Agrawal, 2011). Asclepias spp. do grow in various
conditions, and in focusing on a common environment, our goal
was to control for strong environmental (plastic) influences on
the phenotype. All species grew well (none were etiolated, yellow,
or otherwise appearing sick). To test for constitutive concentra-
tions of foliar cardenolides and their inducibility (which is calcu-
lated as the difference between mean species values of induced
and constitutive cardenolides) after 30 d of growth, leaves of c.
50% of the plants (three to six per species) were exposed to one
first-instar monarch butterfly caterpillar (Danaus plexippus), a
species that feeds almost exclusively on Asclepias species. The
other plants remained undamaged. At 3 d after cessation of the
herbivory treatment (c. 5% leaf damage per plant), all plants were
harvested for cardenolide analysis of leaves, as previously
described in Rasmann & Agrawal (2011).

In addition to our previous work (Agrawal et al., 2015), we
here further recorded two plant traits related to resprouting abil-
ity and clonality. First, we measured the number of buds on the
rhizomes or caudices of each plant and weighed the rhizome or
caudex biomass as quantitative assessments of resprouting abili-
ties for each species (Table S1). We acknowledge that the root
buds might be affected by different soil conditions, but by
removing soil heterogeneity or other edaphic stresses we specifi-
cally aimed here to measure potential root bud production across
all species. As nearly all Asclepias species produce new aerial stems
from subterranean or superficial buds, we additionally character-
ized each species as clonal or nonclonal, based on the presence of
long rhizomes that have the potential to generate physiologically
independent ramets (Table S1). This characterization was based
on the authors’ observations in the field and in common garden
experiments (M. Fishbein & A. A. Agrawal, pers. obv.; Fig. 1),
and indeed reflects the abundance of root buds scored during the
glasshouse experiment (Fig. 2). In addition, we measured phylo-
genetic signal for the clonality trait using the phylo.d function in
R (Orme et al., 2013), and found trait lability (D = 0.97, P-value
testing whether D is significantly different from zero, i.e. phylo-
genetically conserved trait = 0.03).

Comparison of trait values

We collected occurrence data from GBIF (http://www.gbif.org)
for each of the 49 species tested to build the temperature and pre-
cipitation components of their climatic niche, considering only
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A. latifolia

A. sullivantii
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A. hirtella

A. longifolia
A. speciosa

A. hallii
A. exaltata

A. quadrifolia

A. syriaca
A. rubra

A. obovata

A. amplexicaulis
A. lanceolata
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A. purpurascens

A. humistrata
A. cryptoceras

A. lemmonii
A. brachystephana

A. californica
A. vestita

A. nivea
A. curassavica

A. candida
A. barjoniifolia

A. boliviensis
A. fascicularis

A. angustifolia

A. verticillata
A. texana

A. subverticillata

A. perennis
A. incarnata

A. pumila
A. mexicana

A. cordifolia
A. linaria

Nonclonal

Clonal

Fig. 1 Clonality (i.e. presence of long rhizomes) mapped on the pruned phylogeny of Asclepias (see Fishbein et al., 2011) with clonal species coded as dark
squares and nonclonal species as light circles.
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the distribution in the native range. We evaluated whether occur-
rences matched the described range of the species to exclude spu-
rious records, as well as the record of species in the nonnative
range. We extracted eight bioclimatic variables from Worldclim
climate layers at a resolution of 2.5 arcminutes (Hijmans et al.,
2005): annual mean temperature (bio1), maximum temperature
of the warmest month (bio5), minimum temperature of the cold-
est month (bio6), mean temperature of the warmest quarter
(bio10), mean temperature of the coldest quarter (bio11), annual
precipitation (bio12), precipitation of the warmest quarter
(bio18), and precipitation of the coldest quarter (bio19). To
explore the distribution of species and clonal strategies in the cli-
matic space, we performed a principal component analysis (PCA)
on species occurrences together with available environmental cells
in the species range (including North and South America) as in
Litsios et al. (2012). We used the dudi.pca function of the ade4 R
package (Dray & Dufour, 2007). Because those variables were
highly correlated to the first two PCA axes (see the Results sec-
tion, and Table S2), we computed the mean and SD of the
annual mean temperature and sum of precipitation for each of
the species tested for further analyses.

We used a comprehensive phylogenetic tree of the mono-
phyletic American clade of Asclepias (Fishbein et al., 2011), and
pruned the terminal taxa to our 49 study species (Fig. 1). We per-
formed two phylogenetic ANOVAs (Blomberg et al., 2003) as
implemented in the R package ‘Phytools’ ver. 0.2.9 (Revell,
2012) to determine whether mean temperature and precipitation
differed between clonal and nonclonal species. Then, we related
the mean temperature and precipitation (explanatory variables)
to constitutive defenses and inducibility (response variables) of
defense using generalized least squares (GLS) as implemented in

the nlme package in R (Pinheiro, 2012). We fitted the models
using restricted maximum likelihood (REML). We took into
account phylogenetic nonindependence by using covariance
structures derived from the phylogeny and assuming either an
underlying Brownian motion (BM) process with off-diagonal ele-
ments being multiplied by the k parameter to account for the
extent of phylogenetic signal (Pagel, 1999), or an Orstein–Uhlen-
beck (OU) process that models stabilizing selection with an
attraction parameter a (Martins & Hansen, 1997). This was done
with the ape R package (Paradis et al., 2004) using the corPagel
and corMartins functions. Both models were applied to account
for potentially different evolutionary processes driving the evolu-
tion of the studied traits (Salamin et al., 2010). We used Akaike
information criterion (AIC) values to assess the fit of both covari-
ance structures.

Rate of trait evolution

We compared the rate of evolution of defenses and climatic niche
among clonal and nonclonal species. This measure describes the
speed at which species explore the defense and climatic niche
space. We used stochastic mapping (Huelsenbeck et al., 2003) as
implemented in the ‘make.simmap’ function of the R package
‘Phytools’ (Revell, 2012) to map probable realizations of the evo-
lution of clonal trait on the consensus tree. We used the ‘all rate
different’ model to evolve the clonality trait along the Asclepias
phylogenetic tree and allowed different forward and backward
rates between the two states, estimated the prior distribution of
the states at the root of the tree and used the Markov chain
Monte Carlo option to set the parameters of the Q transition
matrix. To account for the inherent stochasticity of the process,

Fig. 2 Clonality and root buds in Asclepias species. Pictures of pairs of clonal species (upper row: A. syriaca, A. fascicularis, A. sullivantii), and nonclonal
species (lower row: A. obovata, A. amplexicaulis, A. brachystephana). Pairs are based on similar numbers of root buds g–1 root mass (Supporting
Information Table S1). The graph on the right side shows overall species averages (� 1 SE) for the number of root buds per root biomass for clonal (closed
bars), and nonclonal (open bars) species. Clonality was assigned by the authors according to growing habits in the field and during experimental
manipulations. The difference in root buds between clonal and nonclonal species is highly significant (pGLS; F1,48 = 12.39, P = 0.001).
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we performed 100 stochastic mapping replicates. We measured
the differences in the rate of constitutive and inducibility of
defense evolution, and the rate of climatic niche evolution, for
clonal and nonclonal species by comparing the fit of a single rate
BM model with that of a multiple rate model. Although it has
been shown that other models fit the data better than the BM
model, especially during adaptive radiations (Freckleton &
Harvey, 2006; Agrawal et al., 2009a), we chose to use BM
because our goal was solely to compare the relative rate of evolu-
tion between groups and not the actual trait values. The single
rate model assumes that all lineages accumulate the same amount
of morphological variance per unit of time while the multiple
model allows clonal species to have a different rate of evolution
than the nonclonal species. Both models were specified in the
Phytools package that implements the noncensored version of a
typical analysis (O’Meara et al., 2006). The best-fitting model
was selected according to sample size corrected AIC (AICc) and a
P-value obtained with a likelihood ratio test against the
chi-squared distribution. We collected the P-values of the 100
replicates and summarized them by calculating their mean and
median.

Results

Association between traits and niches

Species were distributed along two main environmental axes,
temperature corresponding to the first PCA axis, and precipita-
tions corresponding to the second PCA axes. We found that

Asclepias species occupied a subset of available environmental
space and did not colonize the moistest and coldest climatic con-
ditions. Nonclonal species showed a broader climatic niche than
clonal ones, and especially occupied warmer and wetter climatic
conditions. Annual mean temperature was strongly correlated to
the first PCA axis (Pearson R2 = 0.96), while annual total precipi-
tation was strongly correlated to the second PCA axis (Pearson
R2 = 0.81). Therefore, we used those variables rather than more
abstract PCA axis values, knowing that those two variables repre-
sent well the climatic space available to Asclepias sp.

Consistent with our predictions, we found that clonal species
inhabit colder (phylogenetic ANOVA (pGLS), P = 12.31,
P = 0.003) and drier (P = 4.40, P = 0.045) regions than non-
clonal species (Fig. 3). However, contrary to predictions, clonal
species occupy a more restricted climatic niche than nonclonal
species (Fig. 3). Using pGLS, we found a positive relationship
between temperature and constitutive cardenolides (coeffi-
cient = 7.36, P = 0.04, best model = Pagel with k = 0.30), and
inducibility of cardenolides (coefficient = 23.87, P < 0.01, best
model = Pagel with k = 0.39), indicating that species occupying
colder conditions produce lower constitutive amounts and
inducibility of these chemical defenses. Because it was previously
shown that colder temperatures inhibit production of secondary
metabolites (Pellissier et al., 2014), and because tropical species
were grown at slightly colder temperature than their natural
growing conditions, we consider our results to be conservative. In
other words, a traditionally high-cardenolide species like the
tropical milkweed Asclepias curassavica (Malcolm, 1995), remains
high when growing in the glasshouse (Rasmann & Agrawal,
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Fig. 3 Density plot from a principal component analysis of the climatic environment occupied by: (a) nonclonal Asclepias species (in blue; A. angustifolia,
A. barjoniifolia, A. californica, A. candida, A. humistrata, A. lanceolata, A. lemmonii, A. linaria, A. longifolia, A. Mexicana, A. perennis, A. pulchra,
A. rubra, A. solanoana, A. subulata, A. texana, A. variegate, A. vestita, A. viridis, A. curassavica, A. incarnate, A. nivea, A. asperula, A. tuberosa,
A. brachystephana, A. hirtella, A. cordifolia, A. boliviensis, A. quadrifolia, A. cryptoceras, A. engelmanniana, A. viridiflora, A. oenotheroides,
A. amplexicaulis, A. obovata, A. glaucescens); (b) clonal Asclepias species (in orange; A. erosa, A. arenaria, A. sullivantii, A. eriocarpa, A. verticillata,
A. exaltata, A. latifolia, A. lanuginose, A. purpurascens, A. hallii, A. speciosa, A. fascicularis, A. pumila, A. subverticillata, A. syriaca, A. ovalifolia). The
gray area indicates the potential environment available in both North and South America (Greenland excluded).
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2011), while a low-cardenolide species like Asclepias syriaca pro-
duced similar concentrations in the glasshouse as in the field
(Agrawal et al., 2014).

Clonality showed negatively correlated evolution with carde-
nolides (Fig. 4). Using pGLS, we found that the number of sub-
terranean buds per unit biomass correlated negatively with
constitutive cardenolides (coefficient =�0.006, P < 0.01, best
model = Pagel with k = 0). We also found a similar negative rela-
tionship for inducibility of cardenolides, although Pagel and OU
models were indistinguishable (Fig. 4, Pagel, coefficient =�0.01,
P = 0.04, k = 0; OU, coefficient =�0.01, P = 0.07, a = 12.20;
Table S3). Our qualitative categorization of clonality similarly
indicated that clonal plant species have marginally lower consti-
tutive concentrations of cardenolides after accounting for shared
evolutionary history (F = 4.64, P = 0.056), while we detected no
difference among clonal and nonclonal plants for inducibility
(F = 2.29, P-value = 0.17, data not shown).

Rates of trait evolution

Modeling the rates of plant defense evolution showed an effect of
clonality, in which nonclonal lineages evolve constitutive carde-
nolides almost 10 times faster than the clonal ones (Fig. 5; mean
r2-clonal = 17.86, mean r2-nonclonal = 152.74, P-value of chi-
squared test on AIC: mean = 0.048, median = 0.044), but not for
inducibility of cardenolides (mean r2-clonal = 9.192, mean
r2-nonclonal = 27.056, P-value of chi-squared test on AIC:
mean = 0.24, median = 0.215).

Discussion

The investment in anti-herbivore defenses and variation in plant
life-history traits in Asclepias are related to variation in climatic
conditions into which the species have radiated. Clonal species
(i.e. having plants with longer rhizomes and greater resprounting
ability) are derived in Asclepias (Fig. 1), and this strategy is pri-
marily observed in lower-temperature habitats. Clonal species

also showed reduced investment in chemical defense, suggesting
that clonality, as a tolerance strategy, might trade off with chemi-
cal defense. Finally, clonal lineages showed a lower rate of chemi-
cal defense evolution compared with nonclonal ones. In sum, our
results suggest that the evolution of clonality in environments
with lower temperatures and precipitations goes hand in hand
with a reduced rate of chemical defense evolution and reduced
levels of chemical defense. This implies a direct effect of habitat
selection on both reproduction type and resistance to herbivores.

Climatic niche, clonality, and chemical defenses

Deciphering the putative role of any functional trait in protecting
plants against herbivores is complex, as traits may serve multiple
functions across different environments. Clonal and nonclonal
species showed not fully overlapping distributions along temper-
ature and precipitation gradients, in which clonal species occupy
a narrower, generally more stressful environment (i.e. drier and
colder), suggesting that clonality might be better suited against
abiotic stress (drought and cold) (Salzman, 1985; Santamaria,
2002; Weppler et al., 2006). Similarly, Pellissier et al. (2010)
found an increase in the use of clonality in high-elevation alpine
plant communities, where both biotic (e.g. herbivores and polli-
nators) and abiotic conditions are more unstable compared with
low-elevation sites (summarized in Rasmann et al., 2014).

The evolution of high tolerance through clonal reproduction
could also be an adaptation to biotic conditions if greater toler-
ance confers a competitive advantage in plant communities dam-
aged by generalist grazing herbivores (e.g. grasslands
McNaughton, 1979). Indeed, clonal species that form dense
stands may be especially prone to concentrated herbivore attack
(Root, 1973), thus favoring tolerance over chemical resistance
traits. As a corollary, clonal species may be less frequent in
warmer climates because this strategy is less successful against
more specialized herbivore attack (Schemske et al., 2009). Never-
theless, as was previously discussed by Agrawal et al. (2015), the
reduction of cardenolides in more derived, cold-adapted species
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represents species’ means, and lines represent phylogenetically corrected linear regressions across all species. The clonality status of each species is
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A. fascicularis, A. pumila, A. subverticillata, A. syriaca, A. ovalifolia).
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might be also influenced by other factors including sequestration
by specialist herbivores, such as monarch butterflies, which are
found throughout the range of Asclepias spp. Therefore, a combi-
nation of biotic and abiotic factors must have shaped the direc-
tional evolution of chemical defenses in Asclepias during their
radiation toward the poles (Agrawal & Fishbein, 2008).

Tradeoffs between tolerance and resistance traits

In light of the increasing interest in investigating a broad range of
functional traits that may be integrated into defense against her-
bivores (Carmona et al., 2011), we found negative correlated evo-
lution between stem bud-number and cardenolide production,
suggestive of a tradeoff between resprouting abilities and defense.

The idea of resource-driven tradeoffs is central to the evolu-
tionary theories of plant defenses (Zangerl & Bazzaz, 1992). The
potential negative interactions between chemical defenses and
tolerance have long been suggested (van der Meijden et al., 1988;
N�u~nez-Farf�an et al., 2007). Here, we found evidence of a nega-
tive correlation between resprouting ability and secondary
metabolite production similar to previous studies. Indeed, while
cardenolides and latex showed directional declines during the
diversification of Asclepias (Agrawal et al., 2008, 2009b), plant
tolerance (i.e. the ability to regrow after defoliation) showed evi-
dence of escalation (Agrawal & Fishbein, 2008). Additionally, it
was also observed that species with higher numbers of root buds,
have higher regrowth capacity after damage (i.e. tolerance)
(Agrawal et al., 2015), indicating that more clonal species have
higher tolerance capacity, while decreasing chemical defenses.

The negative correlation between defense and tolerance could
reflect allocation costs of the traits as well as trait redundancy
similar to the growth defense tradeoff (Herms & Mattson, 1992;
Fine et al., 2006; Lind et al., 2013). Puijalon et al. (2011) recently
showed a negative correlation between a plant’s ability to avoid
mechanical stress or to be able to tolerate it, again suggestive of a
tradeoff between alternative strategies. As suggested earlier, in
Asclepias, the strategy of producing new clonal ramets might be

sufficient to compensate low cardenolide production against
above-ground damage (Agrawal et al., 2015), and this may be
particularly true for milkweeds as they are mainly confronted
with specialist, cardenolide-adapted, herbivores (Agrawal et al.,
2012). That said, other unmeasured factors correlating with both
clonality and chemical defenses might drive the observed pattern,
and future work is needed to tease apart the effect of biotic factors
(herbivore pressure and herbivore sequestration) and abiotic fac-
tors (climate, soil conditions) in driving resprouting abilities and
chemical defenses.

Rate of defense evolution and clonality along the climatic
niche

We observed a higher rate of chemical defense evolution in non-
clonal than in clonal species. Variation in the rate of evolution
for a particular trait is influenced by several factors, including the
rate of sexual reproduction (Johnson et al., 2009) and the selec-
tive pressure on a particular trait. It has been argued that the
longer generation time and less frequent recombination of clonal
species lead to slowed genetic change and decreased rate of trait
evolution (Hamilton et al., 1990; Charlesworth & Wright, 2001;
Godfrey & Johnson, 2014). Additionally, generation time is neg-
atively correlated with molecular substitution rates in
angiosperms, allowing typically short-lived herbaceous species to
‘explore’ a wider climatic space than longer-lived species because
of higher rates of evolution for climatic preference (Smith &
Beaulieu, 2009). In accordance with these ideas, we observed that
the derived clonal trait in Asclepias spp. (Agrawal et al., 2015)
only evolved in colder conditions, and in concordance with previ-
ous finding; the derived species invest less in chemical defenses
(Agrawal et al., 2008, 2009b); and the rate of change of defensive
traits was most rapid early in the radiation of Asclepias spp.
(Agrawal et al., 2009a). Taken together, our findings support the
hypothesis that radiation of Asclepias spp. into colder climates
was accompanied by a proliferation of more clonal species that
are, in turn, less chemically defended. As would be postulated for
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Fig. 5 Phylogenetic rates of constitutive (a) and induced (b) defense evolution. Rates are shown in dark gray for clonal Asclepias species (A. erosa,
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lineages with greater usage of asexual modes of reproduction
(Johnson et al., 2009), we found a lower rate of defense evolution
in more clonal lineages. Interestingly, though, as all Asclepias are
perennial, clonality per se seems to drive the observed pattern of
defense evolution, and not a dramatic change from annual to
perennial mode of existence.

Conclusions

The recent advances in phylogenetic and comparative analyses
allow the emergence of a clearer scenario regarding which factors
drive the ecology and evolution of plant defenses. Our study,
along with recent work (Fine et al., 2006; Rasmann & Agrawal,
2011; Pearse & Hipp, 2012; Pellissier et al., 2013; Moreira et al.,
2014), highlights a strong effect of both biotic and abiotic factors
on the evolution of plant resistance. Overall, plants growing in
warmer and more humid climates, where herbivore pressure is
high, invest more in chemical defenses than those in colder cli-
mates. Moreover, clonality and resistance abilities trade off
among species, but this relationship is affected by differences in
the climatic niche of the species (i.e. more tropical species are less
clonal, and invest more in defenses, whereas the opposite is true
for more temperate species). Future work will be needed to fully
tease apart selection by herbivores at different latitudes and cli-
mate variables on defense production, as colder temperatures per
se may be sufficient for inhibiting defense (Pellissier et al., 2014).
The modes of induction and interactions with other resistance
strategies may be dictated by resource-driven, physiological and
evolutionary tradeoffs, which, in turn, are also influenced by
biotic and abiotic factors of the niche (Coley et al., 1985;
Mooney et al., 2010).
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