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Rotor Design to Attenuate Flow Distortion 
Part I A Semiactuator Disk. Analysis 
The transfer of stationary circumferential inlet distortion through a rotor is analyzed 
using unsteady semiactuator disk cascade theory. This method models the blade cascade 
as one-dimensional wave guides and describes the transmission characteristics of a rotor 
to be a function of the distortion wave length and the length of the rotor chord, as well as 
the normal design parameters. Two parametric studies on the response of a loaded rotor 
to inlet distortions are done for a single rotor operating at off design conditions and a 
number of rotors operating at their design points. Fourier series representations of arbi­
trary distortion wave shapes are used for comparison with experimental data. 

Introduction 
Numerous experiments [1, 2, 3]1 have shown the transmission 

characteristics of a rotor to be a function of the distortion wave­
length and the length of the rotor chord. The present work is the 
first analysis to systematically include these effects by using com­
pressible semiactuator disk (SAD) theory. Semiactuator disk 
theory has been applied previously to the cascade problems of 
stall flutter by Tanida and Okazaki, [8] transmission of sound by 
Kaji and Okazaki [9] and general resonance criteria by Afford 
[10]. 

In the present formulation it is assumed that the flow field on 
either side of the rotor is inviscid and two dimensional. The radi­
al effects which are experienced in an axial flow compressor are 
ignored so the analysis is more appropriate for a rotor with a high 
hub-to-tip ratio. The time steady flow parameters are assumed 
constant values on either side of the blade row with a jump dis­
continuity at the blade leading edge. The rotor blade cascade is 
modeled as a set of one-dimensional wave guides. The amplitude 
of the distortion is considered to be small relative to the mean 
flow levels. 

The solution to the problem essentially rests on solving and 
coupling the three flow fields shown in Fig. 1. For the upstream 
field, an inlet distortion pattern, represented by a total pressure 
and flow defect with a uniform static pressure, is imposed on the 
mean flow ahead of the rotor. For a coordinate system fixed with 
the rotor this pattern appears as a shear wave harmonic in time 
with a period corresponding to the number of distortion zones per 
revolution. 

The resulting linearized equations of motion can accommodate 
a second disturbance in the upstream field in addition to the im-

1 Numbers in brackets designate References at end of paper. 
Contributed by the Gas Turbine Division and presented at the Gas 

Turbine Conference, Zurich, Switzerland, March 31-April 4, 1974, of THE 
AMERICAN SOCIETY OF MECHANICAL ENGINEERS. Manuscript re­
ceived at ASME Headquarters, November 27, 1973. Paper No. 74-GT-41. 

posed shear wave. In general, the second field can have static 
pressure variations in addition to changes in velocity and will 
decay in amplitude with distance from the rotor. The particle ve­
locity disturbances which accompany the static pressure waves 
tend to wash out the incident axial velocity distortion and create 
swirl velocity distortion near the rotor to support the static pres­
sure gradients. 

Downstream of the cascade both a shear wave and pressure 
wave again exist with amplitudes depending upon the transmis­
sion characteristics of the rotor. 

The semiactuator disk approximation occurs in evaluating the 
third field within the cascade. The assumption of infinitesimal 
blade spacing makes it possible to treat the flows and wave prop­
agation within the cascade as one-dimensional. Disturbances are 
transmitted through the blading as plane waves with their fronts 
perpendicular to the airfoil surface. This wave description auto­
matically satisfies the airfoil boundary condition that no flow can 
pass through the blade surface. 

One can interpret a semiactuator disc cascade as a plane layer 
whose acoustic impedance is different from air so that the reflect­
ed wave and transmitted wave from the layer are produced at the 
leading edge and the trailing edge line of the cascade respectively. 
Communication between the leading and trailing edge lines is es­
tablished by the plane waves traveling within the cascade. 

Five unknown waves in addition to the imposed shear wave 
have been identified: 

1 The upstream pressure wave; 
2 the leading edge to trailing edge traveling plane wave within 

the cascade; 
3 the trailing edge to leading edge traveling plane wave within 

the cascade; 
4 the downstream pressure wave; 
5 the downstream shear (or vorticity) wave. 

To determine the amplitude of each wave, five boundary or 
coupling conditions must be used. Following Ehrich [7] and Kaji 
[9] these conditions are: 
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Fig. 1 Flow field representation 

1 Mass flow is continuous at the leading edge line; 
2 total enthalpy is conserved at the leading edge line; 
3 mass flow is continuous at the trailing edge line; 
4 total enthalpy is conserved at the trailing edge line; 
5 the flow direction at the trailing edge is determined by the 

Kutta-Joukowski condition. 

The key to amplification or attenuation of total pressure distor­
tion is the Kutta-Joukowski condition. This assumption intro-' 
duces a limiting effect of viscosity into our inviscid system of 
equations by requiring the flow to leave the airfoil trailing edges 
smoothly and parallel to the plates. The condition is necessary 
mathematically to insure a unique solution to the problem and 
has been verified by experiments. 

As the flat plate rotor passes through the distorted flow 
changes in local incidence angle occur. The Kutta condition 
implies the flow leaves the rotor at a constant exit-angle. Hence, 
excursions in angular momentum occur within the rotor which 
create changes in the local total pressure distortion. In the semi-
actuator disk theory a singularity occurs at the leading edge of 
the cascade, so that the flow turns suddenly at the leading edge 
line. Therefore, the momentum flux is discontinuous across the 
leading edge line even though the mass flux and energy flux is 
continuous by conditions 1 and 2. 

T h e Governing Equat ions 
The conservation equations for an ideal, inviscid, isentropic, 

compressible fluid with no body forces can be reduced to a linear­
ized form if it is assumed that the (unsteady) perturbations 
around the (steady) time averaged quantities are of such small 
amplitude that only linear terms in the perturbation need be con-
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sidered. The perturbation equations are: 

Continui ty: 

at — — 

Momentum: 

(1) 

dq' .. -r 

x f - +(q-V)q'+(q'-v)q=--VP' + P ' ^ (2) 
dt —- — -* -* — -7 

P P 
Equation of State: 

p' = c 2p' (3) 

Assuming the mean quantities are constant in space and time 
one can combine equations (l)-(3) to yield the governing equa­
tions for the pressure waves: 

— 2 at oy 2 "z 

pc pc 

+ ai»JL]+»JhL + ^ = o (4) 
^ dy s tiz dy 

p 

^ _ f / r ^ + c j^ + fll^]+i^=0 (6) 
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The U p s t r e a m Fie ld 
In the farfield ahead of the rotor the imposed shear wave dis­

tortion which satisfies relations (4) and (5) is given as 

Qi'= A?<>exp[«co (t + y/Ur - Zai/Ur + <£„)] (7) 

w h e r e 
aj = tan oij 

1.0 

0 . 8 

0 .6 

0 .4 

<•, = / ' 

I / 

' 

-

) 

» 

1 
0 . 2 

70 

1 
0 .4 

60 

10 

9 

8 

"4 
MfeT 

6 

1 

50 

J J 
40 

J I 
—--

1 1 
0 . 6 0 8 

/ Mzr°-5 
/ JL.« 1/40 

al 

30 

1.0 

3.0 

2.5 

w 1.5 -

^ l . o 

0.5 

-

-

-

• 

^rr: 

a, - 0° 
S, - -60° 
B2 > -45° 

A2/Al - 0.865 

- ^ _ _ _ _ 

sssss 

1. 1 i 

__ -
/ °"7 

0.6 

_______—- 0.5 

0.1* 

" • 0.3 

= °1 

' 1 
.06 .08 

CHORDAHWELENGTH, t>A 

Fig. 3 Total pressure distortion transfer with o/X at various axial Mach 
numbers. Operating line study with large axial gaps using SAD analysis. 
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Fig. 4 Total pressure distortion transfer with b/X at various inlet swirl 
angles. Operating line study with large axial gaps using SAD analysis. 

and 
2irUrcos « t (8) 

The components in the axial and tangential direction (in either 
the absolute or relative coordinate system) are given by 

<lA = ACA = « 7 i ' c o s a 1 

qvX' = AC e l = qx' s i n a i = a^bCA (9) 

Fig. 2 Axial decay length versus axial Mach number at various swirl 
angles; b/X = %o 

P i ' = 0 

Near the rotor a pressure wave field is generated as a result of re­
flection of the imposed shear wave by the rotor; hence, at the 
rotor leading edge station 2 
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la 

W=P' 

ft' =P'Tc' 
= AC 2 l + C,2 ' (10) 

For all the waves existing both upstream and downstream of 
the cascade, the harmonic time dependence and phase velocities 
of the waves in the y-direction must be the same, since the peak 
and trough of one wave must be coincident with the peak and 
trough of the other wave, respectively, at the leading edge or 
trailing edge line of the cascade. In other words, the period and 
wave number in the cascade direction of the waves are uniquely 
determined by the incident wave. Hence the velocity and pres­
sure description of the upstream pressure wave can be written as 

C/ =X(z)exp[Mt +y/Ur)] 

<V = Y(z)exp[Mt +y/Ur)] (11) 

p' = P(z) exp [w(t + y/Ur)] 

substituting into equations (4)-(6) yield the behavior of the fluid 
immediately ahead of the rotor as: 
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The Downstream Field 
Downstream of the cascade a shear wave and pressure wave 

will also exist. The perturbations due to the pressure wave can be 
obtained from (12)-(14) as: 

< V = (A3ie + iA3/)exp [Mt + y/Ur 

+ d^z/lTr)] exp [ - w/4r42/C/r] 
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The complete velocity perturbations at the trailing edge plane 
are given by 

9* = c*s' + &CH 

(17) 
1y3 = 0 S 3 + AC34 

At downstream infinity only the rotational shear wave will re­
main. 

AC24 = (A4fi + iAu) exp [iu(t + y/Ur - zaJU,)} 

ACei = «4AC24 (18) 

F l o w Through the Cascade 
The semiactuator disk approximation occurs in evaluating the 

field within the cascade. The assumption of infinitesimal blade 
spacing makes it possible to treat the flow in the cascade as one 
dimensional channel flow. The continuity, momentum and state 
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equations for the perturbations become: 
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where Uis the relative mean velocity in the cascade. 

The mean quantities pit and c4
2 are used since it is assumed 

that a mean flow singularity exists at the blade leading edge line. 
The requirement of continuity of phase requires the circular 

frequency of the channel flow to be identical with the incident 
shear wave and requires the addition of the phase factor exppo 
yo/Ur] to the final solution. 
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Solving the conservation equations, the pressure and velocity 
perturbations traveling within the cascade can be written as: 
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where M is the relative Mach number, b is the blade chord and k 
is the reduced frequency: 

u)b 
k = U (22) 

Communicat ion B e t w e e n Waves 
Now that all of the fluctuating quantities in the flow fields are 

obtained, we shall consider the boundary conditions to be satis­
fied by them. 

Leading Edge. The first requirement is that no mass will be 
lost in crossing the leading edge line. Considering the continuity 
equation in integral form and letting the control volume go to 
zero removes all reference to the unsteady processes occurring up­
stream or within the cascade. The conservation of mass flow then 
degenerates to the requirement that axial mass flux across the 
cascade inlet remains constant. After neglecting quadratic terms, 
the perturbation boundary condition becomes: (at z = J = 0 and 

y =yo): 

Ai [ f t f e ' + C ^ f t ' }=A2[ ( p 4 M / + Up,' cos ft] (23) 

This type of argument cannot be applied to the momentum 
equation due to the leading edge singularity, 'thus it is necessary 
to introduce the concept of conservation of energy. Using the defi­
nition of linearized static enthalpy, the conservation of energy 
condition is written as: 

tial flow problem. Physically it is interpreted as a limiting effect 
of viscosity. 

The Kutta-Joukowski condition can be expressed as 

Q4 + f e ' = (U+u,') cos ft 

Cgi
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So that the mean flow: 
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where b3 = tan fa and for the perturbations: 

qj = K j ' cos fo 

qy3' = ut sin ft = 63^3' 

Substituting (28) and (30) into either equation (25) or (26) gives 

Ps'=Pt' (3D 
Either equation (30) or (31) can be used as the coupling boundary 
condition at the trailing edge line of the cascade. 

Final System of Equations 
For a given incident shear wave, relations (23)-(26) and (30) 

give five equations for the five unknown wave forms. 
These relations can be expressed in the matrix form 

Pi'/Pi + Cziqzl' + C, R I 
01 <7y2 : pt'/Pi + UU,' (24) 

Trailing Edge. Equations (23) and (24) give the boundary 
equations required at the leading edge. Similar arguments can be 
applied to the trailing edge to give (at £ = b; 2 = b cosfo; y - Vo 
+ frsinftj) 

The unknown amplitude column vector X is given by 

(32) 

and 
Ptfa' + C^Ps = (P4V + Up,') cos Pi 
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If we assume that the rotor is heavily bladed, the relative exit 
air angle of the fluid leaving the rotor will coincide with the geo­
metric exit blade angle irrespective of the relative incidence 
angle. This assumption, known as the Kutta-Joukowski condi­
tion, is commonly used in thin airfoil theory and has been proven 
to be a necessary condition to eliminate flow singularities from 
the airfoil trailing edge, insuring a unique solution to the poten-
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The elements of the coefficient matrix Cy and the column vec­
tor Sj are defined in Appendix A. 

Limiting Cases 
The correctness of the matrix form (32) can be checked by con­

sidering two degenerate solutions: (1) incompressible actuator 
disk and (2) isolated stator row where previously derived solu­
tions exist. In addition, reduced forms for the incompressible 
semiactuator disk and the compressible actuator disk can be for­
mulated. 

To obtain the incompressible actuator disk formulation one can 
simultaneously let the reduced frequency and Mach number go to 
zero in matrix (32) to give: 

The solution to this system is simply 
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This form is seen to be identical to equation (18) of Ehrich's 
paper [7] including the effect of velocity across the stage. 

The case of an isolated stator row can be obtained by setting, 
the rotor speed to zero: 

Ur = 63 - fl4 = (CA/Czi) (62 - oj) = 0 

Equations (22,) and (9) then give 

k = 0 

so the matrix equation becomes: 
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which is the relation for the axial velocity distortion. This rela­
tion is exactly that found by Ehrich .[7] and is seen to be void of 
any compressibility or unsteady effects. Substituting into the ex­
pression for the total pressure distortion produces the expected 
result that neither the total pressure amplitude or wave shape is 
changed in crossing a stator. 

Fie ld Equat ions 
The solution of equation (32) produces the solution vector given 

by (33) in terms of the velocity ratios e2'/n, (3/(1, iihi and 
phase: 02, 03, and 04. This may be related to the local static pres­
sure, axial velocity and swirl velocity distortion on either side of 
the rotor by using equations (12)-(18). 

Upstream of the Rotor. The axial velocity distortion ahead of 
the rotor is determined by the sum of the imposed velocity distor­
tion and the velocity field reflected from the rotor 

A;C2U = AC Z 1 + c ^ 

From equations (9) and (12) we obtain 
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The swirl velocity distortion is similarly stated by 

(37) 

AC„ AC,, + C„ 

(35) 

where the relationships in fields 1 and 2 are given by equations 
(9) and (13), respectively, i.e., 
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Fig. 10 Total pressure distortion transfer with b/X at various Inlet rela­
tive air angles. Design point study with large axial gaps using SAD anal­
ysis. 

Downstream of the Rotor. Behind the.rotor the field compo­
sition is similar to upstream. Equations (15) to (17) and (33) give 

AC„C = €4 exp {i[k(Q - a4z)/(63 - a4) + 04]} 

+ e3 exp [ - ^4/42/(63 - a4)] . (40) 

exp{j[fe(0 + d4r42)/(63 - a4) + 03]} 

(41) 
ACeD = e4a4 exp \i[k(e - aiz)/(b3 - a4) + tf>4]} 

+ €3(d4 - if J exp [ - fe/4r4z/(63 - a4)]. (42) 

exp{j[fe(6 + d4r4z)/(63 - a4) + 4>3]} 

&PD = Pi = - P4Q4€4^4 ~ iaJdexp [ - fe/4r4z/(63 - a4)]. 

exp{i[fe(0 + d4r4z)/(63 - a4) + ̂ 3]} 
Both the upstream and downstream fields contain exponential 
terms which create a static pressure distortion near the rotor and 
wash out the velocity distortion. In general one would like to 
place instrumentation far enough away from the rotor to avoid 
these induced fields. Equation (12) shows that the amplitude of 
the induced distortion has decayed to 1/e of its initial level when 

M-M/q+cV) < 
1 - M / " - 1 

(43) 
1 - M , 2 

coz 
U. 

27T''1 - M / ( l + a^). 

This relation is plotted in Fig. 2. Note that the dependence van­
ishes when the absolute Mach number exceeds 1 so that the term 
under the radial changes sign. 

Total Pressure Distortion 
Defining the distortion amplitude as the difference between the 

maximum (or minimum) level and the average, a relationship 
was derived between total pressure and the local static pressure 
and velocity. Using the isentropic relation for the total to static 
pressure ratio and the definition for the speed of sound, the total 
pressure perturbations can be expressed in terms of static values 
as: 

&PT/PT = p'/p + yM,(l + a2)(C//c + aCe'/c) 

1 +[ (y- l ) /2K 2 ( l + «2) 
(44) 

Recalling that the static pressure and swirl velocity distortion 
decay exponentially from the blade row we see that the total 

AP, 
-) = [yMrftt + at2)(ACri/(H)]/[l 

+ ((y-l) /2)M J ! l
2( l +(h

2)] 

AP, -) = [yM,4(l + a4
2),(A<Vc4>]/[l 

(45) 

•* T down 

+ ((y~l)/2)M a 4
2( l +a4

2)] 

These relations can be verified by direct substitution to give 

A P r 4 / A P r l = (PTi/PTiY
u^(l + a4

2)/(l 

+ ai2)[(e4/€j)/(C r f/C,4)] (46) 

Square Wave and Arbitrary Distortion Waveform 
The analysis derived in this paper has assumed the upstream 

distortion is sinusoidal, given by the relation 

b.q - Ag0 exp li{2ts6/\ + <J>0)] 

This restriction may easily be relieved to any arbitrary wave 
shape by the use of Fourier series. A waveform Ag can then be 
represented by 

A<7=f} C„exp[i(2ime/\-4>„)] = E Cncos {2mi6/\ - <pn) 
"•-" n = l 

(47) 

(48) 

where 
C „ -

. An + B„2 

A„ = 2/x J A? cos {2irne/x)de 
0 

B„ = 2/X J A^sin (2wVx)rf0 
0 

The coefficient Ao is not used because the mean value of the dis­
tortion perturbation is by definition zero. In particular a one per 
rev square wave with a defect of extent 0ext centered at 180 deg 
gives 

C„ = 2 sin {dntn/2)/nn 

n odd ( 4 9 ) 

!>„={ 0 n even 
Relation of Compressor Design Parameters to the 
Computer Input 

The semiactuator disk analysis was developed to study realistic 
systems which have a total pressure change and turning across 
the stage. This section presents the results of a parametric study 
showing the influence of stage design parameters on the transmis­
sion of an inlet distortion through a rotor under different operat­
ing conditions and for a number of rotors at their design points. 

The coefficient matrix Cy and the column matrix Bt are seen to 
be functions of k, M, Mzi, MZ4, ai, i>2, bs, di, P/pt and Czx/Cz4. 
In this section we will define these quantities in terms of normally 
specified compressor design parameters and show their interde­
pendence. _ 

The density ratio pi/pt and the velocity ratio Czi/Czi are relat­
ed by continuity 

"ft/ft = l/(CeiAR/CH) (50) 

where 
A R = A ; / A 2 (51) 

is the stream tube contraction across the blade row. 
One would normally specify either AR or Czi/Cz4 depending on 

the application and calqulate the other from (50) using the densi­
ty ratio from the isentropic relation 
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P) _ P n 

P2 Pr2 

1 + • • Mz 4
2 (1 + «4

2) 

1 + y • Md
2(l W) 

< l / < y - l > ) 

(52) 

The upstream Mach number Mzi is a known input parameter 
from the weight flow. The downstream axial Mach number, Mz4, 
is obtained in terms of the remaining parameters from: 

= Uj'(fiJCj{TTi/TTl) [ 1 + ((y - l ) / 2 ) M r f V - a4
2)] 

(53) 

Recalling that all thermodynamic changes are assumed to take 
place at the leading edge, the relative Mach number is given by: 

M = Uj cos ft = M „ / l + 632 (54) 

Furthermore, equation (22) gives the reduced frequency as 

k =2nbUrcosai/\U = [2TT(6A)(63 

- at)]/" tt -+ h2) (1 + «t2) 

Operating Line Study 
In the case of an existing fan operating at off design, one nor­

mally has readily available information on the airflow, rotor 
speed, flowpath inlet swirl and blade angles. From these items 
the inlet axial Mach number Mzi is obtained from the flow; the 
inlet absolute swirl angle «i is obtained from the OGV setting. 
The inlet relative air angle /3i is obtained from the flow and rotor 
speed; the area ratio AR is known from the flowpath and the exit 
relative air angle 02 is found from the blade geometry. With this 
set of input variables the axial velocity ratio across the rotor 
is obtained by iterating equations (50), (52), and (53). The pre­
scribed input is then obtained from 

Oj = tan at 

6, 

: tan ft 

: tan (32 

(55) 

a4 = 63 - (62 - oj) Czi/CH 

The influence of inflow Mach number holding the inlet swirl, 

• $ 
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Fig. 11 Total pressure distortion transfer with b/\ at various inlet an­
gles. Design point study with large axial gaps using SAD analysis. 
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Fig. 12 Total pressure distortion-transfer with ft/A at various axial ve­
locity ratios. Design point study with large axial gaps using SAD analy­
sis. 

relative.air angles and contraction ratio constant is shown in Fig. 
3. A significant-conclusion is tha t the effect of increasing chord or 
distortion zone has an attenuating effect at low Mach number 
but amplifies the distortion at high Mach number. This has bear­
ing on the relative importance of low speed compressor testing. 
Fig. 4 shows the influence of preswirl on the distortion transfer. 
Inducing a swirl in the opposite direction from rotor rotation is 
found to have an attenuating effect since the inlet relative air 
angle is held fixed. This case also corresponds to reducing the 
rotor speed with a fixed flow. Decreasing the relative inlet air 
angle (or increasing flow coefficient) can significantly reduce the 
distortion transfer through the stage as seen in Fig. 5. At high 
angle increasing 6/X will increase the distortion after the rotor. At 
nominal and low values, the reverse is true. 

In the case of a fixed inlet angle, changing the rotor blade set­
ting to produce a higher discharge angle will at tenuate the distor­
tion as shown in Fig. 6. The influence of contraction ratio is 
shown in Fig. 7. 

Design Point Study 
In the case where only fan design concepts are being analyzed 

one normally defines each fan by its flow, pressure ratio, tip 
speed, axial velocity ratio and inlet swirl angle. 

Again flow, tip speed and inlet swirl give M e j , at, and b2 direct­
ly. Total pressure ratio is related to total temperature ratio in 
this "no loss" rotor by the isentropic expression 

TTi/Tn = (PTi/PTi)
Uv-u/v) (56) 

The steady state energy is given by 

cpTn[(Tn/Tn) -I] = Ur(C9, •Cn) 

= UrCgiiaiC^/C^ - at) 

which can be rearranged to give a^ as 

a4 = {«i 

+ i(TTi/TTl)~l}[l +((y-l)/2)Mj(l + f l l
2 ) ] } ^ ^ 

(y - l ) M z l
2 ( 6 2 - ^ 

(57) 

and the tip speed relation gives 

63 = a4 + (Z>2 - m) C^/Cri 

With 04 determined, M24 can be obtained from equation (53) and 
the area ratio is immediately found from (50) and (52). 

Transactions of the ASME Downloaded From: https://gasturbinespower.asmedigitalcollection.asme.org on 06/30/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



UPSTREAM WAVEFORM 

D 
o k -

z l 

" l 

0! 

A 2 / A x 

b / 2 n r -

0 . 0 4 5 

- 0° 

=i - 6 0 . 6 

-• - 5 3 . 5 

- 1 .0 
0 . 0 2 3 6 

120 150 180 210 240 270 
CIRCUMFERENTIAL ANGLE, DEGREES 

Fig. 13 Comparison between theory and the experiments of Seidel; 
rotor alone using SAD analysis. 

„1 

. 2 

. 1 

0 

. 1 

M z l -

" 1 

_ 0 1 . 

^ 2 

AJ/AJ^ -
b / 2 i r r 

— 

. 0 7 6 

0 " 

- 6 0 ° 

- 3 6 . 1 ° 
1 .0 

. 0 5 6 5 

• • . --7 
cT / 

1 1 

• 

1 

• 

UPSTREAM WAVEFORM 

s - \ PREDICTED DOWNSTREAM 

\ D MEASURED DOWNSTREAM 

\ 0 - \ 

\ n \ ^ 
^ D _ _ - . 

a n n n 

i i i 

Fig. 
rotor 

170 174 178 182 186 190 

CIRCUMFERENTIAL ANGLE, DEGREES 

14 Comparison between theory and the experiments of Ashby; 
alone, /3i = —60 deg using SAD analysis. 

Stage pressure ratio is seen to have a strong amplifying effect 
on the distortion in Pig. 8. This is consistent with the general ex­
perimental observation that a highly loaded fan is more sensitive 
to inlet distortions than a lightly loaded fan. At moderate pres­
sure ratios, increasing rotor chord has an attenuating influence. 

The effect of axial Mach number and flow with a fixed pressure 
ratio and flow coefficient is shown in Fig. 9. The low Mach num­
bers are seen to have high transfer coefficients because of the 
large amount of turning required to produce 1.3 pressure ratio at 
low flows. Increasing the inlet air angle with a fixed flow and 
pressure ratio results in an amplifying effect in Fig. 10. At high 
angles, the solution exhibits a periodic variation with b/\. 

It is seen from Fig. 11 that the inclusion of a swirl counter to 
rotor rotation gives a lower total pressure distortion transfer and 
causes blade chord to have a stronger attenuating influence. The 
axial velocity distortion on the other hand, increased with counter 
swirl. This is a result of a larger increase in the term (1 +042J/ 
(1 + ai2) in equation (46) than a decrease in «4/ei when swirl angle 
is increased. Ehrich [7] reports an attenuation of axial velocity 
distortion with inducing a swirl in the direction of rotor which was 

also experienced in the present analysis. 
Designing a fan with a lower axial velocity after the stage is 

predicted to improve the distortion transfer in Fig. 12. A general 
observation can be made from Figs. 3-12. In the domain of 
typical compressor design and operation, the distortion transfer is 
relatively insensitive to changes in rotor chord or distortion wave­
length. This conclusion justifies the use of steady flow analysis for 
the inlet distortion problem for a low speed machine. 

Comparison Between Theory and Experiment 
A number of experiments have been conducted to study the 

transfer characteristics of a rotor. Seidel [4] measured the re­
sponse of a low speed isolated rotor to a 120 deg square wave. The 
prediction method is seen to reproduce Seidel's [4] measured data 
in Fig. 13 except at the maximum peak deviations occurring at 
the edge of input wave. Katz [5] has shown that such peaks are 
rounded off if viscous losses within the cascade are taken into ac­
count. 

Ashby [11] inserted a %-in. rod ahead of an isolated low speed 
rotor. A comparison with his data is given in Fig. 14. Excellent 
agreement is obtained particularly where the measure reflex in 
the wake is reproduced by the theory. 

Conclusions 
Semiactuator disk theory is used to study the unsteady re­

sponse of a rotor to stationary circumferential inlet distortion. 
The analytical results show: 

1 In the range of typical compressor design and operation, the 
SAD method shows the distortion transfer to be relatively insens­
itive to rotor chord or distortion wavelengths. 

2 With a fixed design, increasing blade chord will attenuate 
the distortion at low Mach number but can amplify at high Mach 
number. 

3 For a fixed design at different operating lines, lower distor­
tion transfer occurred with: (a) Preswirl in the direction of rotor 
rotation; (b) decreasing the relative inlet air angle; (c) increased 
exit relative air angle. 

4 For a number of design fans, reduced distortion trans­
fer occurred with: (a) Lower design pressure ratio; (b) lower inlet 
relative air angle; (c) preswirl in the direction of rotor rotation; 
(d) increased axial velocity ratio. 

5 Excellent agreement between theory and experiment was 
obtained. 
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A P P E N D I X A 

Definition of Matrix Elements 
The elements of the coefficient matrix Cij are: 

C„ = C22 = (C,4/C2l) (1 - Mjex) 

C12 = - CM = - (Cz4/C2l)Mitl V l 

c i 3 = Cu = ~g + M 2 4
2 ( jwe 4 + « a j / 4 ) 

Cu = - C„ = - h + Mz4
2(we4 - matfi) -"14 ^23 (Al) 

C15 — C26 =~S 

C16 = - C 2 5 = - h 

C31 — Cr ^41 w o — Cto — 0 

G33 — '"'44 — fi 

-c. 

C36 = - C45 = «4 - h = - Ur/Czi 

C5i = C82 = - (q1 /Q4)( l -e1+b2di) = (63 - a^ck 

C52 = - Cg, = (Cn/CuVM - h) =fM - h) 

C53 = C64 = (1 + 63
2)m - harfi -ge„ + 63(rf4 - 63) (Al) 

C54 = - C63 = (1 + 63
2)M - fee4 + gaJA - 63/4 

C55 == C66 = (1 + bs
2){m + 63(a4 - &3) 

where 
,feM . -

c o s (r^w ) c o s (-

5G = - c 6 5 = (1 + h)n 

feM2 , 

1 - M 2 

Msin 
feM feM2 

- ) s i n ( - ^ — ) 
1 _ M2 1 - M2 

, feM , . , feM2 . 
h = - c o s ( —) sin ( J 

1 - M2 1 - M2 

feM feM' M sin ( ) cos ( ) 
1 - M2 1 - M2 

1 . , feM . . ,feM' 
m = - — sin ( ) sin ( ) 

M „ , , 2 
1 - M2 1 - M2 

feM feM2 

+ cos ( ) cos ( ) 
1 - M2 1 - M2 

feM2 1 . , feM . , 
n - - — sin ( ) cos(-

M 1 - M2 1 - M2 

, feM . . ,feM2 . , . „ . • cos ( ) sin ( ) (A2) 
1 - M2 1 - M2 

The column vector Bi is given by 

B 

CJCzi COS 0! 

0 

0 

[(Cz l/Q4) (1 + a4
2) + ^(63 - a4)] sin^t 

J ( C z t / q 4 ) (1 + oj2) + 01(63 ~«4)] c o s ^ _ 

The vector X is solved using the matrix inverse. 

(A3) 
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