-

P
brought to you by .. CORE

View metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

Available online at www.sciencedirect.com

science (horneer:

Journal of
Theoretical
Biology

Journal of Theoretical Biology 240 (2006) 241-249
www.elsevier.com/locate/yjtbi

Searching on patch networks using correlated random walks: Space
usage and optimal foraging predictions using Markov chain models

B.R. Guru Prasad™, Renee M. Borges

Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560 012, India

Received 8 March 2005; received in revised form 14 September 2005; accepted 15 September 2005
Auvailable online 26 October 2005

Abstract

We describe a novel representation of a discrete correlated random walk as the transition matrix of a Markov chain with the
displacements as the states. Such a representation makes it possible to utilize results from the theory of absorbing Markov chains, to
make biologically interesting predictions without having to resort to Monte Carlo simulations. Our motivation for constructing such a
representation is to explore the relationship between the movement strategy of an animal searching for resources upon a network of
patches, and its consequent utilization of space and foraging success. As an illustrative case study, we have determined the optimal
movement strategy and the consequent usage of space for a central place forager utilizing a continuous movement space which is
discretized as a hexagonal lattice. The optimal movement strategy determines the size of the optimal home range. In this example, the
animal uses mnemokinesis, which is a sinuosity regulating mechanism, to return it to the central place. The movement strategy thus refers
to the choice of the intrinsic path sinuosity and the strength of the mnemokinetic mechanism. Although the movement space has been
discretized as a regular lattice in this example, the method can be readily applied to naturally compartmentalized movement spaces, such
as forest canopy networks. This paper is thus an attempt at incorporating results from the theory of random walk-based animal

movements into Foraging Theory.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The movement rules used by a forager searching for food
have important consequences on the foraging success, and
hence the fitness of the animal. The study of this cause-
effect relationship straddles two more or less independent
areas of theoretical ecology, namely the theory of animal
movements based on random walks (Okubo, 1980; Black-
well, 1997), and optimal foraging theory (OFT) (Stephens
and Krebs, 1986). While the former makes predictions
regarding the consequences of an animal moving according
to a given stochastic mechanism, the latter seeks to find the
behaviour(s) that the animal must use while foraging in
order to maximize its fitness. The following questions
regarding movement patterns and foraging success form
the motivation for this paper.
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What is the effect of a given movement rule on the
encounter rate with patches containing food resources?
Following Charnov’s classic work on foraging in a patchy
environment (Charnov, 1976), most models of this kind
make the critical assumption of Poisson encounter with
patches of food resources of different types. On the other
hand, the most general model of animal movement is that
of a correlated random walk (Bovet and Benhamou, 1988);
here, the position in space of the animal at any point of
time depends upon its position in the previous two time-
points. Also, in the general case, resource patches are
distributed in a non-random manner. These two general-
izations taken together imply that the Poisson encounter
rate assumption is violated more often than not. McNair
(1979) has shown that when the Poisson encounter rate
assumption is violated, the predictions are drastically
different from those of the classical models. However,
McNair (1979) did not explicitly incorporate the movement
mechanism of the forager into the model. Thus, the
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relationship between the movement rules of the animal and
the encounter rate with patches of different types remains
to be explored.

Therefore, the first objective of this paper is to describe a
method for determining the encounter rate of patch-based
resources in the context of a forager performing a
correlated random walk while searching for resources.

Which movement rule will maximize the foraging success of

the animal? The previous line of reasoning assumes that
movement rules themselves are fixed, and constitute a
constraint; however, as explored in a number of models
(Cody, 1971; Pyke, 1978a,b; Bovet and Benhamou, 1991;
Benhamou, 1992, 1994), the movement rules themselves
may be the subject of optimizing selection. Since the
movement rules are ‘chosen’ by the individual and are
under selection, we will henceforth refer to the movement
rules as constituting the movement ‘strategy’. A general
theme in most of these models is the determination of the
optimal degree of directional correlation that the animal
must use in order to maximize its searching efficiency. One
shortcoming of these models is that they have either used
simulations to arrive at their results (Cody, 1971; Pyke,
1978a; Bovet and Benhamou, 1991; Benhamou, 1992, 1994),
or have not come up with explicit, quantitative predictions
(Pyke, 1978b). Moreover, most of these studies maximize
the average per bout energy intake rate, instead of the long
term average of the intake rate, which is traditionally the
currency of choice in OFT. In many contexts involving real
world foragers, the former may not be the appropriate
fitness currency to be used (see Discussion).

Therefore, the second objective of this paper is to
describe an analytical framework for determining the
optimal parameters for a given movement rule that the
animal must use, in order to maximize its long term
average rate of energy intake, while searching on patch
networks using correlated random walks.

In this paper, we present a model of a forager using a
discrete correlated random walk to search for resources.
The unique feature of our model is that we have used a
novel representation of a correlated random walk as a
Markov chain, by using the displacements of the animal as
the states. This representation makes it possible to apply
methods from linear algebra and the theory of absorbing
Markov chains, in the determination of certain biologically
interesting consequences of using a particular movement
strategy. Thus, in the general case, the long term relative
encounter rate with patches can be determined. In the
context of a central place forager, an exact estimate of the
long term rate of gain of resource can be obtained. Both
these quantities of interest can be determined without
having to resort to explicit Monte Carlo simulations.

We demonstrate the utility of this approach by
considering the case of a central place forager searching
for resources upon a hexagonal lattice using a correlated
random walk. The movement strategy in this case is
specified by a choice of two parameters. The first parameter

constituting the movement strategy is a measure of the
intrinsic path sinuosity. Since it is highly conceivable that
a central place forager possesses some proximate mecha-
nism that returns it periodically to its home, we have in-
corporated mnemokinesis into the model. Mnemokinesis
(Benhamou, 1994) constitutes a sinuosity regulating
mechanism used by animals to polarize their movements
towards a central place. Thus, in this case study, the
movement strategy constitutes a choice of parameters,
namely a measure of the intrinsic sinuosity of the path and
the strength of kinetic mechanism. Both parameters involve
a trade-off in terms of searching efficiency. As pointed out
by Bovet and Benhamou (1991), the intrinsic sinuosity of
the search path must be low enough to minimize any
overlapping between search paths but high enough to
minimize the length of the return journey. Similarly, the
strength of the kinetic mechanism must be low enough to
allow the animal to perform an extensive search, but again,
high enough to minimize the length of the return journey.

Using our model, we determine the optimal movement
strategy, i.e. the movement strategy that maximizes the rate
of energy intake. The relative encounter rate with patches
for an animal using this optimal movement strategy is
obtained. We discuss how the methods developed here can
be applied to animals foraging in more realistic landscapes.

2. The model

2.1. General model of between-patch movement on a
network

2.1.1. Discretization of movement space: the patch network

The movement space is continuous (homogeneous) but
discretized, in the manner described by Westerberg and
Wennergren (2003). Thus, unlike in the case of contagious
movement spaces, there is no ‘matrix’ outside the patches
within which the animal moves. The structure of the
movement space is described by the graph G = (V,E),
where V, the set of vertices, represents the patches and E,
the set of directed edges between vertices. E is thus the set
of all possible patch-to-patch (single-step) displacements,
in the movement space. ¢;e€ E, where ¢, is the
displacement vector from vertex i (centre of patch i) to
vertex j (centre of patch j), implies a nearest-neighbour
relationship, or non-zero direct accessibility of patch j from
patch i. Thus, | V| is the number of patches in the habitat,
|E| is the number of possible displacements that can be
made in the habitat, and |&;| is the length of the
displacement vector, or the actual distance between patches
i and j.

The movement space in the illustrative example used in
this paper consists of a regular hexagonal patch lattice of
size 8 x 8, a portion of which is shown in Fig. 1. In each
time step, the animal can only be displaced to one of the
<6 immediately adjacent patches from the current patch;
this describes the locomotion constraint upon the animal.
Since we have used a regular hexagonal lattice, the distance
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(A)

(B)

Fig. 1. A section of the hexagonal movement space showing starting states (A) and absorbing states (B) of the Markov chain. The dark grey patch is the
central place, and the light grey patch is the mth patch. Each arrow represents a (potential) displacement vector. (A) The arrows originating from the
central place make up the set SV. Any one of these, with uniform probability, is the first displacement made by the animal in a particular bout. (B) The
arrows leading to patch m constitute 4,, (displacements which end in patch m). The arrows leading to the central place constitute 4, (displacements which

end in the central place). The other members of E are not shown explicitly.

between each pair of adjacent patches is the same; this is
taken to be one unit distance (|_e),J~| =1 for all i,j).

2.1.2. First-order correlated random walk

In the context of foraging upon patch networks, the
random walk only describes the movements between the
patches, and not within the patches. The movement of an
animal performing a first-order correlated random walk on
G is represented by a continuous-time Markov chain with
the potential displacement vectors (E) as the states. Thus,
the Markov chain is not a temporal sequence of patches,
but a temporal sequence of patch-to-patch displacements.
Two displacement vectors are considered to be (potentially)
successive if the endpoint of the first is the start-point of the
second. For the sake of clarity, we use the term
‘displacement’ to denote an event involving a pair of
successive patches in a path, and the term ‘transition’ to
denote an event involving a pair of successive displacement
vectors in a path. Thus, if an animal has moved from
patches j to k in a single time step (described below), with
patch i as the previous patch, the same event is a
displacement from patch j to patch k& and a transition
from edge ¢; to edge ¢ ;. The time taken between
successive transitions is assumed to be an exponentially
distributed random variable, whose mean is proportional
to the distance between the patches.

2.1.3. Transition matrix
The |E| x |E| transition probability matrix P is obtained
as follows. Let a;; be the turn angle going from the ith edge

to the jth edge (—m<a; <m, in radians); then,

S(ay)

S S ap)
where f(a;) is a function describing the tendency of the
animal to turn in a given direction and d; is the number of
adjacent patches of the patch forming the endpoint of the
ith edge. f(a;) has the following properties: (i) f(a;) is non-
negative over the domain —n<a;<mn, (ii) f(a;) has a
maximum at a; =0, and (iii) f(ay) is symmetric about
a; = 0. Obviously, p; = 0 if the ith edge and the jth edge
are not successive. In this paper, we have used the normal
probability distribution function with parameters 0 and ¢’
as in Bovet and Benhamou (1988). Thus, f(a;) is given by
(o'2m) e P Ttis important to note that although ¢’ is
a measure of the angular dispersion, it does not refer to the
standard deviation of turn angles (since firstly, the domain
of f(aj) is truncated to —n to m and secondly, the standard
deviation of turn angles can only be calculated after the
normalization step in Eq. (1)). We define the ‘inherent
sinuosity’ of the animal’s movement strategy as o112,
where / is the mean step length. We use the term ‘inherent’
to distinguish this parameter from the path sinuosity
defined by Bovet and Benhamou (1988) as ¢./"'/? where ¢
is the realized, or actual standard deviation of the turning
angles.

Py = (1)

2.1.4. Estimation of long term usage of space
The expected proportion of visits to the various states of
the Markov chain is its stationary distribution vector w,
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given by the dominant eigenvector of the transition matrix.
We define the vector U = {uy, us, us, ...u,} as the expected
proportion of visits to each of the patches, where
U = Z/il wj, d; is the degree of vertex i, w; is the relative
frequency of traversal for the jth displacement vector
ending in patch i, and » is the number of patches in the
movement space. U is thus the ‘relative encounter
frequency’ vector, which means that it represents the long
term probability of encountering each patch. In the
example shown here, since all the patches are of the same
size, U also represents the long term usage of space. In the
general case of unequal patch sizes, U must be weighted by
the size of the patches to obtain the long term usage of
space.

2.2. Central place foraging using random search on a patch
network

Our model of a randomly searching central place forager
is similar to that of Bovet and Benhamou (1991). Consider
an animal with a central place (such as a burrow or a nest),
which is located on one of the patches. As in all central
place foraging models, the animal is obliged to return to
the central place periodically in between bouts, which are
return trips originating from and ending at the central
place.

In this example, the forager uses mnemokinesis to return
to the central place, which means that the inherent
sinuosity is a function of the rate of change in proximity,
with each step, of the central place. The change in
proximity is estimated by the animal using the direction
of the previous step relative to the direction of the central
place. The model is adapted from Benhamou (1989) and
Benhamou (1994), wherein it is shown that such a
mechanism consistently leads the animal to periodically
return to its home along looping paths.

The mnemokinetic mechanism is described by the
equation

S; = Sp(1 — kcos(0; — @;))
>~ Sp(1 + k(D; — Dj-1)),

where S; is the inherent sinuosity used by the animal at the
end of the ith edge traversed in a path, S, is the basic (or
intrinsic) sinuosity, 8; is the orientation of the ith edge, ®; is
the direction of the central place from the start-point of
7, D; is the distance of the endpoint of i from the central
place and k is the dimensionless kinetic factor (0<k<1).
When k = 0, the animal relies upon drift to return to the
central place. It is important to distinguish between the
basic sinuosity S, and inherent sinuosity S;. Sp is a global
parameter representing the tendency of the animal to turn,
in the absence of mnemokinesis. The values of S; are
obtained as a consequence of the interaction between the
animal’s intrinsic tendency to turn (S;) and the mnemoki-
netic mechanism. Thus, S, and k constitute the decision
variable. The unit of S, is rad unit distance™'/2.

A patch in the centre of the movement space was
arbitrarily chosen as the central place. When the animal
encounters the boundary of the patch network, at low
values of S, the transition probabilities to the successive
edges are sometimes too close to zero to be computed. In
such cases, it is assumed that the animal takes the next
successive edge with the least turn angle and continues on
the random walk.

2.2.1. Searching, resource depletion, and renewal

Each bout is a random search, with the animal
possessing no knowledge of the location of resources.
Each of the patches has some non-negative amount of food
resource that the animal can consume, with the expected
amount of resource within a patch given by E{R,}.
However, with each visit to a patch, all the utilizable
resource present in the patch is depleted. It is assumed that
the forager has a ‘patch leaving rule’ (Stephens and Krebs,
1986), which states that the animal will not forage in a
patch if the intake rate in the patch falls below a certain
threshold.

The forager ‘rests’ in the central place for a time period.
During this period, the resource in the patch is renewed,
such that the potential intake rate is now above the
threshold. This renewal occurs only between bouts.
Consequently, visiting a patch more than once in the same
bout is redundant. We define the efficiency as the ratio of
the average number of unique patches encountered during
a bout, v, to the expected distance travelled during the
bout, E{D}.

2.2.2. Determining the long term average rate of net energy
intake

The standard ‘currency’ of fitness in optimal foraging
models is the long term average rate of net energy intake
(Stephens and Krebs, 1986). If E{T,} is the expected time
taken for a single bout and s is the average speed, then
E{T.} = E{D}/s. If E{R} is the expected energy gained
during a bout and c¢ is the energetic cost per unit distance
travelled, then the long term average rate of net energy
gain, p, is given by

_ E{R) — cE{D}
Pe="TE(T)

After some substitution and rearrangement,

_ |ER}
Pe=S. |:E{D}:| — CS

0)
= SE(R,}. {m] —cs
It follows that the forager has to maximize efficiency
[v/E{D}], in order to maximize the long term rate of energy
intake. It is interesting to note that the optimal movement
strategy is independent of both the energetic cost per
distance travelled, and the average speed.
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2.2.3. Computing v, the expected number of unique patches
encountered during the bout

The expected number of unique patches encountered
during the bout is given by v = S 7, where £, is the
probability of hitting the mth patch at least once per bout.
If the edges leading to the mth patch and the central patch
are considered to be the absorbing states of the Markov
chain, then 4, is simply the probability of being absorbed
into an edge leading to the mth patch, and is computed
using the following algorithm:

For each patch, define an absorbing Markov chain as
follows. The absorbing states are A = A, UA, with
(r=14|, t = |E| — r), where 4,, is the set of all the edges
with m as the endpoint, and 4, is the set of all the edges
with the central place as the endpoint, as shown in Fig. 1.
Compute B = NR, where N = (I — Q)"! is the Funda-
mental Matrix of the absorbing Markov chain, Q is the
submatrix of P formed by eliminating the rows and
columns corresponding to the absorbing states, R is the
submatrix of P formed by eliminating the rows corre-
sponding to the absorbing states and columns correspond-
ing to the transient states, and / is the identity matrix. Bis a
t x r matrix giving the probability of absorption, starting
from each of the transient states, into each of the absorbing
states (Grinstead and Snell, 1997). h,,, the probability of
hitting m at least once per bout, is now the probability of

being absorbed into any A, ie. h, = Z;i'lsjili’zlfl’"‘by,

where the i are the rows of B corresponding to ¢, € SV,
where SV is the set of all the edges with the central place as
the start-point, and j are the columns of B corresponding to
_e)j € A,,. This process is repeated to obtain each value of
h.

However, this algorithm is computationally intensive. A
much quicker and more elegant approximation method is
presented in the Appendix.

2.2.4. Computing E{D}, the expected distance travelled per
bout

A similar argument can be used to determine the long
term average distance travelled per bout, which is given by

t r
E{D} = Z €| + Z plabsorption into _e>j}|_e)j|,
i=1 =1

where 7; is the expected number of times edge ¢; is
traversed, _e>,~¢Aq, and _e>j € Agp.

We define an absorbing Markov chain as follows. The
absorbing states in this case are A, with (r = |4y, t =
|E| —r), where A, is defined as above. We compute N =
(I — 0)"! and B = NR as before. N is a ¢ x ¢ matrix giving
the time spent in each transient state starting from each
transient state of the Markov chain (Grinstead and Snell,

1997). Thus, 1, = Z‘kszll ni; and plabsorption into _e)j} =
Z}i’ \ brj, where k are the rows of B and N corresponding
to _e)k € SV, where SV is defined as before, i are the

columns of N corresponding to _e>,-¢Acp, and j are the

columns of B corresponding to ¢, € A,. Thus, the
expected distance travelled by the forager before returning
to the central place can be determined.

2.2.5. Finding the optimal movement strategy: computation

The efficiency of a forager was computed using the exact
method described above for 100 linearly spaced values each
of S, (ranging from 0.2 to 2 rad unit distance_l/z) and k
(ranging from 0 to 1). We used the FMINCON function from
the MATLAB™ Optimization Toolbox to determine the
maximum of the efficiency function. This finds the
minimum of a constrained nonlinear multivariable func-
tion (Coleman and Zhang, 2001).

3. Results

Fig. 2 shows the efficiency as a function of S, and k. The
surface has a peak at S, = 1.6572 rad unit distance™"/? and
k =0.7551, respectively, corresponding to a 77.22%
chance of hitting an undepleted resource patch for every
step the forager takes. The surface shows a single peak,
with a relatively steep slope on the side leading to S, = 0.
This indicates that (a) there are no ‘local peaks’ which
natural selection cannot take the population out of, and (b)
going straighter than the optimal strategy is much more
expensive than increasing the turn angle.

An animal using the optimal movement strategy
generates a kernel of space usage centred around the
forager’s home, depicted in Fig. 3. For comparison, we
have included the usage of movement space as determined
both by the matrix method described earlier and from a
simulation, which involved generating 20 paths of 100 steps
each using the movement rules described by the optimal
strategy. As apparent from the figure, the usage kernel
determined by the two methods is the same.

0.6 i

=
SO

S
ZEERN
Feeiout

Efficiency
© o ©
w B 6]
1 I 1

P —

PP I A

S 05 o 02 04 7

Fig. 2. Contour surface interpolated from the numerical estimation of the
efficiency of foraging against k and Sj,. 100 values each of S, and k were
used to generate the surface.
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Expected from Matrix Model Simulation Result
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Fig. 3. Long term usage of the movement space by an animal using the
optimal movement strategy, as determined by the space usage vector U
(left), compared with that determined by a simulation (right), which
consisted of generating 20 paths of 100 steps each. The intensity gradient
bar below represents the brightness associated with percentage of time
spent in the patch. CP is the central place. The differences in between the
expected space usage and the simulated space usage were not significant
(O test, d.f. = 63, p>0.01).

0.08 T T T T T

Proportion of time spent

Distance from Central Place

Fig. 4. Distribution of usage of movement space around the central place.
The circles depict the expected usage determined by the matrix method
(U). The curve represents one tail of a normal distribution with ¢ = 1.693.

The usage kernel is similar to a bivariate normal
distribution centred on the home. With the objective of
characterizing this usage kernel, we fitted the optimal space
usage kernel, determined from U, to a bivariate normal
distribution, using the Gauss-Newton method. The best fit
distribution has a standard deviation of 1.693 distance
units (root mean squared error = 0.0029), as shown in
Fig. 4. Thus, if the home range of the animal were to be
described as the area in which the animal spends 95% of its
time, then the home range corresponding to the optimal
movement strategy is an area described by a radius of 4.131
units around the central place.

4. Discussion

We have described a novel representation of a correlated
random walk as a Markov chain with the displacements as

the states. In this paper, we demonstrate how this approach
is useful in determining (a) the usage of space and (b) the
rate of energy gain of a central place forager. While the
latter result is in the tradition of OFT, we do not believe
that all real world foraging behaviours must necessarily be
optimal, or even that the sole currency of fitness is the long
term rate of energy gain. Since much has been said about
the use and abuse of optimality modelling (see Parker and
Maynard Smith, 1990), we do not intend to elaborate on
that subject here. However, we agree with Stephens and
Krebs (1986) and Parker and Maynard Smith (1990), that
optimality modelling serves as a useful tool for providing
directions to research. Departure from predicted optimality
would be as interesting and useful to study as actual
agreement with predictions. It is in this spirit, and with this
caveat, that the predictions of our model should be
interpreted. A discussion of the applicability of the results
presented here to real-world foraging scenarios follows.

4.1. Extending the model to more ‘realistic’ landscapes

For illustrative purposes, we have used a movement
space with a hexagonal lattice structure. In principle, our
method can be applied to any irregular or regular lattice-
based movement space. Most interestingly, the method is
readily applicable to naturally compartmentalized move-
ment spaces, such as forest canopy networks. Here, the
crown of each tree can be considered to be internally
homogeneous. In a closed canopy forest, the crowns of
individual trees form a space-filling, or tessellation. Each
crown can be visualized as an irregular polygon, with a
varying number of neighbours. The forest canopy thus
forms an irregular patch network. Our approach would be
particularly useful in the modelling of the movements of
obligately arboreal small mammals, such as the Malabar
Giant Squirrel, Ratufa indica. While such animals are
constrained to move only to the nearest patch in a single
step, this constraint would not apply in the case of animals
able to leap, glide or fly beyond adjacent patches in a single
step. For modelling these situations, it would be straight-
forward to incorporate different dispersal kernels into the
transition probability matrix. Thus the approach would
still be useful in this more general case. Also, constraints on
accessibility, such as forest clearings and other disconti-
nuities arising out of spatial heterogeneity can also be
easily incorporated into the transition probability matrix.
Thus, the method described in this paper can be applied to
much more general situations than the illustrative example
described here.

4.2. Correlated random walk—biological justification

The use of a correlated random walk for a patch-
network movement space requires some justification, in
terms of biological realism. Bovet and Benhamou (1988)
point out that the correlated random walk is a necessary
consequence of bilateral symmetry and cephalocaudal
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polarization of animals. However, the step length relative
to the body size is mostly large in the case of a random
walk upon patch networks. To what extent bilateral
symmetry and cephalocaudal polarization cause a correla-
tion in the turn angle, when the step length is very large
compared to the body size of the animal, is unclear, since
the standard deviation of the turn angles increases
proportionally with the square root of the step length
(Bovet and Benhamou, 1988); as the standard deviation
increases, the path becomes more and more similar to that
of a simple random walk. However, higher animals have
the ability to remember the direction of the previous patch
from the current one; thus, any correlation in the turn
angles of the path upon a patch network is likely to be due
to an active behavioural decision on the part of the forager,
and not merely a consequence of its physical structure-
movement relationship. This brings the degree of correla-
tion, or inherent path sinuosity, under the purview of
optimality theory.

4.3. Applicability of the optimal movement predictions

The predictions of optimal movement strategy that have
been made in this paper are applicable only in the context
of a central place forager, whose resting period at the
central place is necessary and sufficient for renewal of
resources to occur. This assumption is not entirely
unreasonable. Nocturnal renewal of nectar sources of
diurnal bees is known to occur (Schaffer et al., 1979);
conversely, daily afternoon winds are known to replenish
seed patches depleted by nocturnal desert gerbils (Ben-
Natan et al., 2004).

Benhamou (1994) has shown that the ‘looping’ search
paths adopted by many central place foragers such as
desert ants (Wehner and Srinivasan, 1981) and isopods
(Hoffmann, 1983) can be explained by a kinetic mechanism
such as mnemokinesis. Such a looping search behaviour
has also been demonstrated in house flies (Fromm and Bell,
1987) and savannah baboons (Baker, 1978). While we have
used mnemokinesis as a movement mechanism in this
study, it is straightforward to represent any movement
mechanism in the transition matrix.

It is important to note that the ‘optimal strategy’ that we
have determined in this paper is restricted to that of an
animal already committed, in evolutionary terms, to the
use of mnemokinesis for random search-based central place
foraging. Other mechanisms, such as taxis might yield
higher efficiencies than what we have obtained for the
optimal strategy. In fact, a systematic search strategy
(Zollner and Lima, 1999) is obviously more efficient than a
random search strategy. A comprehensive survey of the
efficiency of a wide range of qualitatively different
mechanisms is beyond the scope of this paper. However,
we have demonstrated the use of Markov chain theory as a
tool for exact estimation of the efficiency in each possible
case.

4.4. The “fallacy of averages” revisited: maximize average
rate per bout, or average rate over all bouts?

In most previous studies on optimal movement strategies
(Pyke, 1978a; Bovet and Benhamou, 1991; Benhamou,
1992, 1994), the fitness currency that is maximized is the
per bout average net rate of energy intake, with each bout
itself constituting a large number of steps. Thus, what has
been maximized is E{Ry/T}, where Ry is the net energy
gained in a single bout. However, many animals accumu-
late reserves over extended periods of time, which cover
many bouts. These accumulated stores of energy are
converted into reproductive success. If there is no mini-
mum per bout requirement, E{Ry}/E{T} would be the
appropriate fitness currency, as described here. Such a long
term average net rate maximizer would probably have
more ‘bad bouts’ (bouts with low Ry /T values) and hence
would need an energy reserve mechanism that enables it to
survive through bad bouts. This is not an unreasonable
assumption; for e.g., we have observed the Malabar Giant
Squirrel (Ratufa indica) not infrequently having days in
which little or no feeding takes place (Borges, 1998). It is
our opinion that the appropriate currency to be used must
be selected based on an understanding of the biological
context of the forager.

4.5. Optimal movement strategy determines the optimal
home range

The movement strategy, namely, the choice of inherent
path sinuosity and the strength of mnemokinesis, auto-
matically determines the usage of movement space and
hence the extent of the home range utilized by the animal.
Any change in the size of the home range would necessarily
involve a change in movement strategy, and therefore a
decrease of foraging efficiency. Thus, for a territorial
animal, the optimal movement strategy automatically
determines the size of the home range worth defending. It
should be noted that the above verbal argument has many
implicit assumptions. For example, it is assumed that the
only benefit that could possibly be gained from fighting is
increased movement space; this argument also does not
take into account differential ability to defend areas, non-
uniform cost of fighting and nutritional hotspots (Borges
and Mali, 2001). Nevertheless, it is our opinion that this
feature of our model may prove useful in predicting
changes in home range size used by an animal under
different resource availability and landscape features,
notably lacunarity and connectivity (as studied in With et
al., 1997, and With and King, 1999), which can easily be
represented in the transition probability matrix.

4.6. Conclusion
For an animal whose movements are described tele-

onomically as seeking to locate a suitable habitat, food
resource or mate, three kinds of factors describe its success:
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the structure of the landscape, the locomotion constraints
upon the animal and the movement strategy used by the
animal. In this paper, we have described a representation of
the movement of the animal in the form of a transition
matrix of a Markov chain. Such a representation opens up
the possibility of using tools from the theory of absorbing
Markov chains to make predictions regarding the space use
by the animal, and its foraging success. It is our opinion
that this approach would be particularly useful in exploring
the relationship between optimal movement strategy,
locomotion constraints, landscape structure and space use.
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Appendix. Finding %,,, the probability of visiting the mth
patch during each bout

h,, the probability of visiting the mth patch during each
bout, could be interpreted as follows. If 7, is a realization
of the number of transitions that have occurred between
leaving the central place and the first visit to the mth patch
(hereafter referred to as the first passage ‘time’), and 7., is a
realization of the number of transitions in the bout
(hereafter referred to as the return ‘time’), then
hm = pltm<te). Owing to the ‘memoryless’ property of
the Markov chain, the first passage time between any pair
of displacement vectors can be approximated by an
exponential distribution. The mean of this distribution is
given by the matrix u=1/A=U—-Z+(E x Zyg)) x D,
where Z = (I — P+ W)~ ! is the fundamental matrix for
the ergodic Markov chain, W is a matrix with all rows
equal to the stationary distribution {r,n,,n3,...7,}, I is
the identity matrix, £ is the matrix with all entries 1, Zy,
results from Z by setting off-diagonal elements to 0, and D
is the diagonal matrix with elements d; = 1/xn; (Grinstead
and Snell, 1997). The mth patch can be visited by traversing
any of the n,, displacement vectors leading to it, with each
of these displacement vectors having an exponentially
distributed first passage time from the central place
associated with it, with rate parameters {41, 42,
Am3s - -+ > Anm,, }. Similarly, the return to the central place
can be through any of the n., displacements leading to it,
with the return times having rate parameters {Z.1, Ag2,
Jecp3s - - .,)vcpnt_p}.Thus, the number of transitions needed
to reach either the mth patch or return to the central
place forms a hyperexponential distribution. The prob-
ability of the ith displacement leading to m occurring
before any of the n., + n,, displacements can be shown to
be i/ Ami + > Agy) (Ross, 2000). It follows that
T =3 i /02" Ami + 3 Aepj). This method is consider-

ably less computationally intensive than the method
described in Section 2.2.3.
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