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Abstract
This paper investigates the inϐluence of combined fast external excitation and parametric damping on the am-
plitude and the onset of galloping of a tower submitted to steady and unsteady wind ϐlow. A lumped single
degree of freedom model is considered and the cases where the turbulent wind activates either external exci-
tation, parametric one or both are studied. The methods of direct partition of motion and the multiple scales
are used to drive the slow ϐlow near primary resonance. The inϐluence of the combined excitation on the gallop-
ing is examined. The results shown that not only the amplitude of galloping is inϐluenced, but also the onset of
galloping.

Keywords: Periodic galloping; Parametric damper; Fast excitation; Wind effect; Structural dynamics; Perturba-
tion analysis; Control

1. Introduction
The control of large amplitude oscillations in tall ϐlexible building constitutes an important issue in the design
and stability of such structures. Considerable efforts have been made to reduce the amplitude of oscillations of
tall building induced by steady and unsteady wind. It is well known that above a certain threshold of the wind
speed, tall buildings develop galloping (Parkinson and Smith, 1964; Novak, 1969; Nayfeh and Abdel-Rohman,
1990a; Abdel-Rohman, 2001b; Clark and Modern, 2004) causing the structure to oscillate with large ampli-
tudes. In this context, considerable efforts have been done to quench such wind-induced oscillations including,
for instance, mass tuned dampers, tuned liquid dampers, internal parametric damping or external excitation. A
review of some control methods and their full-scale implementation to civil infrastructure applications is given
in Spencer and Nagarajaiah (2003).

The effect of unsteady wind on the galloping onset of towers has been considered by several authors. In (Abdel-
Rohman, 2001b) a single degree of freedom (sdof) model has been considered and the multiple scales method
(MSM) Nayfeh and Balachandran (1995) has been used to analyze the inϐluence of the unsteady wind on the
critical wind speed above which galloping occurs. It was shown that the unsteady wind decreases signiϐicantly
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the galloping onset only near the primary resonance. In (Luongo and Zulli, 2011a; Zulli and Luongo, 2012b),
the effect of parametric, external and self-induced excitation on periodic galloping of a single tower and of two
towers linked by a nonlinear viscous devicewas examined. Recently, the effect of fast harmonic excitation (FHE)
on periodic and quasiperiodic galloping onset of a tower exposed to steady and unsteadywindwas studied near
primary resonance (Belhaq et al, 2013a). The introduction of a FHE as a control strategy was motivated by an
experimentalworkmade for vibrating testing purpose of a full size tower (Keightley et al, 1961). Themechanical
vibration exciter system used in such an experiment is placed on the top of the structure and debits a harmonic
excitation to the structure. More recently, the inϐluence of internal parametric damping (IPD) on periodic gal-
loping onset of a tower under steady and unsteady wind was examined (Mokni et al, 2014). It was concluded
that when the unsteady wind is present, IPD decreases the amplitude of galloping in all cases of loading, but has
no inϐluence on the galloping onset. The IPD can be introduced via a damper device in the interϐloors damping
as reported in (Munteanu et al, 2013). Its use as a control strategy was motivated by its simple implementation
and beneϐicial effect in reducing vibration in many engineering applications.

In this paper, we extend the results given in (Belhaq et al, 2013a; Mokni et al, 2014) by focusing on the combined
effect of FHE and IPD on periodic galloping. Themain purpose is to examine how FHE and IPD can inϐluence the
galloping of the wind-excited tower when they are introduced simultaneously.

The paper is organized as follows: In Section 2, the equation of motion including the effect of both external ex-
citation and parametric damping is given. The method of DPM (Blekhman, 2000; Thomsen, 2003) is performed
and the MSM is applied in section 3 to derive the modulation equations of the slow dynamic near the primary
resonance. In Section 4, we analyze the combined effect of FHE and IPD on the periodic galloping in the cases
where the unsteady wind activates different excitations. Section 5 concludes the work.

2. Equation of Motion and Slow Flow
A single mode approach of the tower motion is considered and a sdof lumpedmass model is introduced (Abdel-
Rohman, 2001b; Luongo and Zulli, 2011a). It is assumed that the tower is subjected to steady and unsteady
wind and to a combined effect of FHE and IPD. In this case, the dimensionless sdof equation of motion can be
written in the form

ẍ+ x+
[
ca(1− Ū)− b1u(t)

]
ẋ+ Y ν2 cos(νt)ẋ+ b2ẋ

2 +
[b31
Ū

+
b32
Ū2

u(t)
]
ẋ3

= η1Ūu(t) + η2Ū
2 + Y cos(νt) (1)

where the dot denotes differentiation with respect to the non-dimensional time t. Equation (1) contains, in
addition to the elastic, viscous and inertial linear terms, quadratic and cubic components in the velocity gen-
erated by the aerodynamic forces. The steady component of the wind velocity is represented by Ū and the
turbulent wind ϐlow is approximated by a periodic force, u(t), which is assumed to include the two ϐirst har-
monics, u(t) = u1 sinΩt+ u2 sin 2Ωt, where u1, u2 andΩ are, respectively, the amplitudes and the fundamental
frequency of the response. We shall analyze the case of external excitation, u(t) = u1 sinΩt, parametric one,
u(t) = u2 sin 2Ωt, and the case where external and parametric excitations are present simultaneously. The
coefϐicients of Eq. (1) are given in Appendix I and we assume that Y , ν are, respectively, the dimensionless am-
plitude and the frequency of the FHE and IPD as well. To simplify the analysis, we consider the particular case
where the FHE and the IPD have the same amplitude Y and the same frequency ν .

Equation (1) includes a slow dynamic due to the steady and unsteady wind and a fast dynamic induced by the
FHE and the IPD. To separate these dynamics, we perform the method of DPM on Eq. (1) by deϐining a fast time
T0 = νt and a slow time T1 = t, and splitting up x(t) into a slow part z(T1) and a fast part ϕ(T0, T1) as

x(t) = z(T1) + µϕ(T0, T1) (2)
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where z describes the slowmainmotions at time-scale of oscillations,µϕ stands for anoverlay of the fastmotions
and µ indicates that µϕ is small compared to z. Since ν is considered as a large parameter, we choose µ ≡ ν−1

for convenience. The fast part µϕ and its derivatives are assumed to be 2π−periodic functions of fast time T0

with zeromean value with respect to this time, so that< x(t) >= z(T1)where<>≡ 1
2π

∫ 2π

0
() dT0 deϐines time-

averaging operator over one period of the fast excitation with the slow time T1 ϐixed. Averaging procedure gives
the following equation governing the slow dynamic of motion

z̈ + z +
[
ca(1− Ū)− b1u(t)−H0 +

(b31
Ū

+
b32
Ū2

u(t)
)
H1

]
ż +

[
B −B0

(b31
Ū

+
b32
Ū2

u(t)
)]
ż2

+
[b31
Ū

+
b32
Ū2

u(t)
]
H2ż

3 = η1Ūu(t) + η2Ū
2 +G (3)

whereH0 = 4b2Y
2,H1 = 6(Yν )

2,H2 = 1 + 6Y 2ν2, B = b2(1 + 2Y 2ν2), B0 = 12Y 2 and G = −2b2(
Y
ν )

2. Note
that the case without FHE has been studied in Belhaq et al, (2013a), the case without IPD was considered in
Mokni et al, (2014), while the case without FHE and IPD (Y = 0) was talked in Luongo and Zulli, (2011a).

To obtain the modulation equations of the slow dynamic (3) near primary resonance, the MSM is performed
by introducing a bookkeeping parameter ε, scaling as z = ε

1
2 z, b1 = εb1, H0 = εH0, H1 = εH1, B = ε

1
2B,

B0 = ε
1
2B0, η1 = ε

3
2 η1, η2 = ε

3
2 η2 and assuming that Ū = 1+εV (Luongo and Zulli, 2011a), with the resonance

condition Ω = 1 + εσ where V stands for the mean wind velocity and σ is a detuning parameter, a two-scale
expansion of the solution is sought in the form

z(t) = z0(t0, t1) + εz1(t0, t1) +O(ε2) (4)

where ti = εit (i = 0, 1). In terms of the variables ti, the time derivatives become d
dt = d0 + εd1 + O(ε2) and

d2

dt2 = d20 + 2εd0d1 +O(ε2), where dji = ∂j

∂jti
. Substituting Eq. (4) into Eq. (3), equating coefϐicients of the same

power of ϵ, we obtain the two ϐirst orders of approximation

d20z0 + z0 = G (5)

d20z1 + z1 = −2d0d1z0 + (caV + b1u(t0) +H0 −H1(b31 + b32u(t0)))(d0z0)

−(B −B0(b31 + b32u(t0)))(d0z0)
2 −H2(b31 + b32u(t0))(d0z0)

3 + η1u(t0) + η2 (6)

A solution of Eq. (5) is given by

z0 = A(t1) exp(it0) + Ā(t1) exp(−it0) +G (7)

where i is the imaginary unit and A is an unknown complex amplitude. Equation (6) can be solved for the
complex amplitude A by introducing its polar form as A = 1

2ae
iϕ. Substituting the expression of A into Eq. (7)

and eliminating the secular terms, themodulation equations of the amplitude a and the phaseϕ can be extracted
as 

ȧ = [S1 − S3 sin(2ϕ)]a− S5 cos(ϕ)a2 + [−S2 + 2S4 sin(2ϕ)]a3 − β cos(ϕ)

aϕ̇ = [σ − S3 cos(2ϕ)]a+ 3S5 sin(ϕ)a2 + [S4 cos(2ϕ)]a3 + β sin(ϕ)
(8)

where S1 = 1
2 (caV + H0 − H1b31), S2 = 3

8b31H2, S3 = 1
4 (b1 − H1b32)u2, S4 = 1

8b32H2u2, S5 = 1
8b32B0u1

and β = η1u1

2 . It can be seen that the FHE and the IPD inϐluence the dynamic of the tower via the coefϐicients
Hi(i = 0, 1, 2) andB0.
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Figure 1. (a) Equilibrium branches, (b) variation of galloping vs. Y . Solid line: stable, dashed line:
unstable, u1 = 0, u2 = 0, ν = 8.

3. Applications and Results
In this section, we analyze the effect of the amplitude Y of the combined excitation on the vibration of the tower
for different types of turbulent wind ϐlow. For convenience, the parameter values used in the present study are
taken from Luongo and Zulli, (2011a).

3.1 Case of non-turbulent wind

The equilibria of Eq. (8), corresponding to periodic oscillations of the system, are giving by setting ȧ = ϕ̇ = 0.
In the absence of turbulence (u1 = u2 = 0), only the ϐirst equation of system (8) is used. Besides the trivial
solution, a = 0, the amplitude of the self-excitation is also obtained, such as

a =

√
4(caV +H0 −H1b31)

3b31H2
(9)

Figure 1a shows the galloping amplitude a versus the wind velocity V in the absence of the unsteady wind
(u1 = 0, u2 = 0), as given by Eq. (9), for σ = 0 and for different values of the amplitude Y of the combined
excitation. The trivial solution exists everywhere and changes its stability at the bifurcation point. It can be
seen from this ϐigure that increasing the amplitude Y , the amplitude of the galloping decreases signiϐicantly and
the location of the galloping onset shifts toward higher values of the steady wind velocity. The variation of the
galloping amplitude versus the amplitude of the FHE and the IPD, Y , is reported in Fig. 1b showing the decrease
of the amplitude for different values of the steady wind velocity V , as Y is increased. For comparison with Fig.
1a, we show in Fig. 2a the effect of IPD on galloping indicating a decrease in the amplitude only, while 2b depicts
the effect of external excitation on galloping showing a shift of the galloping onset only.
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Figure 2. (a) Effect of IPD only on galloping vs. V , (b) effect of external excitation only. Solid line:
stable, dashed line: unstable, u1 = 0, u2 = 0, ν = 8.

3.2 Case of turbulent wind with external excitation

In the case of turbulent wind with external excitation (u1 ̸= 0, u2 = 0), analysis of equilibria of the slow ϐlow
(8) yields the following amplitude-response equation

(S1a− S2a
3)2

(β + S5a2)2
+

(−σa)2

(β + 3S5a2)2
= 1 (10)

In this case, the variation of the galloping versus the wind velocity V , as given by Eq. (10), is shown in Fig. 3a for
a given value of the external excitation u1. The solid line corresponds to the stable branch, the dashed line cor-
responds to the unstable one and circles are obtained by numerical simulation. One observes, as in the previous
case of excitation, that the combined effect of the FHE and the IPD decreases signiϐicantly the galloping ampli-
tude and shifts substantially the frequency response torward higher values of wind velocity. For comparison,
Fig. 4 (picked from Belhaq et al, 2013a; Mokni et al, 2014) depicts, respectively, the effect of external excitation
(Fig. 4a) and the internal parametric damping (Fig. 4b) on the galloping. The variation of the galloping ampli-
tude versus the amplitude Y is illustrated in Fig. 3b for different values of wind velocity showing a decreasing
of the galloping amplitude for increasing Y .

Figure 5a shows the effect of the amplitude Y on the galloping versus σ indicating effectively that the galloping
amplitude decreases with increasing Y . The variation of the galloping versus Y is shown in Fig. 5b for two
different values of the detuning. The effect of external excitation and the IPD are also reported in Fig. 6 (picked
from Belhaq et al, 2013a; Mokni et al, 2014) for comparison, showing a decreasing of the galloping amplitude.

3.3 Case where turbulent wind activates parametric excitation

In the case of turbulentwindwithparametric excitation (u1 = 0, u2 ̸= 0), the corresponding amplitude response
equation is written as

(−S1a+ S2a
3)2

(−S3a+ 2S4a3)2
+

(−σa)2

(−S3a+ S4a3)2
= 1 (11)

Figure 7a shows, for a given value of the excitation u2, the effect of the amplitude Y of the FHE and the IPD on the
galloping versus V , as given by (11), indicating a decrease and a shift to the right in the frequency response of
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Figure 3. (a) Effect of combined FHE and IPD on the galloping amplitude vs. V , (b) variation of gal-
loping vs. Y , u1 = 0.1, σ = 0, ν = 10. Solid line: stable; dashed line: unstable; circle: numerical
simulation.

Figure 4. (a) Effect of IPD on the galloping vs. V ; u1 = 0.1, σ = 0, ν = 10, (b) effect of external
excitation for the same values of parameters. (picked from Belhaq et al, 2013a; Mokni et al, 2014);
Solid line: stable; dashed line: unstable; circle: numerical simulation.
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Figure 5. (a) Effect of FHE and IPD on the galloping amplitude vs. V , (b) variation of galloping vs. Y ,
u1 = 0.1, σ = 0, ν = 10. Solid line: stable; dashed line: unstable; circle: numerical simulation.

Figure 6. (a) Effect of the IPD on the galloping vs. σ, (b) effect of external excitation (picked from
Belhaq et al, 2013a; Mokni et al, 2014). Solid line: stable; dashed line: unstable; circle: numerical
simulation; u1 = 0.033, ν = 10, V = 0.117.
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Figure 7. (a) Effect of Y on galloping; u2 = 0.1, σ = 0, ν = 8, (b) variation of galloping vs. Y . Solid
line: stable; dashed line: unstable; circle: numerical simulation.

the galloping amplitude Y is increased. The variation of the galloping versus Y is shown in Fig. 7b for different
values of the steady wind velocity. Figure 8 a,b (picked from Belhaq et al, 2013a; Mokni et al, 2014) depicts,
respectively, the effect of external excitation and IPD on the galloping onset, for comparison.
The effect of the amplitude of the FHE and the IPD on the galloping amplitude versus σ is shown in Fig. 9a. A
substantial decrease of the galloping amplitude by increasing Y is depicted. Figure 9b,c (picked from Belhaq et
al, 2013a; Mokni et al, 2014) illustrates, respectively, the effect of IPD and external excitation for comparison.

3.4 Case where turbulent wind activates external and parametric excitations

In the case where the external and parametric excitations are both present (u1 ̸= 0, u2 ̸= 0), the amplitude-
frequency response is shown in Fig. 10. The plots indicate the effect the amplitude Y on the frequency response
showing that increasing Y eliminates the bistability in the amplitude response, thereby the coexistence of two
different amplitudes of oscillation. Figure 10b,c picked from (Belhaq et al, 2013a; Mokni et al, 2014) illustrates,
respectively, the effect of the IPD and external excitation for comparison.
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Figure 8. (a) Effect of IPD on galloping vs. V , (b) effect of external excitation (picked from Belhaq et
al, 2013a; Mokni et al, 2014). Solid line: stable; dashed line: unstable; circle: numerical simulation;
u2 = 0.1, σ = 0, ν = 8.

4. Conclusion
In this work, we have investigated the effect of FHE and IPD on the amplitude and the onset of periodic galloping
of a tower when submitted to steady and turbulent wind ϐlow. A lumped mass sdof model was considered and
attention was focused on the case where the turbulent wind activates either external excitation, parametric one
or both. Themethod of DPM and theMSM are used to drive a slow dynamic near primary resonance. It is shown
that in the case of steadywind, the combined effect of FHE and IPD retards substantially the galloping onset and
decreases signiϐicantly its amplitude. The results also shown that in the case of turbulent wind, the FHE and
IPD also decreases the amplitude of the galloping and increases the galloping onset of the tower in all cases of
turbulent wind.

Appendix I
The expression of the coefϐicients of Eq. (1) are:

ω = π

√
3EI

hℓ
√
m
, ca =

ρA1bhℓŪc

2π
√
3EIm

, b1 = ca, b2 = −4ρA2bℓ

3πm
, b31 = −3πρA3bℓ

√
3EI

8hŪc

√
m3

b32 = −b31, η1 =
4ρA0bh

2ℓŪ2
c

3π3EI
, η2 =

η1
2
, U(t) = Ū + u(t),

where ℓ is the height of the tower, b the cross-section wide,EI the total stiffness of the single story,m the mass
longitudinal density, h the inter story height, and ρ the air mass density. Ai, i = 0, ...3 are the aerodynamic
coefϐicients for the squared cross-section. The dimensional critical velocity is given by

Ūc =
4πξ

√
3EIm

ρbA1hℓ

where ξ is the modal damping ratio, depending on both the external and internal damping according to

ξ =
ζh2

24EI
ω +

c0
2mω
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Figure 9. (a) Effect of Y of the FHE and the IPD on galloping, (b) effect of IPD on galloping vs. V , (c)
effect of external excitation (picked from Belhaq et al, 2013a; Mokni et al, 2014), u2 = 0.1, V = 0.167,
ν = 8. Solid line: stable; dashed line: unstable; circle: numerical simulation.
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Figure 10. (a) Effect of Y of the FHE and the IPD on galloping,(b) effect of IPD and (c) effect of external
excitation (picked from Belhaq et al, 2013a; Mokni et al, 2014) for V = 0.11, u1 = 0.1, u2 = 0.1. Solid
line: stable, dashed line: unstable, circle: numerical simulation.
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where ζ and c0 are the external and internal damping coefϐicients, respectively. Introducing aparametric damper
device in the internal damping such as

c0 = c(1 + y0ν
2 cos νt)

where y0 and ν are the amplitude and the frequency of the internal PD, respectively. In this case the equation of
motion reads

ẍ+ x+
[
ca + Y ν2 cos νt

]
ẋ− ca

[
Ū + u(t)

]
ẋ+ b2ẋ

2 +
[b31
Ū

+
b32
Ū2

u(t)
]
ẋ3 =

η1Ūu(t) + η2Ū + Y cos(νt) (12)

where Y = cy0

mω . Re-arranging terms yields the equation of motion (1).

Appendix II
IntroducingDj

i ≡ ∂j

∂jTi
yields d

dt = νD0 +D1, d2

dt2 = ν2D2
0 +2νD0D1 +D2

1 and substituting Eq. (2) into Eq. (1)
gives

µ−1D2
0ϕ+D2

1z + 2D0D1ϕ+ µD2
1ϕ+

(
ca(1− Ū)− b1u(t)

)(
D1z +D0ϕ+ µD1ϕ

)
+ z

+µϕ+ Y ν2 cos(νt)
(
D1z +D0ϕ+ µD1ϕ

)
+ b2

(
(D1z)

2 + 2D1z(D0ϕ+ µD1ϕ) + (D0ϕ)
2

+2µD0ϕD1ϕ+ (µD1ϕ)
2
)
+
(b31
Ū

+
b32
Ū2

u(t)
)(
(D1z)

3 + 3(D1z)
2(D0ϕ

+µD1ϕ) + 3(D1z)(D0ϕ+ µD1ϕ)
2 + (D0ϕ+ µD1ϕ)

3
)
= η1Ūu(t) + η2Ū

2 + Y cos(νt) (13)

Averaging (13) leads to

D2
1z +

(
ca(1− Ū)− b1u(t)

)
D1z + z + Y ν2 < cos(T0)

(
D0ϕ+ µD1ϕ

)
> +b2

(
(D1z)

2

+ < (D0ϕ)
2 > + < (2µD0ϕD1ϕ) > + < (µD1ϕ)

2 >
)
+
(b31
Ū

+
b32
Ū2

u(t)
)(
(D1z)

3

+3D1z(< (D0ϕ)
2 > + < (2µD0ϕD1ϕ) > + < (µD1ϕ)

2 >)
)
= η1Ūu(t) + η2Ū

2 (14)

Subtracting (14) from (13) yields

µ−1D2
0ϕ+ 2D0D1ϕ+ µD2

1ϕ+
(
ca(1− Ū)− b1u(t)

)(
D0ϕ+ µD1ϕ

)
+ µϕ+ Y ν2 cos(T0)

(
D0ϕ

+µD1ϕ
)
− Y ν2 < cos(T0)

(
D0ϕ+ µD1ϕ

)
> +b2

(
2D1z(D0ϕ+ µD1ϕ) + (D0ϕ)

2− < (D0ϕ)
2 >

+2µD0ϕD1ϕ− < 2µD0ϕD1ϕ > +(µD1ϕ)
2− < (µD1ϕ)

2 >
)
+
(b31
Ū

+
b32
Ū2

u(t)
)(
3(D1z)

2(D0ϕ

+µD1ϕ) + 3D1z(D0ϕ)
2 − 3D1z < (D0ϕ)

2 > +6D1zµ(D0ϕD1ϕ)− < 6D1zµ(D0ϕD1ϕ) >

+3D1z(µD1ϕ)
2 − 3D1z < (µD1ϕ)

2 > +(D0ϕ)
3 + 3µ(D0ϕ)

2D1ϕ+ 3D0ϕ(µD1ϕ)
2

+(µD1ϕ)
3
)
= Y cos(νt)− Y ν2 cos(T0)D1z (15)

Using the inertial approximation (Blekhman, 2000), i.e. all terms in the left-hand side of Eq. (15), except the
ϐirst, are ignored, one obtains

ϕ = (Y ν(D1z)−
Y

ν
) cos(T0) (16)

Inserting ϕ from Eq. (16) into Eq. (14), using that< cos2T0 >= 1/2, and keeping only terms of orders three in
z, give the equation governing the slow dynamic of the motion (3).
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