
Creating Planning Domain Models in KEWI

Gerhard Wickler
Artificial Intelligence Applications Institute

School of Informatics
University of Edinburgh

g.wickler@ed.ac.uk

Lukáš Chrpa and Thomas Leo McCluskey
PARK Research Group

School of Computing and Engineering
University of Huddersfield

{l.chrpa, t.l.mccluskey}@hud.ac.uk

Abstract

This paper reports on progress towards a tool for the
representation of shared, procedural and declarative
knowledge whose aim is to be used for various func-
tions to do with the automation of a complex process
control application - primarily to guide the response
phase during an emergency situation, but also for sup-
porting normal automated operation.
The tool is a Knowledge Engineering Web Interface
called KEWI. The focus of the paper is on the concep-
tual model used to represent the declarative and proce-
dural knowledge. The model consists of three layers: an
ontology, a model of basic actions, and more complex
methods. It is this structured conceptual model that fa-
cilitates knowledge engineering. We are aiming to eval-
uate the use of a central knowledge model for a range of
planning-related functions, where the parts of the model
are automatically assembled e.g. into PDDL for opera-
tional use.
The current application area that drives the development
of the tool is well control.

Introduction
Domain-independent planning has grown significantly in re-
cent years mainly thanks to the International Planning Com-
petition (IPC). Besides many advanced planning engines,
PDDL, a de-facto standard language family for describing
planning domain and problem models, has been developed.
However, encoding domain and problem models in PDDL
requires a lot of specific expertise and thus it is very chal-
lenging for a non-expert to use planning engines in applica-
tions.

This paper concerns the use of AI planning technology in
an organisation where (i) non-planning experts are required
to encode knowledge (ii) the knowledge base is to be used
for more than one planning and scheduling task (iii) it is
maintained by several personnel over a long period of time,
and (iv) it may have a range of potentially unanticipated uses
in the future. The first concern has been a major obstacle
to using AI-based, formal representations, in that the exper-
tise required to produce such representations has normally
been acquired and encoded by planning experts (e.g. as in
NASA’s applications (Ai-Chang et al. 2004)). The other con-
cerns are often not covered in the planning literature: in real

applications the knowledge encoding is a valuable, general
asset, and one that requires a much richer conceptual rep-
resentation than, for example is accorded by planner-input
languages such as PDDL.

We present here a Knowledge Engineering method using
a Web Interface aimed at AI Planning, called KEWI. The
primary idea behind KEWI then is to ease this formaliza-
tion of procedural knowledge, allowing domain experts to
encode their knowledge themselves, rather than knowledge
engineers having to elicit the knowledge before they formal-
ize it into a representation. A number of frameworks ex-
ist that support the formalization of planning knowledge in
shared web-based systems. Usually, such frameworks build
on existing Web 2.0 technologies such as a wiki. A wiki that
supports procedural knowledge is available at wikihow.com,
but the knowledge remains essentially informal. A system
that uses a similar approach, namely, representing procedu-
ral knowledge in a wiki is CoScripter (Leshed et al. 2008).
However, their representation is not based on AI planning
and thus does not support the automated composition of pro-
cedures. More recently, an AI-based representation has been
used in OpenVCE (Wickler, Tate, and Hansberger 2013).

As far as we are aware, very few collaborative, domain-
expert-usable, knowledge acquisition interfaces are avail-
able that are aimed at supporting the harvesting of planning
knowledge within a rich language for use in a number of
planning-related applications. After initial acquisition, the
validation, verification, maintenance and evolution of such
such knowledge is of prime importance, as the knowledge
base is a valuable asset to an organisation.

Related Work
There have been several attempts to create general, user-
friendly development environments for planning domain
models, but they tend to be limited in the expressiveness
of their underlying formalism. The Graphical Interface for
Planning with Objects (GIPO) (Simpson, Kitchin, and Mc-
Cluskey 2007) is based on object-centred languages OCL
and OCLh. These formal languages exploit the idea that a
set of possible states of objects are defined first, before ac-
tion (operator) definition (McCluskey and Kitchin 1998).
This gives the concept of a world state consisting of a set
of states of objects, satisfying given constraints. GIPO uses
a number of consistency checks such as if the object’s class

hierarchy is consistent, object state descriptions satisfy in-
variants, predicate structures and action schema are mutu-
ally consistent and task specifications are consistent with the
domain model. Such consistency checking guarantees that
some types of errors can be prevented, in contrast to ad-hoc
methods such as hand crafting.

itSIMPLE (Vaquero et al. 2012) provides a graphical en-
vironment that enables knowledge engineers to model plan-
ning domain models by using the Unified Modelling Lan-
guage (UML). Object classes, predicates, action schema are
modelled by UML diagrams allowing users to ‘visualize’
domain models which makes the modelling process easier.
itSimple incorporates a model checking tool based on Petri
Nets that are used to check invariants or analyze dynamic
aspects of the domain models such as deadlocks.

The Extensible Universal Remote Operations Planning
Architecture (EUROPA) (Barreiro et al. 2012), is an inte-
grated platform for AI planning and scheduling, constraint
programming and optimisation. This platform is designed to
handle complex real-world problems, and the platform has
been used in some of NASA’s missions. EUROPA supports
two representation languages, NDDL and ANML (Smith,
Frank, and Cushing 2008), however, PDDL is not supported.

Besides these tools, it is also good to mention
VIZ (Vodráz̆ka and Chrpa 2010), a simplistic tool inspired
by itSimple, and PDDL Studio (Plch et al. 2012), an editor
which provides users a support by, for instance, identifying
syntax errors or highlighting components of PDDL.

In the field of Knowledge Engineering, methodologies
have been developed which centre on the creation of a pre-
cise, declarative and detailed model of the area of knowl-
edge to be engineered, in contrast to earlier expert systems
approaches which appeared to focus on the “transfer” ex-
pertise at a more superficial level. This “expertise model”
contains a mix of knowledge about the “problem solving
method” needed within the application and the declarative
knowledge about the application. Often a key rationale for
knowledge engineering is to create declarative representa-
tions of an area to act as a formalised part of some require-
ments, making explicit what hitherto has been implicit in
code, or explicit but in documents. Knowledge Engineer-
ing modelling frameworks arose out of this, such as Com-
monKads (Schreiber et al. 1999), which were based on a
deep modelling of an area of expertise, and emphasising
a lifecycle of this model. The “knowledge model” within
CommonKADS, which contains a formal encoding of task
knowledge, such as problem statement(s), as well as domain
knowledge, is similar to the kind of knowledge captured in
KEWI. Unlike KEWI however, this model was expected to
be created by knowledge engineers rather than domain ex-
perts and users.

Conceptual Model of KEWI
KEWI is a tool for encoding domain knowledge mainly
by experts in the application area rather than AI planning
experts. The key idea behind KEWI is to provide a user-
friendly environment as well as a language which is easier to
follow, especially for users who are not AI planning experts.
A high-level architecture of KEWI is depicted in Figure 1.

Figure 1: An architecture of KEWI.

Encoded knowledge can be exported into the domain and
problem description in PDDL on which standard planning
engines can be applied, and retrieved plans can be imported
back to KEWI. Hence, the user does not have to understand,
or even be aware, of any PDDL encodings.

A language in which domain knowledge is encoded in
KEWI has three parts, which are explained in the following
subsections. First, a domain ontology is defined. The do-
main ontology consists of definition of classes of objects,
hierarchies of classes and relations between objects. Sec-
ond, action types, concretely action name, preconditions and
effects, are defined. Third, methods which introduce addi-
tional ordering constraints between actions, are defined.

Ontology: Concepts, Relations and Properties
Ontological elements are usually divided into concepts and
instances. Typically, the concepts are defined in a planning
domain whereas the instances are defined in a planning prob-
lem. Since our focus for KEWI is on planning domains we
shall mostly deal with concepts here.

Concepts A concept is represented by a unique symbol in
KEWI. The formal definition of a concept is given by its
super-class symbol and by a set of role constraints that de-
fine how instances of the concept may be related to other
concepts. In KEWI, the definition of a concept also includes
other, informal elements that are not used for formal rea-
soning. However, the knowledge engineering value of such
informal elements must not be underestimated, much like
the comments in programming often are vital for code to be
understandable.
Definition 1 (KEWI Concept). A concept C in KEWI is a
pair 〈Csup, R〉, where:
• Csup is the direct super-concept of C and
• R is a set of role constraints of the form 〈r, n, C ′〉 where r

is a symbolic role name,C ′ is a concept (denoting the role
filler type), and n is a range [nmin, nmax] constraining
the number of different instances to play that role.
We assume that there exists a unique root concept often

referred to as object or thing that acts as the implicit super-
concept for those concepts that do not have an explicit super-
concept defined in the same planing domain. Thus, a concept
C may be defined as 〈4, R〉, meaning its super concept is
implicit. This implicit super-concept has no role constraints
attached.

For example, in the Dock Worker Robot (DWR) domain,
the concepts container and pallet could be defined

with the super-concept stackable, whereas the concept
crane could be defined as a root concept with no super-
concept (implicitly:4). A role constraint can be used to de-
fine that a crane can hold at most one container as follows:
〈holds, [0, 1], container〉.

Since super-concepts are also concepts, we can write a
concept C as 〈〈〈4, Rn〉, . . . , R2〉, R1〉. Then we can re-
fer to all the role constraints associated with C as R∗ =
Rn ∪ . . . ∪ R2 ∪ R1, that is, the role constraints that ap-
pear in the definition of C, the role constraints in its di-
rect super-concept, the role constraints in its super-concepts
super-concept, etc.

The reason for introducing this simple ontology of con-
cepts is that we can now constrain the set of possible world
states based on the role constraints. States are defined as sets
of ground, first-order atoms over some function-free lan-
guageL. This language shall contain symbols to denote each
instance of a concept defined in the ontology (c1, . . . , cL)
where the type function τ maps each instance ci to its type
C, a concept in the ontology. The relation symbols of L are
defined through the role constraints.
Definition 2 (Relations in L). Let 〈r, n, C ′〉 be a role con-
straint of some concept C. Then the first-order language L
that can be used to write ground atoms in a state contains a
binary relation C.r ⊆ C × C ′.

In what follows we shall extend the language to include
further relation symbols, but for now these relations defined
by the ontology are all the relations that may occur in a state.
The reason why the relation name is a combination of the
concept and the role is simply to disambiguate between roles
of the same name but defined in different concepts. Where
all role names are unique the concept may be omitted.

We can now define what it means for a state to be valid
with respect to an ontology defined as a set of KEWI con-
cepts. Essentially, for a state to be valid, every instance men-
tioned in the state must respect all the role constraints associ-
ated with the concepts to which the instance belongs. Since
role constraints are constraints on the number of possible
role fillers we need to be able to count these.
Definition 3 (Role Fillers). Let s be a state, that is, a set
of ground atoms over objects c1, . . . , cL using the relations
in L. Let 〈r, n, C ′〉 be a role constraint of some concept C.
Then we define valss(C.r, ci) = {cf |C.r(ci, cf) ∈ s}, ci ∈
C, cf ∈ C ′, that is, the set of all constants that play role r
for ci in s.
Definition 4 (Valid State). Let C be a KEWI concept. Then
a state s is valid if, for any instance ci of C and any
role constraint 〈r, n, C ′〉 of C or one of its (direct and in-
direct) super-concepts, the number of ground atoms a =
C.r(ci, ∗) must be in the range [nmin, nmax], i.e. nmin ≤
|valss(C.r, ci)| ≤ nmax.

Thus, a concept definition defines a set of role constraints
which can be interpreted as relations in a world state. The
numeric range defines how many ground instances we may
find in a valid state. This is the core of the ontological model
used in KEWI.

For example, let k1 be a crane and ca be a
container. Then a state may contain a ground atom

crane.holds(k1,ca). If a state contains this atom, it may
not contain another one using the same relation and k1 as
the first argument.

Relations While the relations defined through the con-
cepts in KEWI provide a strong ontological underpinning
for the representation, there are often situations where other
relations are more natural, e.g. to relate more than two con-
cepts to each other, or where a relation does not belong to
a concept. In this case relations can be defined by declaring
number and types (concepts) of the expected arguments.
Definition 5 (Relations in L). A relation may be defined by
a role constraint as described above, or it may be a relation
symbol followed by an appropriate number of constants. The
signature of a relation R is defined as C1 × . . .×CR where
Ci defines the type of the ith argument.

A valid state may contain any number of ground instances
of these relations. As long as the types of the constants in
the ground atoms agree with the signature of the relation,
the state that contains this atom may be valid.

Properties In reality, we distinguish three different types
of role constraints: related classes for defining arbitrary re-
lations between concepts, related parts which can be used to
define a “part-of” hierarchy between concepts, and proper-
ties which relate instances to property values.

The first two are equivalent in the sense that they relate
objects to each other. However, properties usually relate val-
ues to objects, e.g. an object may be of a given colour. While
it often makes sense to distinguish all individual instances of
a concept, this is not true for properties. While the paint that
covers one container may not be the same paint that covers
another, the colour may be the same. To allow for the repre-
sentations of properties in KEWI, we allow for the definition
of properties with enumerated values.
Definition 6 (Properties). A property P is defined as a set
of constant values {p1, . . . , pP }.

It is easy to see that the above definitions relating to
role constraints and other relations can be extended to allow
properties in place of concepts and property values in place
of instances. A minor caveat is that property values are usu-
ally defined as part of a planning domain, whereas instances
are usually given in a planning problem.

Action Types
Action types in KEWI are specified using an operator name
with typed arguments, a set of preconditions, and a set of
effects. This high-level conceptualization of action types is
of course very common in AI planning formalisms. KEWI’s
representation is closely linked with the ontology, however.
This will enable a number of features that allow for a more
concise representation, allowing to reduce the redundancy
contained in many PDDL planning domains.

Object References In many action representations it is
necessary to introduce one variable for each object that is
somehow involved in the execution of an action. This vari-
able is declared as one of the typed arguments of the action
type. The variable can then be used in the preconditions and

effects to consistently refer to the same objects and express
conditions on this object.

Sometimes, an action type may need to refer to specific
constants in its preconditions or effects. In this case, the
unique symbol can be used to identify a specific instance.
In the example above, k1 was used to refer to a crane and
ca to refer to a container. In most planning domains, opera-
tor definitions do not refer to specific objects, but constants
may be used as values of properties.

In addition to variables and constants, KEWI also allows
a limited set of function terms to be used to refer to objects
in an action type’s preconditions and effects. Not surpris-
ingly, this is closely linked with the ontology, specifically
with the role constraints that specify a maximum of one in
their range.

Definition 7 (Function Terms). Let 〈r, n, C ′〉 be a role con-
straint of some concept C where nmax = 1. Then we shall
permit the use of function terms of the form C.r(t) in pre-
conditions and effects, where t can again be an arbitrary
term (constant, variable, or function term) of type C ′.

Let s be a valid state, that is, a set of ground atoms over
objects c1, . . . , cL using the relations inL. Then the constant
represented by the function term C.r(ci) is:

• cj if valss(C.r, ci) = {cj}, or
• nothing (⊥) if valss(C.r, ci) = ∅.

Note that the set valss(C.r, ci) can contain at most one
element in any valid state. If it contains an element, this el-
ement is the value of the function term. Otherwise a new
symbol that must not be one of the constants c1, . . . , cL will
be used to denote that the function term has no value. This
new constant nothing may also be used in preconditions
as described below.

The basic idea behind function terms is that they allow the
knowledge representation to be more concise; it is no longer
necessary to introduce a variable for each object. Also, this
style of representation may be more natural, e.g. to refer to
the container held by a crane as crane.holds(k1) mean-
ing “whatever crane k1 holds”, where the role constraint
tells us this must be a container. As a side effect, the gen-
eration of a fully ground planning problem could be sim-
pler,given the potentially reduced number of action parame-
ters.

Interestingly, a step in this direction was already proposed
in PDDL 1, in which some variables were declared as pa-
rameters and others as “local” variables inside an operator.
However, with no numeric constraints on role fillers or any
other type of relation, it is difficult to make use of such vari-
ables in a consistent way. Similarly, state-variable represen-
tations exploit the uniqueness of a value. However, this was
restricted to the case where nmin and nmax both must be
one.

Condition Types The atomic expressions that can be used
in preconditions and effects can be divided into two cat-
egories. Firstly, there are the explicitly defined relations.
These are identical in meaning and use to PDDL and thus,
there is no need to discuss these further. Secondly, there are
the relations based on role constraints which have the same

form as such atoms in states, except that they need not be
ground.

Definition 8 (Satisfied Atoms). Let s be a valid state over
objects c1, . . . , cL. Then a ground atom a is satisfied in s
(denoted s |= a) if and only if:

• a is of the form C.r(ci, cj) and a ∈ s, or
• a is of the form R(ci1 , . . . , ciR) and a ∈ s, or
• a is of the form C.r(ci,⊥) and valss(C.r, ci) = ∅.

The first two cases are in line with the standard semantics,
whereas the the last case is new and lets us express that no
role filler for a given instance exists in a given state. Note
that the semantics of atoms that use the symbol nothing
in any other place than as a role filler are never satisfied in
any state.

The above definition can now be used to define when an
action is applicable in a state.

Definition 9 (Action Applicability). Let s be a valid state
and act be an action, i.e. a ground instance of an action type
with atomic preconditions p1, . . . , pa. Then act is applicable
in s if and only if every precondition is satisfied in s: ∀p ∈
p1, . . . , pa : s |= p.

This concludes the semantics of atoms used in precondi-
tions. Atoms used in effects describe how the state of the
world changes when an action is applied. This is usually de-
scribed by the state transition function γ : S×A→ S, i.e. it
maps a state and an applicable action to a new state. Essen-
tially, γ modifies the given state by deleting some atoms and
adding some others. Which atoms are deleted and which are
added depends on the effects of the action. If the action is
not applicable the function is undefined.

Definition 10 (Effect Atoms). Let s be a valid state and act
be an action that is applicable in s. Then the successor state
γ(s, a) is computed by:

1. deleting all the atoms that are declared as negative effects
of the action,

2. for every positive effect C.r(ci, cj) for role constraint
〈r, n, C ′〉 with n = [nmin, 1], if C.r(ci, ck) ∈ s delete
this atom, and

3. add all the atoms that are declared as positive effects of
the action.

Following this definition allows for a declaration of ac-
tions using arbitrary relations and state-variables that may
have at most one value. The ontology, more specifically the
numeric role constraints can be used to distinguish the two
cases.

The symbol nothing is not allowed in effects in KEWI.
Of course, it would be easy to define the semantics of such
a construct as one that retracts all such atoms from the state.
However, we have chosen not to go this way in KEWI for
two reasons. Firstly, this construct would severely restrict
the number of planners that can handle this mass retraction,
although it may be possible to express this as a universally
quantified effect. Secondly, it is not clear what an example
of such an action would be in practise.

Methods
The definition of methods in KEWI is not yet finished. As
the framework is at least partially application-driven, we
may need to further refine the conceptual framework out-
lined (but not fully defined) below.

The approach adopted in KEWI follows standard HTN
planning concepts: a method describes how a larger task can
be broken down in into smaller tasks which, together, ac-
complish the larger task.

A method is defined by a method name with some pa-
rameters. The name usually suggests how something is to
be done and the parameters have the same function as in
action types; they are the objects that are used or manipu-
lated during the instantiation of a method. Next, a method
must declare the task that is accomplished by the method.
This is defined by a task name usually describing what is
to be done, and again some parameters. For primitive tasks,
the task name will be equal to the name of an action type,
in which case no further refinement is required. For non-
primitive tasks, a method also includes a set of subtasks.
In KEWI, the ordering constraints between subtasks are de-
clared with the subtask, rather than as a separate component
of the method. This is simply to aid readablility and does not
change the expressiveness.

In addition, to these standard components, KEWI allows
the specification of high-level effects and subgoal-subtasks.
The aim here is to allow for a representation that supports
flat, PDDL-like planning domains as well as hierarchical
planning domains.

When a method declares that it achieves a high-level ef-
fect, then every decomposition of this method must result
in an action sequence which will achieve the high-level ef-
fect after the last action of the sequence has been completed.
This could allow a planner to use a method as if it was an ac-
tion in a backward search. An alternative view is that such a
method functions as a macro action type in the domain.

A method may also include subtasks that are effectively
subgoals. For example, the subtask “achieve C.r(ci, cj)”
may be used to state that at the corresponding point in the
subtask the condition C.r(ci, cj) must hold in the state. The
idea being that a planner may revert to flat planning (such
as state-space search) to find actions to be inserted into the
plan at this point, until the subgoal is achieved.

This mixed approach is not new and has been used in
practical planners like O-Plan (Currie and Tate 1991). How-
ever, the semantics has not been formally defined for this
approach, something we shall attempt in future work.

Export to PDDL
Given that most modern planners accept planning domains
and problems in PDDL syntax as their input, one of the
goals for KEWI was to provide a mechanism that exports
the knowledge in KEWI to PDDL. Of course, this will not
include the HTN methods as PDDL does not support hierar-
chical planning formalisms.

Function Terms The first construct that must be removed
from KEWI’s representation are the function terms that may

be used to refer to objects. In PDDL’s preconditions and ef-
fects only variables (or symbols) may be used to refer to
objects. The following function can be used to eliminate a
function term of the form C.r(t) that occurs in an action
type O’s preconditions or effects.

function eliminate-fterms(C.r(t), O)
if is-fterm(t) then

eliminate-fterms(t, O)
v ← get-variable(C.r(t), O)
replace every C.r(t) in O by v

The function first tests whether the argument to the given
function term is itself a function term. If this the case, it has
to be eliminated first. This guarantees that, for the remainder
of the function t is either a variable or a symbol. We then use
the function “get-variable” to identify a suitable variable that
can replace the function term. Technically, this function may
return a symbol, but the treatment is identical, which is why
we shall not distinguish these cases here. The identification
of a suitable variable then works as follows.
function get-variable(C.r(v), O)

for every positive precondition p of O do
if p = C.r(v, v′) then

if is-fterm(v′) then
eliminate-fterms(v′, O)

return v′
retrieve 〈r, n, C ′〉 from C
add new parameter v′ of type C ′ to O
add new precondition C.r(v, v′) to O
return v′

This function first searches for an existing, positive pre-
condition that identifies a value for the function. Since func-
tion terms may only be used for constraints that have at most
one value, there can only be at most one such precondition.
If such a precondition exists, its role filler (v′, a variable or
a symbol) may be used as the result. If no such precondition
can be found, the function will create a new one and add it
to the operator. To this end, a new parameter must be added
to the action type, and to know the type of the variable we
need to retrieve the role filler type from the role constraint.
In practise, we also use the type name to generate a suitable
variable name. Then a new precondition can be added that
effectively binds the function to the role filler. And finally,
the new variable may be returned.

Handling nothing The next construct that needs to be
eliminated from the KEWI representation is any precondi-
tion that uses the role filler nothing. Note that this symbol
does not occur in states and thus cannot be bound in tradi-
tional PDDL semantics. Simply adding this symbol to the
state is not an option since other preconditions that require a
specific value could then be unified with this state atom. For
example, if we had an explicit atom that stated holds(k1,
nothing) in our state, then the precondition holds(?k,
?c) of the load action type would be unifiable with this
atom. An inequality precondition may solve this problem,

but only if the planner can correctly handle inequalities. The
alternative approach we have implemented in KEWI is de-
scribed in the following algorithm.

function eliminate-nothing(O)
for every precondition p = C.r(v,⊥) do

replace p with C.r. ⊥ (v)
if O has an effect e = C.r(v, v′)

add another effect ¬C.r. ⊥ (v)

The basic idea behind this approach is to use a new pred-
icate to keep track of state-variables that have no values in
a state. This is the purpose of the new predicate “C.r. ⊥”,
indicating the role r of concept C has no filler for the given
argument. This is a common approach in knowledge engi-
neering for planning domains. For example, in the classic
blocks world we find a “holds” relation for when a block is
being held, and a predicate “hand-empty” for when no block
is held.

The algorithm above uses this technique to replace all pre-
conditions that have nothing as a role filler with a differ-
ent precondition that expresses the non-existence of the role
filler. To maintain this condition, it will also be necessary
to modify the effects accordingly. This is done by adding
the negation of this new predicate to corresponding existing
effects.

Since this is pseudo code, the algorithm actually omits a
few details, e.g. the declaration of the new predicate in the
corresponding section of the PDDL domain, and the fact that
the planning problem also needs to be modified to account
for the new predicate. Both is fairly straight forward to im-
plement.

State-Variable Updates Finally, the cases in which the
value of a state-variable is simply changed needs to be han-
dled. The approach we have adopted here is identical to the
approach described in (Ghallab, Nau, and Traverso 2004).
That is, when an effect assigns a new value to a state vari-
able, e.g. C.r(v, vnew), we need to add a precondition to
get the old value, e.g. C.r(v, vold), and then we can use
this value in a new negative effect to retract the old value:
¬C.r(v, vold).

Example
In this section we shall look at a single operator taken from
the DWR domain and compare its representation in PDDL
as defined in (Ghallab, Nau, and Traverso 2004) with the
equivalent operator in KEWI. Note that this comparison
does not include the representation of the underlying ontol-
ogy, which is rather trivial in the case of the PDDL version
of the domain. However, there is one fundamental difference
in the two ontologies, namely, that the PDDL version uses
just one symbol pallet to denote all the pallets which are
at the bottom of each pile. We consider this epistemologi-
cally inadequate. To avoid this discussion, we shall look at
the move operator here, which does not interact with piles of
containers directly, and therefore this ontological difference
does not show up. In the PDDL version, the operator looks
as follows:

(:action move
:parameters
(?r - robot ?from ?to - location)

:precondition (and
(adjacent ?from ?to)
(at ?r ?from)
(not (occupied ?to)))

:effect (and
(at ?r ?to)
(not (occupied ?from))
(occupied ?to)
(not (at ?r ?from))))

The move operator takes three arguments: the robot to be
moved and the two locations involved. There are three pre-
conditions expressing that applicability of this operator de-
pends on the two locations being adjacent, the robot initially
being at the location from which the action takes place, and
the destination location currently not being occupied. Note
that the latter is a negative precondition which cannot be
handled by all planners. The effects come in pairs and are
somewhat redundant. The robot being at the destination of
course implies that this location is now occupied. Similarly,
the location that has just been vacated by the robot is now
not occupied and the robot is not at that location.

The equivalent operator in KEWI exploits some of the
features described above. However, it is important to note
that the user interface does not provide a text editor that can
be used to modify a PDDL-like representation. Instead, it
consists of a web-form with fields for the various compo-
nents that define an action type. For comparison, we have
printed the internal KEWI representation in a Lisp-like syn-
tax, which looks as follows:

(:action-type move
(:arguments ((?robot robot)

(?from location) (?to location)))
(:precondition (and

(:relation adjacent
(?from ?to))

(:constr location.occupied-by
(?from ?robot))

(:constr location.occupied-by
(?to nothing))))

(:effect (and
(:constr location.occupied-by
(?to ?robot))

(:constr :not location.occupied-by
(?from ?robot)))))

The KEWI version of this operator also requires three pa-
rameters. This is because none of the parameters is uniquely
implied by any of the others. However, this is the only action
in the DWR domain for which this is the case. All actions
involving a crane have the location of the crane as another
parameter, which would not be required in the KEWI ver-
sion. The number of preconditions is not reduced either in
this case. However, the KEWI version of the operator does
not require a negative precondition since it exploits onto-
logical knowledge about the occupancy of locations. Thus,
this precondition can be reformulated using the nothing

symbol. The biggest difference between the two representa-
tions is in the effects, where KEWI only requires one effect
for each of the pairs listed above. Again, this is due to the
ontology that can be exploited, specifically to the fact that
location can only be occupied by one robot at a time. Not
having to represent such redundant effects reduces the risk
of knowledge engineers forgetting to list such effects. Note
that the second effect is negative, but could perhaps be ex-
pressed more elegantly by using the nothing symbol as
in the preconditions. This is not permitted in the syntax at
present.

Evaluation
This work is being carried out with an industrial partner,
and we are using a real application of knowledge acquisi-
tion and engineering in the area of drilling and well control.
The development of KEWI is in fact work in progress, and
its evaluation is ongoing, and being done in several ways: (i)
A drilling engineer is using KEWI, in parallel with the de-
velopers, to build up a knowledge base of knowledge about
drilling artefacts, operations, procedures etc. (ii) We have
created a hand-crafted PDDL domain and problem descrip-
tions of a particular type of problem in drilling - that of exe-
cuting emergency shut-in procedures. For the same problem
area we have generated PDDL automatically from a tool in-
side KEWI, and we are in the process of comparing the two
methods and the PDDL produced. An interface to a drill sim-
ulation system is being developed which will help in this
aspect. (iii) We are working with another planning project
in the same application, which aims to produce natural lan-
guage explanations and argumentation supporting plans. In
the future we believe to combine KEWI with this work, in
order that (consistent with involving the user in model cre-
ation) the user will be able to better validate the planning
operation.

Conclusions
In this paper we have introduced a knowledge engineering
tool for building planning domain models, and given a for-
mal account of parts of its structure and tools. Its characteris-
tics are that (i) it has a user-friendly interface which is simple
enough to support domain experts in encoding knowledge
(ii) it is designed so that it can be used to acquire a range
of knowledge, with links to operation via automated trans-
lators that create PDDL domain models (iii) it is designed
to enable a groups of users to capture, store and maintain
knowledge over a period of time, to enable the possibility of
knowledge reuse.

Acknowledgements
The research was funded by the UK EPSRC Au-
tonomous and Intelligent Systems Programme (grant no.
EP/J011991/1).

References
Ai-Chang, M.; Bresina, J. L.; Charest, L.; Chase, A.; jung
Hsu, J. C.; Jónsson, A. K.; Kanefsky, B.; Morris, P. H.;
Rajan, K.; Yglesias, J.; Chafin, B. G.; Dias, W. C.; and

Maldague, P. F. 2004. Mapgen: Mixed-initiative planning
and scheduling for the mars exploration rover mission. IEEE
Intelligent Systems 19(1):8–12.
Barreiro, J.; Boyce, M.; Do, M.; Frank, J.; Iatauro, M.;
Kichkaylo, T.; Morris, P.; Ong, J.; Remolina, E.; and Smith,
T. 2012. EUROPA: A platform for AI planning, scheduling,
constraint programming, and optimization. In 4th Interna-
tional Competition on Knowledge Engineering for Planning
and Scheduling (ICKEPS).
Currie, K., and Tate, A. 1991. O-Plan: The open planning
architeture. Artificial Intelligence 52:49–86.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning. Morgan Kaufmann.
Leshed, G.; Haber, E. M.; Matthews, T.; and Lau, T. A.
2008. Coscripter: automating & sharing how-to knowledge
in the enterprise. In CHI, 1719–1728.
McCluskey, T. L., and Kitchin, D. E. 1998. A tool-supported
approach to engineering HTN planning models. In In Pro-
ceedings of 10th IEEE International Conference on Tools
with Artificial Intelligence.
Plch, T.; Chomut, M.; Brom, C.; and Barták, R. 2012. In-
spect, edit and debug PDDL documents: Simply and effi-
ciently with PDDL studio. ICAPS12 System Demonstration
4.
Schreiber, G.; Akkermans, H.; Anjewierden, A.; de Hoog,
R.; Shadbolt, N.; de Velde, W. V.; and Wielinga, B. J.
1999. Knowledge Engineering and Management: The Com-
monKADS Methodology. Cambridge, Mass.: MIT Press,
2nd ed. edition.
Simpson, R.; Kitchin, D. E.; and McCluskey, T. 2007. Plan-
ning domain definition using gipo. Knowledge Engineering
Review 22(2):117–134.
Smith, D. E.; Frank, J.; and Cushing, W. 2008. The anml
language. Proceedings of ICAPS-08.
Vaquero, T. S.; Tonaco, R.; Costa, G.; Tonidandel, F.; Silva,
J. R.; and Beck, J. C. 2012. itSIMPLE4.0: Enhancing
the modeling experience of planning problems. In Sys-
tem Demonstration – Proceedings of the 22nd International
Conference on Automated Planning & Scheduling (ICAPS-
12).
Vodráz̆ka, J., and Chrpa, L. 2010. Visual design of planning
domains. In KEPS 2010: Workshop on Knowledge Engi-
neering for Planning and Scheduling.
Wickler, G.; Tate, A.; and Hansberger, J. 2013. Using shared
procedural knowledge for virtual collaboration support in
emergency response. IEEE Intelligent Systems 28(4):9–17.

