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We find explicitly all multi-loop correlators in the complex matrix model to the leading order in 1/N and show that they are 
identical to the even part of the multi-loop correlators in the hermitean matrix model. The scaling limit for the corresponding 
macroscopic loop correlators is constructed and agrees with the one of the hermitean model to all orders in 1/N 2. In particular 
the double scaling limits of the two models will lead to identical "string equations". 

1. Introduction to the ones of  the hermi tean  matr ix  model.  

The theory o f  discret ized r andom surfaces [ 1-3 ] 
has recently a t t racted much interest  since it has been 
useful in a t tempts  to per form the summat ion  over  all 
genera for non-critical strings [4 -6  ]. In the case where 
the d imens ion  d of  the target space is zero it is also a 
model  of  pure two-dimensional  gravity and it can be 
reduced to the problem of  solving the N ×  N hermi-  
tean matr ix  model  in the so called scaling l imit  [ 7 ]. 
A convenient  tool in the study o f  the matr ix  model  
are the loop equations,  or al ternat ively the D y s o n -  
Schwinger equations.  In the modern  context  these 
equat ions were considered in a seminal  paper  by Ka- 
zakov for genus zero [ 8 ]. In the present  paper  we 
generalize the technique of  Kazakov and solve com- 
pletely the N ×  N complex matr ix  model  in the large 
N l i m i t .  By a complete  solut ion we mean that  all con- 
nected mul t i - loop correlators are calculated explic- 
itly, even away from the scaling l imit .  The n-loop cor- 
relators turn out  to be connected in a s imple way to 
the n-point  correlators.  We construct  explici t ly the 
scaling l imit  o f  the loop correlators and relate them 
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2. The Dyson-Schwinger equations 

Let us consider  the Dyson-Schwinger  equat ions 
(DSE 's )  for the hermi tean  matr ix  model  and for the 
complex matr ix  model.  In the first case we take a po- 
tential  o f  the form 

gU 
VH(¢O)= ~ °-4-J. t r C J ,  

j = l  J 
(i) 

while in the second case 

gC 
Vc(¢t(P) = ~ e ~ - t r ( ~ t ~ ) J .  

j = l  
(2) 

In these general ised potent ials  most  &'s are to be 
considered as sources for operators  t r ~  j etc. and  
should be put  to zero after relat ions between differ- 
ent correlators have been derived,  leaving us with the 
usual potentials involving only finite sums in ( 1 ) and 
(2) .  

Expectat ion values o f  functions FH(~)  and 
Fc(q~*~) are def ined by 
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<F.(~o)) = 

and 

(Fc(~O*~o)) 

fd~o Fn (~o) exp[ - N V n  (~o) ] 
fd~o exp[ - N V n  (rp) ] 

, (3) 

fd~0 d(p* Fc(~O*~O) exp[ -NVc((p t (p)  ] 
= fd~ d~o t exp[ - NVc (~o*~o) ] (4) 

A convenient  way to derive the DSE's  is to con- 
sider in the two cases the field redefinitions ~ 

hermitean matrices: ~0--,~o + e~"+ ~ (5)  

complex matrices: ~-- ,~+ e~o(~o*~o) n 

~*-,  ~o t . (6)  

The changes in the measures and the actions are 

8(d~o)=~d(p i tr~°~tr~ °~-k ,  
k=O 

8 ~ ( ~ ) = ~  ~ g ~ t r ~  j+", (7) 
j = l  

8(d~od~o*)=ed~d(o* i tr(~o*~o)~tr(~a*~°) n -k ,  
k = 0  

8Vc(~O*~o) = e  ~ gC tr(~o,~o)j+,, (8)  
j = l  

for hermitean and complex matrices respectively. 
The invariance of  the parti t ion functions 

ZH( [g] ) = f d~ exp[ - N V . ( ~ )  ], 

Zc(  [g] ) = f d~o d~o* exp[ -NVc(~O*~o) ] (9)  

under field redefinitions leads to the following equa- 
tions for the two models: 

(lO) I~=otr rpk tr ~on-k)=N(j~=l gJ~ tr rp ~+j) 

I~__otr(~o*~o)ktr(~o*~o)n-k)=NIj~=l gCtr(~o*~o)n+Jl . 
(11) 

~ According to our knowledge the first derivation of the DSE 
for the hermitean matrix model by this method is due to 
Matsuo [9 ]. 

In the hermitean case eq. (10) is valid also for n = - 1, 
where the left-hand side becomes zero. Eqs. (10) and 
(11 ) are the Dyson-Schwinger  equations. We can 
write them as differential operators in the coupling 
constants, acting on the parti t ion function 

L, Zn,c([g])=O, 

nn = -- 1, 0, 1, ..., and nc = 0, 1, ..., ( 12 ) 

where the differential operators are given by 

k ( n - k )  0 2 2n O 
L~= 

k "~= l N 2 Ogk Og._ k N ~g. 

+ ~ (k+ 0 
n)gkog~+ k +~_l,nNgl+~o,nN 2. (13) 

k = l  

In (13) derivatives with respect to gj's within< 0 are 
understood to be omitted. In view of  the nature of  the 
field redefinitions (7) it is not surprising that the Ln's 
satisfy the commuta t ion  relations for a Virasoro al- 
gebra as was first observed in ref. [ 10 ]. What  is maybe 
more surprising is that the Ln's have exactly the same 
form for the complex and the hermitean matrix model 
for n>~0. 

We now introduce the following generating func- 
tionals for the hermitean and  complex matrix models: 

1 ~ (try0 k} (14) 
z . ( p ) =  U ~ o  pk+, , 

1 ~ (tr(q~tqT)k) (15) 
Zc(P) = ~k=~o p2k+l 

These quantities are closely related in the N ~  ~ limit 
to the so called spectral density functions [ 11 ]. For 
a completely general potential, systems described by 
the one-matrix models can be in many  different 
phases [ 12 ]. In the present paper  we shall be inter- 
ested only in the standard perturbative phase, the only 
one which is connected with the random surface 
models in d = 0 .  The spectral density functions de- 
scribe the distributions of  eigenvalues of  ~0 in the her- 
mitean model ( V / ~ 0  in the complex matrix model)  
in the limit N-~m.  These functions have support  on 
one arc [x, y] in the hermitean model ( [0, ~fz] in 
the complex model) .  Consequently we shall assume 
that non-zero parameters  gi of  the potentials admit  
the existence of  the perturbative phase. 

To the leading order in 1 /N we can factorize the 
product of  traces in (10) and ( 11 ) and we get the 
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following solutions for X(P) corresponding to the 
perturbative phase: 

Z-(P) = ½ [ Vh(p) --MH(p)~/(p--x)(P-y) ], (16) 

Zc(P) = ½ [ V ' c ( p ) - M c ( p ) ~ ] ,  (17) 

where 

V ~ ( p ) - -  ~ g H p j - l ,  V , c ( p )  = ~ g C p 2 j - I  (18) 
j=l j : l  

The constants x, y, z and the functions M H , c ( P )  

are uniquely determined by the requirement that for 
large IPl Z(P) starts with the term 1/p and that M(p) 
contains no negative powers of p. Using standard 
methods [ 11 ] we can represent Z(P) by the integrals 

1 
ZH(P) = ~ i  x/(P--X)(P--Y) 

Y 
" Vh(q) dq 

× ( q - p ) ~ / ( q - x ) ( q - y ) '  
(19) 

x 

1 ~ qV~(q) dq 
XC(P) = n ' - ~  (q2 p 2 ) d q 2  Z '  

0 
(20) 

where x, y are implicitly defined by the integrals 
Y 

1 ! Vh(q) dq 
QH(x,y, [g])=--n--i  x/(q--x)(q--y) =0 ,  (21) 

Y 
1 ! qV~(q) dq 

WH(a, b, [ g ] ) = - ~ ]  x / (q_x) (q_y)_2 ,  (22) 

while z for the complex matrix model is defined by 

Wc(z ' [g l )=-2~qV 'c (q )dqo  x / ~ _  z = 2 .  (23) 

Eqs. (19) and (20) can be expanded in power se- 
ries in x, y or z and 1/p, an expansion which can also 
be obtained by the method of Kazakov [ 8,13 ]. Here 
let us give explicit expressions only in the case of the 
complex matrix model 

Mc(p,z[g])= ~ p2j-2 ~ ckgC+jzk, 
j=l k=O 

(24) 

Wc(z, [ g ] ) -  ~ cjgCz j, (25) 
j=l 

where the cj are the coefficients in the power series 
expansion of  1/x/1 - x :  

(2j)! 
Cj= 4 J ( j ! )  2 . (26) 

We note that W(z) plays the role of the cosmological 
constant. The function Wc(z, [g] ) defined by (23) 
has a simple scaling property: 

Wc(z, [2g])=2Wc(z, [ g l ) .  (27) 

if we scale all coupling constants with a factor 2 we 
get the following equation for z(2): 

2 dWc(z, [g] ) dz 
dz (12 + Wc(z, [ g ] ) = 0 .  (28) 

For 2 = 1 it gives 

W'c(z) dz= - 2  d2. (29) 

Since Yn,c(P) as defined by (14) and (15) are in 
fact functionals of arbitrary potentials Vn,c(p, [g] ) 
we can use them to extract information about all con- 
nected correlators. In the next section we use this ob- 
servation to solve completely the part of the complex 
matrix model model which involves connected cor- 
relators of the form 

( t r  ((attp) "' ((a *~p)"~... (tp *~)"k ) c. 

3. Solution of the complex matrix model 

Let us now introduce the generating functional for 
the connected Green functions in the complex matrix 
model: 

)~kl,...,kn 
Z(P l  . . . .  , Pn) = L~ ~2kl'-+;~kn+l ' (30) 

kl ,...,kn = l t21 ...IJ n 

where the coefficients are the connected n-point 
functions 

Zkl,...,k, =N"-2 ( tr(~o*tp)k'...tr((o*(o)k")c . (31) 

We will denote Z(P~, ..., P~) as the n-loop correlator. 
We can get the connected n-point function by dif- 

ferentiating the connected ( n -  l )-point function: 

0 
I~,kl,...,kn-l,kn = - -  k, O~k, Yk~,...,k,-i , (32) 
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and this means that in a similar way we can get the n- 
loop correlator by combining (30) and (32): 

co 
J d 

z ( p , ,  ..., p . )  = - Z j = l  p2j--+ l dgC X ( P l  . . . .  , P n - I  ) • 

(33) 

At this point it is convenient to introduce the loop 
insertion operator - d/dg(p), where 

d _ ~  j d 
dg(p)  j=l p2g+, dgC • (34) 

Since 

d 0 + 0 z  0 0 CgZ j 0 (35) 
dg c - Og c Og c Oz - Og c W' (z) Oz 

we have the following decomposition of d/dg(p): 

d _ o _ f (p , z )O(z ,O) ,  
dg(p) Og(p) 

(36) 

where we have introduced the notation 

° J °  4 z) l 0  z, _-- 
Og(p) J=, OgC , W' (z) Oz' 

Z 
f(p, z)= 2(p2_z)3/2. (37) 

We can now obtain the connected two-loop corre- 
lator simply by applying - d/dg(p) to ( 17 ): 

d 
z ( q , p ) = -  )dg(p-------Tz(q ) . (38) 

In the process of applying -d /dg(p)  to z(q) it is 
convenient to note the following relations which fol- 
low from the definitions: 

2 ( P 2 -  q2) 2 1  k-fPaq2- ½ (pZ+ q2 )z _pq), Z(P, q)= ~ ~  

(43) 

and as in ref. [ 13] we note that the two-loop corre- 
lator is universal. It contains no explicit reference to 
the coupling constants gj. It appears only implicitly 
through the variable z and all multicritical models 
have the same two-loop function. 

Further we can write 

d 
x(r, q, p) = dg(p)  z(r, q),  (44) 

and since Z (r, q) has no explicit dependence of gj one 
gets easily 

l 2 2 
z(r ,q,p)= 

W'(z )  1 6 ( ~  q x / ~ - z x / r S ~ )  3" 

(45) 

We will now show that the general formula for the 
multi-loop function ; ( ( P t  . . . . .  Pn + 3) is given by 

X ( P l ,  "-, P n + 3 )  

( 1 0 )  n l n + 3 z  (46) 
= ~ Oz 2zW'(z) 912(P~-Z)  3/2" 

The proof is a consequence of the following lemma: 

Lemma. Let h(z) be a function of z only. We have 
the following: 

d 1 2 . 1 _ ~ h  
- dg(p~ W'(z) (z) 

1 
= O ~ + ~ - - h ( z ) f ( p , z ) .  (47) W'(z) 

W' (z) = ½M(P) - (p2-z)  OM(p) 
Oz 

(39) 

0 pq 
Og(p)g(q)-  (p2 qZ)Z, (40) 

0 1 0 p 
Og(p---~ M(q) = 20p (pE-qE)x/pZ-z '  (41) 

0 
- -  W(z) =tip, z) . (42) Og(p) 

From these relations it is a matter of algebra to derive 

Proof First we note that 

B 1 
Og(p) W' (z, [g] ) 

) - - w '  ( z )  2 0 z  ~ W ( z ,  [g] ) 

1 0 
_ W,-(z)2 ~zf(p, z ) .  

It follows that 

(48) 
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0 g21=g2f(p, z)g2--f(p, z)g22 (49) Og(p)' 

and by induction that 

0 , , z)t.2,+ l , [ O - ~ , f 2  ]=f2~f(p ,z ) f2- f (p ,  (50) 

and therefore 

[ ° ° 1 1  
0g 5' 

1 1 
=g2 "+1 - -  f(p, z ) - f ( p ,  z)g2 "+1 - -  

W ' ( z )  W ' ( z )  ' 
(51) 

and finally, if h(z)  denotes a function with no ex- 
plicit dependence on [g],  we have from the decom- 
position (36) 

dg(p)  

W z) p , z ) h ( z ) ,  (52) 

which proves (46).  

As already noted Wplays the role o f  the cosmolog- 
ical constant. With this interpretation the differen- 
tiation 

n 

W ' ( z )  dz - d W  ~ (53) 

is just the differentiation with respect to the cosmo- 
logical constant. It is remarkable that one gets the 
complete n-loop correlator by such a simple 
differentiation. 

We can directly take the scaling limit o f  (46) for 
any multicritical model. The ruth multicritical point 
is defined [ 8 ] by fine tuning the coupling constants 
gj such that 

w~k)(Zc)=O, k = l  ..... m - - l ,  

Wt") ( z~ )¢O.  (54) 

Let us discuss in some detail the scaling limit in the 
simplest (and probably most interesting) case: m = 2. 
In this case for z close to z~ 

W'(z,  [ g ] ) = - 2 g ( Z - Z c ) + . . . ,  (55) 

where g is a non-universal positive constant. The 
scaling limit and the scaling parameter a are now in- 
troduced in the standard way [ 13,14 ] as 

p~ =zc +an~ (56) 

z= zc - ax/~ . (57) 

It follows that 

1 d - 1  d 
(58) 

W' (z) dz - ga 2 dA ' 

and to leading order in the scaling parameter a we get 
(for n>_-3, for n =  1, 2 the formulas can be found in 
ref. [13 ] )  

Z( n~ , ..., n~; A) 

-- a 7 n / 2 - S  d A n - 3  (Tfi..{.. )3/2 ' ( 5 9 )  

where Cn is a non-universal constant which with the 
choice ( 55 ) is given by 

2 n 
C n = ( _ _ l ) n - l (  g ~ ( Z c ~  \ 4~zJ\ 2g] " (60) 

A is the renormalized cosmological constant and 
the limit n~--,co corresponds to n times differentia- 
tion of  the free energy, which goes as A z-r, where the 
critical exponent ? =  -½ for m = 2. This agrees with 
(59).  

Formula (59) can readily be generalized to multi- 
critical models where m > 2. Let us only mention here 
that Z(P~ ..... pn) is "renormalized" as follows: 

Z(7~1, ..., ~ n ; A ) ( R ) = a ( m + 3 / 2 ) n - 2 m - l , Z ( P l ,  "" ,Pn)  , 
(61) 

in accordance with (59).  

4. The hermitean matrix m o d e l  

We can introduce the generating functional for ob- 
servables like 

Xk,,...,k, - - N n - 2 ( t  r ~ 0kl...tr ~ 0k" )c (62) 

in the same way as for the complex matrix model and 
the multiloop correlators 

)~kl,...,kn 
Z(Pl, ..., Pn) = (63) p~,+, p k .+ , ,  

kl ,...,kn = 1 ".. 
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the only difference being that we have also odd pow- 
ers of Pi appearing in the expression for Pt...PnZ(Pl, 
.... p,). It is convenient to split p~...p,z(p~ .... , p , )  into 
an even part, having only even powers of any of the 
p~'s, and the rest, which we somewhat misleadingly 
denote as the odd part. The odd part contains at least 
one odd power of one of the pi's: 

Z(P~ ..... P,) =ZE(P~, ..-, Pn) +Z°(P~ ..... Pn), (64) 

where 

)~2kt ,...,2kn P'" 'P,zE(P' , '" ,P,)  = ~ p2k,...p]k," (65) 
kl,...,kn 

We can apply the method used in the former sec- 
tion to the hermitean model. We get the multiloop 
correlators by applying the loop insertion operator 

- d/dg(p)  an appropriate number of times to Z(P). 
If we consider the case where we perturb around an 
even potential like 

VoE(~P) = ~ gzHk ~02k ~=, -~- t r  , (66) 

we have that y =  - x = x / ~  and 

z E (p )=Zc (p )  . (67) 

AS long as we only want to bring down even powers 
tr ~o zn we can act with the even part of the loop inser- 
tion operator 

d ~ 2k d 
dgz(p) - k=l ~ p2k+l dg~k ' (68) 

and everything becomes identical to the derivation 
for the complex matrix model, except for a factor two 
caused by the replacement gCtr(~o*~o)k/k with 
gHktr(~o)2k/2k. We keep the non-zero values of 
g~k =gC the same in the two cases. This means that 
also the non-universal constants z¢ and g remain the 
same and 

zE(P~ ..... Pn) =2~-~Zc(P~, "-', P,) • (69) 

In the general case the formulas become somewhat 
complicated away from the critical point and we will 
only give here explicitly the first few loop correlators. 
Let us introduce the notation 

px=P--X,  py=p- -y ,  R ( p ) = p x p y .  (70) 

The loop insertion operator can then be written as 

d 0 + py 0 
dg(p) Og(p) M ( x )  [R(p) ]3/10x 

Px 0 
+ M ( y )  [R(p) ]3/2 0y" (71) 

The n-loop correlator is now given by 

dn--I 
Z(Pl ..... p,) = (-- 1)n-I Z(Pl) • 

dg(p2)...dg(p~) 
(72) 

Let us here give the first few multiloop correlators 
explicitly: 

Z(P) = ½ [ V' (p) - M ( p ) ~ ] ,  (73) 

1 ( p q - ½ ( p + q ) ( x + y ) + x y  ) 
Z(P, q ) -  2(p_q)2  x / R ( p ) R ( q )  - 1 , 

(74) 

x(p, q, r) 

y - x  (pxqxrx p,@ry~ 
= 8 [ R ( p ) R ( q ) R ( r ) ] 3 / Z \ M ( y )  M ( x ) / "  

(75) 

For the general asymmetric case it seems difficult 
to organize the expression in the same nice way as for 
the complex matrix model. However, in the scaling 
limit everything simplifies drastically. In order to 
make an easier contact with the complex matrix 
model we will assume that we are expanding around 
an even potential of the form (66), and that we have 
the m = 2 multicritical case. First we note that for an 
even potential we have 

y =  - x = x / ~ ,  (76) 

M ( x )  = M ( y )  = 2 W' (z)  , (77) 

____0_0 M ( x ) = _  0 Pr (78) Og(p) Op [R(p) ]3/2, 

0 0 Px 
Og(p-----) M ( y ) =  019 [R(p) ] 3/2' (79) 

and therefore we can write the three-point function 
as  

1 z2+z(pq+pr+qr)  
Z(P, q, r) = - -  4W' (z)  [ ( p Z - z )  ( q 2 - z )  ( r 2 - z )  ]3/2" 

(80) 

the scaling limit is obtained when 
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y=x/ -~  a x ~ 1  x =  _ v / ~  + a x/-~2 
2 x / ~ '  2 x / ~ '  

In (81 ) conventions are chosen to match (56) and 
(57). We note that in this limit 

a 
P,y= 2x /~  ~ ( n , + x / ~ )  (82) 

while 

Pix = 2x/r~ +... (83) 

remains finite. It is easy to convince oneself that in 
the scaling limit we can drop the dependence of cor- 
relators on M ( x )  and Az since this dependence will 
give only the subleading terms. In effect we get for 
Z(n~ ..... n.)  the same result as for zE(rq .... , n,)  ex- 
cept for a factor 2"-~ and A~ replacing A. We there- 
fore get that in the scaling limit for n > 2 

X(zq, ..., re,; A) = ½"2"xE(rq .... , Zt,; A) 

= ¼"4"Xc(nt ..... n,; A) . (84) 

We notice that we can construct a sensible scaling 
limit also for negative values ofpi: 

Pi  = _ _ ~ c q  - a ni (85) 

In this case the role of  the endpoints x, y is exchanged 
or A~ is replaced by A2. Otherwise the resulting 
expression is unchanged. 

We can easily extend the above arguments to in- 
clude the case of  the general potential. In this case 
relation (77) is no longer valid. However at the crit- 
ical point either M ( x )  or M ( y )  vanish. Let us as- 
sume that it is M ( y )  and that fo ry  close to Yc 

M ( y ) = - 8 g x / ~  ( y - y ~ ) +  .... (86) 

where 

zc =yc - x ~ .  (87) 

The scaling limit in this case is 

a ~ a rti 
Y=Y~-- Z x / ~  c ' 1)i=Y¢'~- 2 ~ c ' 

x = x ~ +  .... (88) 

With these conventions we again reproduce exactly 
the result for the symmetric potential. 

5. The double scaling limit 

The relation (84) can easily be extended to higher 
orders in 1/N z by means of the DSE's. The general 
DSE's can be written both away from the scaling limit 
and when the scaling limit is taken for each term in 
the 1/N expansion [ 13,14,10 ]. It is this last limit 
which has our interest. Rather than performing the 
general analysis, which is straightforward, but cum- 
bersome (mainly because of notation), let us illus- 
trate the iteration of the DSE's for X(P). First we in- 
troduce the 1/N 2 expansion: 

z(p,,..., p,) 

1 
=X(°)(Pl, ..., Pn) + -~SX(')(P~ ..... P , ) +  .... (89) 

The first equations for X(p) can in the case of an m =  2 
multicritical model be written as (see refs. [ 14,13 ] ) 

X ~°~ (p) = ½ [ V' (p) - M(p)  p ,  Jp-~-z- z ] ,  (90) 

Z(l)(p)  = X~° ) (P, P ) --Z(° ) (po, Po ) 
M ( p ) x / p 2  z , (91) 

where Po is the zero of M ( p ) .  p~ > z and analyticity 
requires that this pole has to be cancelled. In (91 ) 
this is seen explicitly to take place. As Po also scales 
we get from (84) that 

X~)(zc; A)=4X~I)(n;  A)  . (92) 

By iteration of the DSE's we get 

Zhk)(ZCl,..., 7 t , ,A)=4k+n- 'x~k)(rq ..... n , , A ) ,  (93) 

and the factor 4 k+"- t is just a reflection of the fact 
that the two models in the scaling limit differ by a 
factor four for each power of 1/N 2 extracted from 

( l t r  0"'... l t r  ¢~"k) . 

We can now write down the renormalized macro- 
scopic multiloop correlators introducing the scaling 
relations (61 ). I f  for the mth multicritical model we 
denote the double scaling expansion parameter by 
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1 
/¢2= N 2 a  2 m + ~ l  , (94) 

we have the following expansion [ 9 ] in this limit: 

Z(7/:l ..... nn)(R) =Z( ° ) (n l ,  ..., nn)(R) +... 

q-/¢2k)~ (*) (7~ 1 ..... 7~n) tR ) + .... (95) 

The relations between the full renormalized multi-  
loop correlators of the two models can finally be writ- 
ten as 

ZH (7C1 ..... nn; A; /(2) (R) 

=4~-~Xc(n~ .... .  n , ; A ;  4x2)~a).  (96) 

We end with a few remarks. Since the explicit for- 
mulas for the multi loop correlators (59) are in the 
scaling limit very simple to the leading order in the 
1 / N  2 and the DSE's in this limit are not that compli- 

cated, it seems possible to find the explicit formulas 
to any order in 1 /N  2. In the case of the complex ma- 
trix model it might even by possible to do it away 
from the scaling limit since also here we have simple 
algebraic formulas for the multiloop correlators given 
by (46).  It might have some interest to investigate 
this further, since it is possible to go from the com- 
plex matrix model to the unitary matrix model by a 
proper adjustment  of the coupling constants. It is 
known that the unitary models lead to different 
"string" equations in the scaling limit [ 15 ]. From ref. 
[ 16] it is known that the unitary limit corresponds 
to a different critical point  and to a choice of spectral 
density different from the usual "perturbat ive" one. 
The possible choices of spectral densities, and the 
corresponding different phases have been analysed in 
detail in the case of the hermitean model [ 14,17,18 ] 
and the methods used there might give a simple re- 
lation between the Painlev6 I "string" equations of 
the complex matrix model and the Painlev6 II 

"string" equations of the unitary matrix models. 
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