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In this paper, a systematic procedure for controller design is pro-
posed for a class of nonlinear underactuated systems (UAS),
which are non-feedback linearizable but exhibit a controllable
(flat) tangent linearization around an equilibrium point. Linear
extended state observer (LESO)-based active disturbance rejec-
tion control (ADRC) is shown to allow for trajectory tracking
tasks involving significantly far excursions from the equilibrium
point. This is due to local approximate estimation and compensa-
tion of the nonlinearities neglected by the linearization process.
The approach is typically robust with respect to other endogenous
and exogenous uncertainties and disturbances. The flatness of the
tangent model provides a unique structural property that results
in an advantageous low-order cascade decomposition of the
LESO design, vastly improving the attenuation of noisy and peak-
ing components found in the traditional full order, high gain,
observer design. The popular ball and beam system (BBS) is taken
as an application example. Experimental results show the effec-
tiveness of the proposed approach in stabilization, as well as in
perturbed trajectory tracking tasks. [DOI: 10.1115/1.4033313]

1 Introduction

The analysis and control of UAS has been an active topic of
research in recent years. Generally speaking, UAS are not feed-
back linearizable and in the multivariable case they may have an
ill-defined vector relative degree [1]. Approximate feedback linea-
rization allows singularity avoidance at the expense of some
weaknesses. The flatness of the linearized system is shown to nat-
urally induce a low-order cascade structure [2], which allows for a
simpler (decoupled) and more efficient disturbance and state
observer design. In this article, tangent flatness around an equilib-
rium point and ESO-based ADRC are merged into a systematic
procedure for robust feedback controller design in a class of UAS
which are non-feedback linearizable. A structural property,
revealed by flatness, results in an advantageous low-order cascade
decomposition of the LESO design. The BBS is taken as a proto-
typical application example. Experimental results show the effec-
tiveness of the proposed approach in stabilization, as well as in
perturbed trajectory tracking tasks. This article is structured as fol-
lows: In Sec. 2, some theoretical preliminaries are introduced. A
methodology for controlling a class of nonlinear UAS is proposed
in Sec. 3. The same section illustrates the procedure in a direct
application to the BBS. Experimental results are provided in
Sec. 4. Finally, some conclusions are found in Sec. 5.

2 Preliminary Concepts

2.1 Differentially Flat Systems. It is said that a nonlinear
system of the form _x ¼ f ðx; uÞ; x 2 Rn; u 2 R is differentially
flat, i.e., linearizable by an endogenous (static) feedback [3], if
there exists an endogenous variable, f, having the following
properties:

(i) Every system variable may be expressed as a function of f
and a finite number of its time derivatives.

(ii) The variable f may be expressed as a function of the sys-
tem state vector and a finite number of its time derivatives.

(iii) The variable f does not satisfy any differential equation by
itself.

2.2 A Class of UAS. Consider the following model of an
underactuated nonlinear mechanical system [4]:

M11ðxÞ€x1 þM12ðxÞ€x2 þ C1ðx; _xÞ ¼ bðxÞu
M21ðxÞ€x1 þM22ðxÞ€x2 þ C2ðx; _xÞ ¼ 0

(1)

where xT ¼ ðxT
1 ; x

T
2 Þ 2 Rn; x1 2 Rn�p; x2 2 Rp; n; p 2N are the

states, bðxÞ 2 Rn�p is the gain vector, and u 2 R is the control
input. The term p denotes the underactuated degrees-of-freedom.
The functions C1 2 Rn�p and C2 2 Rp contain the centrifugal
and gravity forces. The inertia matrix defined by

MðxÞ ¼
M11ðxÞ M12ðxÞ
M21ðxÞ M22ðxÞ

" #
Rn�n

with M11ðxÞ 2 Rn�p�n�p; M12ðxÞ 2 Rn�p�p; M21ðxÞ 2 Rp�n�p;
M22ðxÞ 2 Rp�p is positive definite for any x.

2.2.1 Basic Assumptions. It is assumed that the single input
single output (SISO) UAS exhibits a controllable tangent lineari-
zation around a natural equilibrium point. The linearized system
is assumed to be flat. It includes a lumped disturbance term, which
considers internal and external disturbances, considered unknown
but absolutely bounded with finite time-bounded derivatives, gen-
erated from the linearization process as well as external effects.
Also, this term may contain deterministic bounded additive noises
of unknown statistics from the measurement process. The ESO-
based ADRC will take care of the neglected endogenous
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disturbances as well as external perturbations by direct estimation
and cancellation. The flatness property in the tangent linearized
system allows a systematic procedure in the robust flat output
feedback controller design for these systems with the help of
ESO-based ADRC. In ADRC schemes, the control problem can
be approached in terms of estimating the total disturbance affect-
ing the system, reducing the control task to the control of a per-
turbed chain of integrators. An additional advantage of flatness is
revealed in a structural property exhibited in the differential
parameterization of the system variables via the flat output. This
property places in simple terms of measurable (position) variables
an intermediate high-order time derivative of the flat output, thus
reducing the natural measurement noise effects in the high-order
injected flat output phase variables estimation error dynamics. In
Sec. 3, a generalized procedure is applied to the popular BBS.

3 A Control Design Procedure Through a Case Study

Consider the well-known BBS [1], shown in Fig. 1, consisting
of a ball placed on a beam, which undergoes an angular displace-
ment around a certain pivot, actuated by a direct current (DC)
motor directly coupled to the beam by means of a pulley. The dy-
namical model is represented as follows:

m2 þ
I2

R2

� �
€r � m2r _h

2 þ m2g sin h ¼ 0 (2)

ðm2r2 þ m1l21 þ I1 þ IpÞ€h þ 2m2r _r _h þ m2gr cos h

þ m1gl1 sin h ¼ Ns (3)

where r 2 R denotes the position of the ball from the center of
mass of the beam, h 2 R is the angular position of the beam,
m2 2 R and R 2 R denote, respectively, the ball mass and its
radius. I2 ¼ 2

5
m2R2 2 R is the ball inertia, I1 2 R denotes the

beam inertia, m1 2 R is the beam mass, and Ip 2 R represents the
inertia of the pulley system. N 2 R is a ratio of distances concern-
ing the pulley/motor actuator. The control input (motor torque)
s 2 R can be expressed as a function of the motor voltage through
the approximate relation sðtÞ ¼ ksVðtÞ=Ra, where ks 2 R is the
motor torque constant, and Ra 2 R is the motor armature electric
resistance.

3.1 Problem Formulation. Devise a control law in order to
manipulate the ball position from an initial value, r(0), to a given
final value r(tfinal) in a finite, prescribed, interval of time [0, tfinal],
though a smooth rest to rest trajectory.

Step 1: Obtain the Linearized System Around an
Equilibrium Point. The system desired equilibrium point is

described by: �r ¼ �_r ¼ �h ¼ �_h¼ �V ¼ 0. The approximate lineariza-
tion of the systems (2) and (3) around the equilibrium point is
given by

m2 þ
I2

R2

� �
€rd þ m2ghd ¼ 0 (4)

m1l21 þ I1 þ Ip

� �
€hd þ m2grd þ m1gl1hd ¼

ksN

Ra
Vd (5)

where rd ¼ r� �r ¼ r; _rd ¼ _r � �_r ¼ _r ; hd ¼ h� �h ¼ h; _hd ¼ _h� �_h
¼ _h and Vd ¼ V� �V ¼ V. An alternative writing for the linearized
system is

_x ¼ Axþ BVd (6)

where x ¼ rd _rd hd
_hd

h iT

;

B ¼ 0 0 0
ksN

m1l21 þ I1 þ Ip

� �
Ra

" #T

A ¼

0 1 0 0

0 0 � m2g

m2 þ
I2

R2

0

0 0 0 1

� m2g

m1l2
1 þ I1 þ Ip

0 � m1gl1
m1l21 þ I1 þ Ip

0

2
66666666664

3
77777777775

Step 2: Verify the Existence of the Flatness Property,
and Obtain a Flat Output as Well as the Input-to-Flat
Output Relationship. The linearized model (4) and (5)
is controllable and hence, flat with controllability Matrix
Kc ¼ ½B AB A2B A3B �. The incremental flat output can be
computed as f ¼ ½ 0 0 0 1 �K�1

c x. We can choose the
flat output as the incremental position of the ball, rd ¼ ðf=eÞ,
with e ¼ �ðRaðm1l2

1 þ I1 þ IpÞðm2R2 þ I2Þ=aksNR2m2Þ. Define
a ¼ m2g=ðm2 þ I2=R2Þ 2 R. All system variables in the linear
model BBS and the control input are expressible as functions of
the flat output rd and a finite number of its time derivatives

hd ¼ �
1

a
€rd; _hd ¼ �

1

a
r 3ð Þ
d (7)

Vd tð Þ ¼ � m1l21 þ I1 þ Ip

� �
Ra

aksN
r 4ð Þ
d �

Ram1gl1
aksN

€rd þ
m2grd

ksN
(8)

Step 3: Find the Cascade Form of the UAS. The incremental
input-to-flat output relationship for the BBS (8) is represented by
means of a fourth-order linear time-invariant system

r 4ð Þ
d ¼ �

aksN

m1l2
1 þ I1 þ Ip

� �
Ra

Vd tð Þ � m1gl1

m1l2
1 þ I1 þ Ip

� � €rd

þ am2g

m1l2
1 þ I1 þ Ip

� � rd

Notice that the linearized system naturally decomposes into a
cascade connection of two independent blocks; the first one con-
trolled by the input voltage Vd(t), with the corresponding output
given by the flat output incremental acceleration €rd ¼ €r . Thus, the
linearized acceleration of the ball can be expressed in terms of the
angular position of the beam through the relation: €rd ¼ �ahd. The
signal ahd acts as an auxiliary input to the second block, which
consists of an elementary chain of two integrators rendering, sim-
ple enough, the estimation of the phase variables _rd and rd (see
Fig. 2). This fundamental cascade property simplifies and decou-
ples the ESO design task in the ADRC scheme.

Step 4: Implement the Linear ADRC for the Linearized
System. To apply the ADRC [5], it is necessary to express the
system as an additively disturbed chain of integrators. The linear-
ized system can be expressed as follows:Fig. 1 A schematic of the BBS
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r 4ð Þ
d ¼ �

aksN

m1l21 þ I1 þ Ip

� �
Ra

Vd tð Þ þ am2g

m1l21 þ I1 þ Ip

� � rd

� m1gl1

m1l2
1 þ I1 þ Ip

� � €rd þH:O:T:þ � tð Þ

where H.O.T. stands for high-order terms and �(t) includes the
nonmodeled dynamics, external disturbances, and/or deterministic
additive noises, according to the basic assumptions state before.
The flat output trajectory tracking error is defined as erd :
¼ rd � r�ðtÞ ¼ r � �r � ðr�ðtÞ � �rÞ; this last term coincides with
the tracking error r – r*(t). The key step in flatness-based ADRC
schemes [2] is to treat the tracking error dynamics as the follo-
wing simplified perturbed model:

e 4ð Þ
rd
¼ � aksN

m1l21 þ I1 þ Ip

� �
Ra

Vd tð Þ þ n tð Þ

where nðtÞ :¼ H:O:T:þ vðtÞ is the lumped disturbance input and
V�dðtÞ 2 R is the feedforward control input, i.e.

n tð Þ ¼ aksN

m1l2
1 þ I1 þ Ip

� �
Ra

V�d tð Þ þ am2

m1l2
1 þ I1 þ Ip

� � erd tð Þ

� m1gl1

m1l2
1 þ I1 þ Ip

� � €erd tð Þ þH:O:T:

3.2 LESO Design. Denote, e
ðiÞ
rd 2 R simply as ei, i¼ 0, 1,…,

n� 1. The flat output trajectory tracking error model is given by

_e0 ¼ e1

_e1 ¼ e2

_e2 ¼ e3

_e3 ¼ �
aksN

m1l2
1 þ I1 þ Ip

� �
Ra

Vd tð Þ þ n tð Þ

Notice that the variable e2 may be expressed as
e2 ¼ €rd � €r�dðtÞ ¼ �ahd � €r�dðtÞ, which represents a known input
to the second-order pure integration system

_e0 ¼ e1

_e1 ¼ e2 ¼ �ahd � €r�dðtÞ
(9)

while the remaining error system is given by

_e2 ¼ e3

_e3 ¼ �
aksN

m1l2
1 þ I1 þ Ip

� �
Ra

Vd tð Þ þ n tð Þ (10)

A set of two decoupled second-order LESO can be proposed for
the simultaneous estimation of the flat output tracking error phase
variables associated with erd and of the perturbation signal

nðtÞ ¼ z1 2 R. For the phase variables e0 and e1 in Eq. (9), one
sets

_̂e0 ¼ ê1 þ q1ðe0 � ê0Þ
_̂e1 ¼ ê2 þ q0ðe0 � ê0Þ

while for the rest of the dynamics, associated with e2 and e3, in
Eq. (10), including the disturbance z1, one synthesizes

_̂e2 ¼ ê3 þ kuþ1 e2 � ê2ð Þ

_̂e3 ¼ �
aksN

m1l21 þ I1 þ Ip

� �
Ra

Vd tð Þ þ ẑ1 þ ku e2 � ê2ð Þ

_̂zj ¼ ẑjþ1 þ ku�j e2 � ê2ð Þ; j ¼ 1;…;u� 1

_zu ¼ k0 e2 � ê2ð Þ

(11)

where u 2 Zþ is the order of the dynamic state extension in the
observer, which can be chosen of rather arbitrary order. In this
case, the order u ¼ 6 was systematically chosen. The observation
error, ~e0 ¼ e0 � ê0, of the incremental flat output tracking error
satisfies the following perturbed dynamics:

€~e0 þ q1
_~e0 þ q0~e0 ¼ gð _~e0; ~e0; e2Þ

where gð _~e0; ~e0; e2Þ is a perturbation term depending on the estima-
tion and tracking errors, considering e2 as a perturbation term,
depending on e0, e1. An appropriate choice of the design coeffi-
cients {q1, q0} renders an asymptotically exponentially decreasing

estimation error phase variables, ~e0; _~e0, and €~e0 toward previously
chosen arbitrarily small neighborhoods of the origin. In this case,
the parameters q1 and q0 are selected such that a stable second-

order dynamics with characteristic polynomial s2 þ 2foxosþ x2
o,

being fo;xo 2 Rþ, is matched. The parameters are chosen as

follows: q1¼ 2foxo and q0 ¼ x2
o; x0; f0 2 Rþ. The tracking

error velocity _erd ¼ e1 is accurately estimated for feedback pur-
poses by ê1. The observation error of the flat output acceleration
tracking error ~e2 ¼ e2 � ê2 generates the following linear recon-
struction error dynamics:

~e
ðpþ2Þ
2 þ kpþ1~e

ðpþ1Þ
2 þ � � � þ k1

_~e2 þ k0~e2 ¼ ½nðtÞ�ðuÞ

A necessary and sufficient condition for having the incremental
flat output acceleration estimation error ~e2, and its associated

phase variables, ~e2; _~e2;…; ~e
ðuþ1Þ
2 , ultimately, uniformly, conver-

gent toward a sufficiently small neighborhood of the acceleration
estimation error phase space, consists in choosing the observer
gains: kk, fk ¼ 0;…;uþ 1g, sufficiently large such that the linear
injected error dynamics becomes stable. The efficient pole place-
ment procedure, developed in Ref. [6], is hereby adopted, see
Ref. [2]. The controller may be readily synthesized as a disturb-
ance canceling ADRC, properly attenuating the total input dis-
turbance, n(t), while imposing a desired exponentially dominated
tracking error dynamics. Simultaneously, the tracking error phase
variable estimates ê1 and ê3 are obtained from the proposed
observers. The controller is thus given by

Vd ¼
m1l2

1 þ I1 þ Ip

� �
Ra

aksN
ẑ1 þ k3ê3 þ k2e2 þ k1ê1 þ k0e0½ �

where, naturally the tracking errors, e0 and e2, themselves are
used instead of their estimates. The coefficients of the feedback
controller are chosen considering the differential equation of the
closed-loop flat output tracking error

e
ð4Þ
0 þ k3e

ð3Þ
0 þ k2€e0 þ k1 _e0 þ k0e0 ¼ nðtÞ � ẑ1

They are chosen so that the associated characteristic polynomial
of the dominantly linear closed-loop dynamics pcðsÞ ¼ s4

Fig. 2 Cascade structure of BBS
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þk3s3 þ k2s2 þ k1sþ k0 becomes stable. In this case, k3 ¼ 4fcxc;
k2 ¼ 2x2

c þ 4f2
cx

2
c ; k1 ¼ 4fcx

3
c ; k0 ¼ x4

c , with 0 < fc < 1;
xc 2 Rþ. One may force the closed-loop tracking error dynamics
to exhibit the desired stable fourth-order dynamics with character-
istic polynomial coincident with ðs2 þ 2fcxcsþ x2

cÞ
2
.

4 Experimental Results

The experimental device consists of a 24 V DC motor which
drives an aluminum beam via a synchronous belt and a pulley
with a ratio N¼ 6:1. The angular position of the beam is measured
using an incremental optical encoder of 2500 pulses per revolu-
tion. A linear sensor, consisting of an etched wire made of a
nickel–chromium wire, measured the position of the ball along
the beam with a resolution of 25 (mm/V) as shown in Fig. 3. The
data acquisition is carried out through a data card, model QPIDe,
from Quanser. The control strategy described before was imple-
mented in the MATLAB-SIMULINK Quarc platform. The sampling
time was 0.001 (s). The parameters for the beam are I1¼ 0.0045
(kg/m2), m1¼ 0.065 (kg), l1¼ 0.015 (m), Ip¼ 0.001 (kg/m2),
m2¼ 0.065 (kg), and I2¼ 0.0045 (kg/m2). The radius of the ball
is, R¼ 0.0127 (m). The parameters of the motor are Ra¼ 2.983
(X), ks¼ 0.0724 (N m/A). The initial conditions for the position
variables in the system were [r¼ 0, h¼ 0]. The observer gain
parameters for the observation error ~e0 were set as fo¼ 3,
xo¼ 70. The observer gain parameters for observation error ~e2

were set as T¼ 5, a0¼ 4, a1¼ 4.1. The controller design parame-
ters were fc¼ 0.8, xc¼ 15. Figure 4 shows the performance of the
closed loop trajectory tracking for ball position and acceleration,
from the initial position rd(0)¼ 0, toward the equilibrium position
rd(4)¼�0.14 (m), and then moved to the final resting position

rd(12)¼ 0.14 (m). The tracking error evolution, the control input,
and the lumped disturbance estimation are shown in Fig. 5.

4.1 Comparison Test. In order to test the performance of the
flatness-based ADRC scheme proposed, we carried out a compar-
ative analysis with respect to a state feedback integral (SFI) con-
troller [7] as well as the super twisting (ST) algorithm [8]. The
error dynamics is given by _e ¼ Âeþ B̂VdSFI, where

Â ¼
A 0

C 0

" #
B̂ ¼

B

0

" #
Ĉ ¼ ½C 0 �

VdSFI ¼ �K̂e e ¼
x� x�ðtÞ

Ĉ

ð
ðx� x�ðtÞÞ

2
64

3
75 C ¼ ½ 1 0 0 0 �

The SFI controller is specified as

VdSFI ¼ �ðj1e1 þ j2e2 þ j3e3 þ j4e4 þ j5e5Þ (12)

The state stabilization error equation is simplified to _e

¼ ðÂ � B̂K̂Þe, the desired closed-loop poles of matrix Â � B̂K̂
are specified as ðs� l1Þðs� l3Þðs� l3Þðs� l4Þðs� l5Þ ¼ 0,
being l1 ¼ �0:9þ 2:6814i; l2 ¼ �0:9� 2:6814i; l3 ¼ l4 ¼ l5

¼ �10. Then the state-feedback gain matrix K̂ ¼
½j1 j2 j3 j4 j5� can be determined by a traditional pole-
placement technique. For the super twisting controller, the follow-
ing sliding surface and controller were defined:

r¼�a _hd� r� 3ð Þ
d þ c2 �ahd � €r�ð Þ þ c1 _rd� _r�d

� �
þ c0 rd � r�d

� �
VdSM ¼

m1l2
1þ I1þ Ip

� �
Ra

aksN
�a

ffiffiffiffiffiffi
jrj

p
sign rð Þ þ y

h i
_y ¼�Msign rð Þ

For the sliding surface r¼ 0, the set of gains were chosen
such that the following desired characteristic polynomial was
matched: s3 þ c2s2 þ c1sþ c0 ¼ ðsþ pÞðs2 þ 2fmxm þ x2

mÞ with
p¼ 8, xm¼ 8, fm¼ 1, the controller gains was chosen as
a¼ 70 M¼ 0.64. For both controllers, the measured states
[rd; _rd; hd; _hd] were processed by means of low-pass filters 30p/
(sþ 30p), in order to reduce the noise in the derivative estimation.
A disturbance consisting of an air load with a value of approxi-
mately 0.1 (N) was applied as a kind of step with duration of 1 (s)
at the times t¼ 15 and t¼ 20 (s). It was produced using a

Fig. 3 Block diagram of the ball and beam control system

Fig. 4 Performance of closed loop reference trajectory track-
ing ball position and acceleration

Fig. 5 Tracking error, voltage input control signal, and lumped
online disturbance estimation

104501-4 / Vol. 138, OCTOBER 2016 Transactions of the ASME

Downloaded From: https://dynamicsystems.asmedigitalcollection.asme.org on 06/30/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



pneumatic flexible plastic tubing with interior diameter 4 (mm)
(see Fig. 3), and activated by means of solenoid air control valve,
the pressure of the air was set to 3.44738 (Bar). Figure 6 shows

the tracking trajectory results and Fig. 7 shows the control signals.
Notice that the sliding mode controller and the proposed scheme
obtained better results with respect to the ones of the SFI. Notice
that the proposal is quite competitive using purely linear methods
in relation to one of the most important robust controllers.

5 Concluding Remarks

The problem of controlling a class of UAS, in a trajectory track-
ing task, was solved by means of exploiting the flatness associated
with the linearized model and via an extended state observer
based linear ADRC. The scheme uses the tangent linearization
system model of the BBS around an arbitrary equilibrium point.
The traditional drawbacks present in standard linear control
schemes were overcome by using a particular structure of the
LESO, of the Luenberger type, induced by the flatness of the sys-
tem. The scheme achieves highly competitive experimental results
when compared with other linear and nonlinear controllers. Exten-
sions of this result for the multivariable case are considered as
future investigation.
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