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Abstract

A ‘triple trade-off” capacity region of a noisy quantum channel provides a more
complete description of its capabilities than does a single capacity formula.
However, few full descriptions of a channel’s ability have been given due
to the difficult nature of the calculation of such regions—it may demand an
optimization of information-theoretic quantities over an infinite number of
channel uses. This work analyses the d-dimensional Unruh channel, a noisy
quantum channel which emerges in relativistic quantum information theory.
We show that this channel belongs to the class of quantum channels whose
capacity region requires an optimization over a single channel use, and as such
is tractable. We determine two triple-trade off regions, the quantum dynamic
capacity region and the private dynamic capacity region, of the d-dimensional
Unruh channel. Our results show that the set of achievable rate triples using
this coding strategy is larger than the set achieved using a time-sharing strategy.
Furthermore, we prove that the Unruh channel has a distinct structure made
up of universal qudit cloning channels, thus providing a clear relationship
between this relativistic channel and the process of stimulated emission present
in quantum optical amplifiers.

PACS numbers: 03.67.Hk, 03.67.Pp, 04.62.+v

(Some figures may appear in colour only in the online journal)

1. Introduction

The concept of a noisy quantum channel and the ability to communicate, or rather transfer
quantum information, from one party to another using quantum mechanical phenomena has
been important in quantum communication. A natural question is to determine the capabilities
of a given noisy quantum channel for communicating classical and quantum information at
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the expense of noiseless entanglement. Protocols such as super-dense coding [1] and quantum
teleportation [2] have sparked interest in the field of quantum information because they provide
concrete examples of the trade-off between classical and quantum resources.

This work expands the study of the trade-off of these resources over a qudit Unruh channel
[3, 4]. In the d-dimensional case, there is no longer a restriction to encoding qubits with a
dual-rail encoding. A sender and receiver can encode the information into a single-excitation
d-dimensional basis, expanding the physical freedom available for encoding information. The
qudit Unruh channel arises in a relativistic setting where a receiver, named Bob, is accelerating
uniformly with respect to the reference frame of the sender, named Alice, who is sending
encoded information in the form of multi-rail photonic qudits.

We prove that the structure of the d-dimensional Unruh channel is directly related to
d-dimensional universal cloning channels [5-9], as was previously shown in the case of
the qubit Unruh channel [10] and the qubit transformation present near black holes, whose
metric is locally equivalent to the spacetime of an accelerating observer [11]. Such channels
arise from the process of stimulated emission and can occur in physical systems such as the
amplification of light in erbium-doped fibers [12]. This leads to an alternative interpretation
of the Unruh channel as a transformation present in optical amplifiers when encoding optical
qudits in time-bin photons through an optical fiber with d spatial modes [13—15]. Each mode
would pass through an optical amplifier and the output state would correspond to that of the
Unruh channel where the optical gain of each amplifier now plays the role of the acceleration
parameter in the relativistic setting.

A channel’s ability to transmit multiple types of information is described by its set
of achievable rate tuples. Shor gave the first compact characterization of rate pairs for the
transmission of classical information along with the consumption of entanglement [16],
and Devetak and Shor subsequently characterized all achievable rate pairs for classical and
quantum communication over a noisy quantum channel [17]. Hsieh and Wilde then obtained
a characterization of the trade-off between the three resources of classical communication,
quantum communication, and entanglement [18].

While we have formulas for the capacity regions of achievable rate triples, the analysis
of these capacity regions can be difficult in practice because it could involve an optimization
of entropic formulas over a potentially infinite number of uses of the channel. However, the
analysis of these capacity regions becomes tractable when a capacity formula for a quantum
channel single-letterizes, that is, when we can evaluate the formulas with respect to one channel
use. Some examples of quantum channels that are known to have a single-letter triple trade-off
region are the qubit erasure channel, the completely depolarizing channel, and the class of
Hadamard channels [4, 19].

An analogy can be drawn from the triple trade-off region of quantum resources for
a quantum channel to that of the trade-off between the classical resources of public
communication, private communication, and shared secret key [20]. Wilde and Hsieh studied
the trade-off formulas for the use of these noiseless resources along with a quantum channel
to generate other noiseless resources [21]. The triple trade-off region for a noisy quantum
channel combined with these resources is also tractable for the class of Hadamard channels.

In this paper, we prove that universal qudit cloning and Unruh channels belong to the
Hadamard class of channels, and thus they belong to the class of known channels whose triple
trade-off capacity regions single-letterize. To do so, we first show that the qudit Unruh channel
has a particular block diagonal form where each block is a universal qudit cloner. Showing that
the Unruh channel is a Hadamard channel can be reduced to showing that a 1 — 2 universal
qudit cloner is a Hadamard channel. It was shown for d = 2 that the complementary channel of
a 1 — 2 universal qubit cloner is a convex combination of completely dephasing channels [4],
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but in higher dimensions no such direct comparison to known channels was clear. However, a
combinatorial argument is given in this work showing that a 1 — 2 universal qudit cloner is
Hadamard. The resulting triple trade-off capacity region has a richer structure than that of the
qubit case because its computation requires a set of parameters that grow with dimension size.

This paper is structured as follows. Section 2 reviews the mathematical structure of the
qudit Unruh channel and the formulas for the various capacity regions that are of interest in
our study of this channel. Section 3 presents one of the main results of the paper, that the
qudit Unruh channel is a Hadamard channel, and this is based on a derivation in the appendix.
This result implies that the capacity formulas for this channel single-letterize [4], and it thus
enables the calculation of the capacity regions. In section 4, we provide plots of the various
capacity regions and show how a trade-off coding strategy beats time-sharing. We conclude
in section 5 with some final remarks and present some open questions in relativistic quantum
information theory.

2. Background and review

2.1. Channel structure

The qudit Unruh channel has appeared in a relativistic setting where two inertial observers
Alice and Bob, henceforth denoted A and B, are communicating via the exchange of bosons
through a quantum channel, and an eavesdropper Eve, denoted E, is accelerating uniformly
with respect to Alice and Bob’s reference frame [3]. However, in this paper we consider a
variant of the above situation with the receiver, Bob, now accelerating uniformly with respect
to the sender, Alice, and the environment of the channel is represented by Eve.

Definition 1 ([3]). The qudit Unruh channel N4~ is defined by the following map:
NE(ps) = TrgUpa ® |vac) (vaclgU), 0]

where pag is the input state of the A subsystem combined with that of the environment E, and
U= ®§1:1UA[E[, such that

exp[tanh rajej] x exp[— Incosh r(aja,- + ejei)] x exp[— tanhra;e;], (2)

1
Us g (r) =
it (1) coshr

where aiT and a; are the respective creation and annihilation operators for the A subsystem,
e; and e; are the respective creation and annihilation operators for the E subsystem, and r
characterizes the acceleration of the receiver.

The following commutation relations hold for the case of bosonic creation and annihilation
operators: [a;, a;] = &, [a:f, a}] =0, [aj, e;f.] =0, [aj, e;] = 0. The quantum states we
consider in this work are photonic mode states expressed in a multi-rail basis. We represent a
d-mode photonic state as |(n1, ..., ng)), where the value n; denotes the number of photons in

the ith mode. The creation and annihilation operators then act as follows on these states:

all(n,...omiy.oong)) = V1 +mln, . om+ 1,0 n)),
ai'(nls"'vnh"'vnd)) =\/n_i|(n11"'7ni_1a"'7nd))‘

The input state we consider in this work has the form |{)4p = Z?zl ﬂiamvac) alvac)g,
that is, Alice’s input state is a single-excitation qudit. It is for this reason that we refer to the
channel of interest as a qudit (d-dimensional) Unruh channel, even though the output state is
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infinite dimensional. As shown in [3], the following identity holds for an input of the above
form:

d
lo)pe = Ul ag =U Y B0, ..., 0,1;,0,...,0))alvac)

i=1

1 oo d
—dHthanhk_lr Z Z\/l +nmBil(ny, ..., 1 4+ni,...,n9))p
k=1

cosh Nk—1) i=1

X |(n1, ..., nqa))E, 3)
where N(k) = {n;,1 < i < d| o= k} and the states |.) and |.)g are expressed in a
multi-rail basis. The set of states that fall into N (k) is the set of d-mode states with a total
number of k photons. One should note that after the action of &/ we have relabelled the A
subsystem as the B subsystem as this is the state Bob receives.
Thus if one inputs a pure state of the form ¥4z = [¢) (| then the output of the qudit
Unruh channel has the following form:

o
o = (1 —z)4*! @zk_lalgk), )
k=1

where z = tanh? r and r is the acceleration parameter. The blocks in this infinite-dimensional
matrix are given by

d
o =3 (ZﬁimKn],...,1+n,-,...,nd)>3>

N(k—1) \ i=1

d
x (Zﬁj,/l+n,-((n1,...,1+n,-,...,n,,,)|3>, (5)
j=1

where N (k) is again defined as above, reflecting that the kth block of Bob’s state represents
states with k photons. The dimension of the kth block is (kzd_II)
Finally, the complementary channel to the Unruh channel A€ is calculated by tracing out

Bob’s subsystem rather than Eve’s:

NCE (p4) = TraUpa ® |vac) (vac| ). ©6)

2.2. Qudit cloning channels

While the no-cloning theorem states that there is no unitary transformation that can copy an
arbitrary quantum state [22], there is a notion of the best possible approximate copy of a qudit.
The unitary transformation that performs this approximate copy is referred to as a universal
qudit cloning machine [5-8]. We define the universal cloning channel as a completely positive
map given by tracing over the auxiliary output of the universal cloning machine. As shall be
shown in section 3, these universal qudit cloners are the building blocks for the qudit Unruh
channel and will be used extensively in the calculation of the capacity regions in section 4.

Definition 2 ([9]). Let |) be an arbitrary qudit |) = Y, xii) such that ¥ x> = 1.
The N to M universal qudit cloner; M > N, is a unitary transformation that takes an input of
the form

N!
WN@R= " |- Xl © R, (7)
= nl!--~nd!
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where the sum ) _ . is the sum over vectors |i) = |ny, . .., ng) which are completely symmetric
normalized states with n; systems in state |i) such that Zflzl n; = N. R represents the state
of an auxiliary subsystem. The unitary cloning operation Uyy is given by the following
transformation

—

Uyul) @R =Y a4+ j) ® R, ®)
j"

where the sum pis over all fsuch that Z?zl ji = M — N and the states R 7 of the auxiliary
subsystem are orthogonal. Finally the coefficients oy are given by

(€))

M =NV +d—1)!
iy = M+d—1)!

2.3. Classical and quantum information quantities

In this section we review some of the important information-theoretic quantities for the study
of trade-offs between different protocols.

2.3.1. Classically-enhanced quantum capacity region. The classically-enhanced quantum
capacity region is the region of achievable rate pairs that characterize the ability of a noisy
quantum channel A to communicate classical (C) and quantum (Q) information. Devetak and
Shor showed that the capacity region for a noisy quantum channel A is as follows [17]:

!
CeoN) = J 7CoVeh), (10)
k=1

where the so-called one-shot region Célé (N) is defined by
(1) — (1)
CloN) = e, V).
P

The ‘one-shot, one-state’ region CélQ) o (N) is the set of all C, Q > 0 that satisfy the following
inequalities:

C < I(X; B),,
0 < I(A)BX),.,
where the state p has the form
PPE = px (0 1) (X @ U (41) (1n

<
<

and the states ¢4’ are pure.

2.3.2. Entanglement-assisted classical capacity region. The entanglement-assisted classical
capacity region characterizes the ability for a noisy quantum channel N to transmit classical
information with the help of noiseless quantum entanglement. The capacity region is the
set of all achievable pairs (C, E) where C is the rate of classical communication and E is
the rate of entanglement consumption. Shor showed that this region is characterized by the
following [16]:
1
Cer ) = L Cr Ve (12)

k=1
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where the ‘one-shot’ region Cég (N) is defined in a similar way as Célé (N). The union is now

taken over the set of ‘one-shot, one-state’ regions CélE) p (), that are defined by the inequalities
C <I(AX; B),, (13)
E > H(AIX),, (14)
and the state p is defined as in (11).

2.3.3. Quantum dynamic capacity region. Finally, the capacity region for entanglement-
assisted transmission of quantum and classical information (CQE) is characterized by the
following region [18]:

1
Coqe (V) = [ 1 CeoeVeh), (15)
k=1

where again the ‘one-shot’ region CélQ)E (N) is defined to be the union of ‘one-shot, one-state’

regions CégE 0 (), defined by the following inequalities:
C +20 < I(AX: B),, (16)
O+ E <I(A)BX),, 17)
C+Q+E<IX;B),+I(A)BX),, (18)

where again the state p is defined as in (11).

2.4. Private dynamic capacity region

In the previous section we reviewed the capabilities of a noisy quantum channel to transmit
classical information and quantum information at the expense of noiseless entanglement.
However, one may also study the trade-off of the classical resources of noiseless public
communication, private communication, and secret key. Wilde and Hsieh provided the
following characterization of the private dynamic capacity region, Cgps(N'), of a quantum
channel A/ [21]:
=1
1
Cres(N) = | 7 Cps V), (19)
k=1
where the ‘one-shot’ region CE,)S (N) is the union of ‘one-shot, one-state’ regions C,SD)S’ p(./\f ):
1 1
ChpsN) = | Chps,, V). (20)
p
The ‘one-shot, one state’ region Cz(eps p(./\f ) is defined by a set of inequalities over the rates

of public classical communication R, private classical communication P, and secret key
generation S:

R+ P <I(YX;B),, 21D
P+S<IY;BIX), —I(Y;E|X),, (22)
R+P+S<IYX;B), —I(Y;E|X),, (23)
where the state p is defined as
PXEE =" oy (e I @ 1) 01 @ UVTHE (o). (24)
o
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3. The Hadamard class of quantum channels

The calculation of the information capacity regions outlined in section 2.3 can be difficult
because they generally require taking a union over an infinite number of uses of the
channel. However, there are certain classes of channels such that the full capacity region for
entanglement-assisted transmission of quantum and classical information ‘single-letterizes’,
that is, Ccoe (V) = CSQ)E (N'). Among these is the class of Hadamard channels [4].

Definition 3. A nozsy quantum channel N~ is a Hadamard channel if its complementary
channel (N C) s entanglement breaklng [23, 24 ] That is, the action of the complementary

channel on an entangled state |4 f Zl 1 [iYA1)A is as follows:
A'—>E
WO T =) pxpl @ of (25)
xeX

In order to show that the Unruh channel belongs to the class of Hadamard channels, we
first show that each of its blocks in (4) are universal qudit cloning channels. In section 4, we
shall be calculating the information capacities of the universal qudit cloners and then using
the knowledge of the following lemma to simplify the calculation of the capacity region of the
qudit Unruh channel.

Definition 4 ([3]). Let G be a group, Hin, How be Hilbert spaces and let r| : G — GL(Hip),
ry : G — GL(Hou) be unitary representations of the group, where GL stands for general
linear representation. Let K : DM (Hin) — DM (Hou) be a channel, where DM stands for
the space of density matrices. The channel K is defined to be covariant with respect to G, if

K(ri(@)pri(®)") = n@K(p)r(g)" (26)
holds for all g € G, p € DM (Hin).

Remark 5. As shown in [3], the qudit Unruh channel is SU (d)-covariant. Thus, a unitary
transformation upon a given input state will result in an output state that is equivalent to the
original output state of the qudit Unruh channel up to a unitary transformation.

Lemma 6. The kth block of the qudit Unruh channel, after normalization of the block, is
equivalent to a 1 — k universal qudit cloner.

Proof. We shall show that both channels share the same eigenvalues with the same multiplicity
for each eigenvalue. Consider a particular block of the Unruh channel (d, k). This block
corresponds to

o) f > Z\/1+n,ﬂ,|(m,...,1+ni,...,nd)>3|<n1,...,nd)>g, 27)

Nk-1) i=1

where M is the normalization coefficient for this block, calculated below, and the same
convention as before is used for N (k). Since the qudit Unruh channel is SU (d)-covariant, any
choice of a input qudit pure state will produce the same eigenvalues for the resulting output
density matrix. In this case, it will be convenient to fix the input state to be equal to |1), thus
B1 = 1 and B>, = 0. Therefore, in our case, the form of the output density operator is as

7
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follows:
oy = ZZW il na)) (s na)ls (28)
N(k)z 1
1
= o7 2 ml, ), na)ls, (29)
N (k)

where M is the normalization factor. Since we are considering the block with fixed (d, k),
the eigenvalues of the output density operator for Bob are 1 < n; < k. Now we count the
multiplicities of each eigenvalue. If we fix n; = p then we have the constraint

d

Z n=k—p (30)
since the sum of all the indices must equal k. Now we are free to choose the n;’s such that (30)
holds. The multiplicity is then just the number of ways one can choose #ny, . .., ng such that
(30) holds, which is equal to

(k—p)+d—-2
= . 31
mp < d—2 (3D

Finally, normalizing the output density operator to have trace one, we have to normalize the
eigenvalues by

- k+d—1
M:me,,=<+d ) (32)

p=1

Now consider the eigenvalues for the 1 — k universal qudit cloner in d-dimensions. They
are given by a -~ in(9). By construction [6—8], the universal qudit cloner is a covariant channel,
and therefore we can consider an arbitrary input qudit pure state, which we shall choose to
be [1)(1]4 = |(1,0,...,0))((1,0,...,0)|. Thus now the eigenvalues take the following
form [9]:

ai; = ﬁ(l + j1). (33)
d

Since the qudit cloner must satisfy the condition Z i it ji = k,wemusthave 0 < j; < k—1,
or, a2 - = —, 1 < i< kwhere M is equal to the normalization factor found in (32). Now we
consufer the multlpllclty of each eigenvalue. Say we consider a particular elgenvalue where
o) = AZ. Then j; = b — 1 and the remaining indices are chosen such that Z;:z Ji=k—b.
Thus considering all possibilities for the remaining indices of the vector j’, the multiplicity of
such an eigenvalue is

(k—b)y+d—-2
= 34
my, ( J—2 ) (34)
which agrees with the multiplicity found in (31). ]

Remark 7. It is worth clarifying that the states in (27) are in fact a representation of completely
symmetric states as defined in definition 2 and required according to (8). These physical
photonic Fock states can be thought of as completely symmetric since there always exists an
isomorphism between the bosonic operator representation as defined and studied in [3] and
the subspace of completely symmetric states. Thus, such a mathematical equivalence between
subspaces is sufficient to claim that the states in (27) are indeed a representation of completely

8
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symmetric states. Bob’s output state will be a mixture of completely symmetric states, but the
overall state itself will not be completely symmetric. The most important aspect of the proof
is to remark that the output states of both the 1 — k qudit cloning channel and the kth block of
the qudit Unruh channel are both diagonal with the same eigenvalues and multiplicities. Thus,
the resulting Kraus operators from both channels must be identical and therefore, by definition,
these channels represent the same completely positive trace-preserving (CPTP) map.

We now proceed to showing that the qudit Unruh channel is among the class of Hadamard
channels for all d. This key result will enable the calculation of the full capacity region
in section 4 due to the ‘single-letterization’ of the quantum dynamic capacity formula [25]
for Hadamard channels. Theorem 10 below is a consequence of theorem 8 characterizing
entanglement-breaking channels and lemma 9 that explicitly constructs rank-one Kraus
operators for complementary maps of all 1 — 2 qudit cloners. The proof of lemma 9 can
be found in the appendix. There is an alternative method to showing the Unruh channel is
Hadamard based on results from Vollbrecht and Werner [26] by investigating the properties of
the Jamiotkowski representation of complementary channels to optimal 1 — 2 qudit cloners.
The difference in the proof given in this work is that it is constructive and explicitly shows the
entanglement-breaking character of the complementary channels.

Theorem 8 ([27]). A noisy quantum channel N is entanglement-breaking if and only if it can
be written as a sum of rank-one Kraus operators, that is

N(p) =) AipA] (35)

1= AlA; (36)
where each A; is a rank-one operator.

Lemma 9. The following operators form a set of rank-one Kraus operators for the first block
of the complementary channel of the 1 — 2 universal qudit cloner Sz(d), in d-dimensions,

1 1

1
(1, ... _ 7 i 7
T s =, me»wmmm),
d
where [y (@) = Y i"|j), o0.(0) = Z( D"1)
j=1
ﬁ:(nl,...,nd), nl_O,nj>ze{O,l,2,3}.

Theorem 10. The qudit Unruh channel is a Hadamard channel.

Proof. We begin by considering the action of a 1 — k universal qudit cloner acting on an
arbitrary qudit state. As shown in [3], if we write the input qudit state in terms of the generators
of the sl(d, C) algebra, then the action of the universal qudit cloner is given by the following
transformation:

o) =t (5 (14 o)) = (1 St =el.

a=1

where each A% is a generator of the kth completely symmetric representation of the sl(d, C)
algebra. The action of the channel can easily be expressed as

Cl'Y (mga ) = ma ). (38)

9



J. Phys. A: Math. Theor. 44 (2011) 415306 T Jochym-O’Connor et al

The universal 1 — k qudit cloning channel is a unital channel that has the property that it maps
generators of the fundamental representation to generators of higher dimensional completely
symmetric representations [3], in this case the kth completely symmetric representation.

Consider now the complementary channel S,fd) of the 1 — k universal qudit cloner. The
action of the channel is described in terms of these generators as follows [3]:

850"y =89 ( (11 + Zma,\“))) ((k — DI+ Zmak(k “) +I=0" (39)

a=1

since
S (mar ) = maEY, (40)

where m, denotes the complex conjugate of the coefficient m,. We now proceed to showing
that S,Ed) is entanglement-breaking for all k, that is ¢z = (I ® S,fd))(clfr) is separable.
Expressing ¢pg in terms of fundamental and higher-dimensional generators, we obtain the

following expression:
| L
d

L
i) (jl ® = ((d+k—1)ﬂ+2mwx<" “)

a=1

gBE—ZDz R OITDED Y
i=1 j=I ldl
22

i=1

d

mem

(41)

Now we can use both theorem 8 and lemma 9 that demonstrate the complementary channel
is entanglement-breaking for the case where k = 2,

ShE= Y qu®& = qu@ ((k+d—1>ﬂ+2na,x<k “). (42)
l

a=1
Thus there exists a mapping from the coefﬁc1ents {my ;;} in (41) to the set of coefficients
{q1, ny.;} and density matrices {x;} in (42). Moreover, since the action of the channel is in fact
identical in structure for all &, in that it just maps to higher-dimensional algebra generators
for higher k, then this mapping should exist for all k. Thus, the result in (42) should exist
for all k, and therefore the complementary channel for a 1 — k& universal qudit cloner is
entanglement-breaking for all k. Since the full qudit Unruh channel is a weighted direct sum
of 1 — k universal qudit cloners, we can conclude that the full Unruh channel is a Hadamard
channel since each of the elements of the direct sum is a Hadamard channel. (]

4. Capacity regions

We now set out to calculate the full triple trade-off region for the qudit Unruh channel. This
region is the set of achievable rates for the resources of classical communication, quantum
communication, and quantum entanglement—in a sense, it fully characterizes the capabilities
of our channel. A Pareto optimal point of a capacity region is a point such that when considering
the trade-off between different resources in the capacity region, improving one resource comes
at the expense of another. The quantum dynamic capacity formula enables the calculation of
all Pareto optimal points of the various capacity regions of the qudit Unruh channel because it
is additive for the case of Hadamard channels [25].

10
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Definition 11. The quantum dynamic capacity formula for a quantum Hadamard channel N
is as follows:

Dy (N) = max [{(AX; B)s + AM(A)BX)s + n(I(X; B)y +1(A)BX),)] (43)
where A, i = 0, the states o have the form
oM =" po)lx) (e @ N E (), (44)
xeX

and the states ¢ are pure.

4.1. CQE capacity region

In order to facilitate our calculation of the state that maximizes (43) for the qudit Unruh
channel, we shall exploit the block diagonal structure of the channel and the fact that each
block is a universal qudit cloning channel, as shown in lemma 6. We shall find a state of the
form (44) that maximizes (43) for all A, u > O for the 1 — k universal qudit cloners that
make up the qudit Unruh channel. The states that lead to this maximization will also form the
Pareto-optimal points for the full triple trade-off capacity region. The resulting states are given
by the following theorem.

Theorem 12. An ensemble of the following form is sufficient to obtain all Pareto-optimal
points of the CQE capacity region of a 1 — k universal qudit cloner:

1 , ,

E(|1><1|X®1/ff*" + -t ld) A @ yit), (45)
where
Tra@Wi) = (1= 1 — - = pae DI A+ 12) 21 + -+ + pa_ild) (@1,
Tra(Ws) = wa IV + (=g — -+ — g DI2) 21 + -+ paald)(d
Tra(WY) = wi DY 4+ wal2) QY + -+ (= g — -+ — gl (dI”

and the states \; are pure.

Proof. Consider the following classical-quantum state:
P =" px @) F @ oy (46)

We shall denote Cl{ﬁ  tobe the 1 — k universal qudit quantum cloner. We now introduce
an augmented classical-quantum state:
d—1d-1
oM =3 YD x0T @ )G ® KKK @ X (NZK) e ZK) X (1)),
x  j=0 k=0
(47)
where X (j) and Z(k) are the generalized Pauli operators in d dimensions.
The following set of equalities shows that o? is equal to the maximally mixed state on
the symmetric subspace of Bob:

, s
of =l (") =c1?, (7> =19, ( / vafdv> = / RyCI® (w)Ry+dV

(@

1
= DOl 48)

d—1 i=1

11
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The second equality follows from the fact that an equally weighted mixture of all 4> generalized
Pauli matrices produces the maximally mixed state. The fourth equality uses the linearity and
covariance of the universal cloning channel.
We now analyse the quantum dynamic capacity formula. Consider the following chain of
inequalities:
I(AX; B), + M(A)BX), + i (I(X; B),, + I(A)BX),)
=HAIX), + (u+ DH(B), + AH(BIX), — (A + n + DH(E|X),
=H@AIXJK)s + (u+1DHB), + \HB|XJK); — (A + pn + 1)H(E|XJK),
< (w+1)HB)s + HAIXIK)s + A\ HBIXJK)e — (A + p + DH(E|XJK)

k+d—
=(,u+1)log(

— (A4 pu + DH(E|XJK),

k+d—1
=G iog(*F ) - Dt <,

—(A+u+1DH(E),]

k+d—1
<<u+1>1og( L

ktd—1
e ) +HA) s+ AHB)py — Gt o+ DH(E), . (49)

1
) + H(AIXJK)y + LH (BIXJK),

) +max [H(A),, + AH(B)y, — (A + i+ DH(E),, ]

=(,u—|—1)10g(

The first equality follows from the definition of the quantum mutual information and coherent
information. The second equality follows from the fact that the conditional entropies are
invariant under the unitary transformations X (j) and Z (k). The first inequality follows from
the concavity of entropy and the fact that 0% is a mixture of states of the form of pZ. The
third equality follows from (48). The fourth equality follows from the fact that the X, J and
K subsystems are classical. The second inequality follows because py(x) is a probability
distribution—the weighted sum over the probability distribution is smaller than the maximal
value of the term in the square brackets. The final equality follows from defining p} to be the
state that maximizes the quantity in the square brackets.

The entropies H(A),:, H(B),x and H(E),: depend only on the eigenvalues of the input
state p* by the covariance of the channel and its complement. Thus, without loss of generality,

we can take the state p* to be diagonal in the {|1), ..., |d)} basis of A’. The ensemble defined
to consist of the purifications of X (j)p*X (j)7, 1 < j < d, assigned with equal probability for
all j then saturates the upper bound in (49). (|

Recall the classically-enhanced quantum capacity region (CQ) and the entanglement-
assisted classical capacity region (CE) outlined in section 4. We can now use the state
provided in theorem 12 to calculate the CQ and CE boundary trade-off curves for 1 — k
universal cloning channels.

Theorem 13. The CQ trade-off curve that bounds the classically-enhanced quantum capacity
region for a 1 — k universal qudit cloner is given by the convex hull over the following set of
points:

k+d—1 aby, ..., by) albi, ..., by) y(bi, ..., ba)
(52 () - (™))
(50)

12
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The CE trade-off curve that bounds the entanglement-assisted classical capacity region for a
1 — k universal qudit cloner is given by the convex hull over the following points:

k+d— bi,...,b
(log < ) Zﬂl 10g Mi— (V((lled)) ZM’ log Mz) ) (51)

d
where

d d
abr,....bs) =Y ib; such that > b=k,
i=1 i=

d d
y(bi.....ba) =1+ pib; such that > bi=k—1.

Proof. Now in order to obtain the CQ and CE trade-off curves we consider an ensemble of the
form in theorem 12. The ensemble we shall consider will thus have the following form:

1 , ,
5(|1><1|X®w1 + - ld)d @ vit), (52)
where
Tra (W) = (0 — 1 — - — DI A + 01120 + -+ paild) (@I,
Tra (Vo) = pamt IDAUA + (L= g — -+ = ma—DI2) 21 + -+ + paald)(dl*
Tra (V") = mal DY + p2l2) Q4 4+ (L =y = - = pg-)ld) I

An isometric extension of the 1 — k universal cloning channel Uy acts as follows on the
above states:

[P = Z > Viinmoday/1 + biliy*

,/(k+d i=1 B(k—1)

X |(br, oo L biy oo b)) P (b1, iy b)) (53)

where B(m) = {b;, 1 <i<d| YL, b =m).
The output state of the isometric extension is then

pXABE=$(|1>< @ w4 Al © v). 54
Thus,
1
P =S (UK @Y+ F 1 ® V). (53)
o= E(|1><| @UF+ -+ ld)d* @ yf) . (56)
- k+d1 Z|(b1,.. b (b1, ..., ba)l, (57)
(d 1 B(k)
B __ 1 . . B
vl = T Z(Ml—zmoddbl+"'+:u'd—lm0ddbd)|(b1’""bd)><(b1""’bd)| . (58)
( d )B(k)
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To obtain (57) we used the calculation in (48). We can then use these output states to calculate
the following entropies:

d d
HAIX)=H(y)) =H (Z Mi|i><i|> =—) wilogu, (59)
i=1 i=1

k+d—1
H(B):log( Z_l ) (60)
1
HBIX)=H(y}) =H | o Y (bt + -+ paba) by, ..., b)) (b1, ..., ba)l |
") 5w
(61)

where we have used the covariance of the channel in (61). Thus the Holevo information is
given by the following expression:

I(X; B) = H(B) — H(B|X) (62)

k+d—1 1
= log< ) —H | g Y uibi + -+ wab) b1, . bW b1, - b))

_ 1
d—1 ( d ) B(k)
(63)
Now to calculate the coherent information /(A)BX) the following states are important:
1
PE=S (DT @YT +--- +ld)d" @ V), (64)

1
v = Z (1-imoaabt + - -+ + ta—imoaaba + DI (b1, ... b)) (b, ..., ba)|".

( d ) B(k—1)
(65)
The coherent information is then given by the following:
I(A)BX) = H(B|X) —H(E|X) (66)
1
yr T Z(Mlbl + o+ wabd) (b1, ., b)) ((By, - .. ba)l
( d ) B(k)
1
T, Z (b1 + -+ + pabag + Dby, ..., b)) {(D1, ..., ba)l
( d ) B(k—1)
(67)
]

Figure 1 shows the resulting CQ and CE plots for 1 — k universal qudit cloners for
k =1,2,5,10 of dimension 5, and compares these to the previously calculated CQ and CE
trade-off curves for qubit (dimension 2) universal cloning channels [4]. In the calculation of
the information-theoretic quantities, for example for the calculation of the entropy, we have
used a logarithm base d rather than a logarithm of base 2. We take this convention in order to

14
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Figure 1. Plots of the (a) CQ and (b) CE capacity regions for a 1 — k universal qudit cloner
with & = 1,2, 5,10. The logarithms taken in the calculation of the entropic quantities are in
base d. Notice that for both dimensions 2 and 5 the classically-enhanced quantum capacity region
is convex and larger than that of a time-sharing protocol. Similarly, the entanglement-assisted
classical capacity region is convex and is larger than the time-sharing protocol for both dimension 2
and 5. The relative difference between trade-off coding and time-sharing increases as k increases.

treat all dimensions on an equal footing. For example, the maximally mixed state always has
entropy 1 when one takes the logarithm in base d, for any dimension d, as opposed to always
taking the logarithm in base 2. We produced the plots in figure 1 by considering all possible
distributions of input states of the form (52). While not all distributions will lead to extremal
points, since the region is convex, we can take the convex hull of all these points and produce
a region that will capture all extremal points at the boundary. For the CQ trade-off curves,
figure 1(a) shows that the classically-enhanced quantum coding scheme achieves better rates
than a time-sharing scheme. Time-sharing, in the case of CQ trade-off curves, corresponds to
sending classical information a certain fraction of the time and quantum information the rest
of the time over the channel. This is characterized on the CQ plot by a straight dashed line
(dimension 2) and a straight dotted line (dimension 5) connecting the classical and quantum
capacity of the channel in figure 1(a). Time-sharing, in the CE plot, corresponds to the straight
dashed line (dimension 2) and a straight dotted line (dimension 5) connecting the channel’s
rate of sending purely classical data and classical data assisted by consumption of a dit of
entanglement per channel use. Again in the case of entanglement-assisted classical coding, the
region is larger than that of time-sharing as characterized by the solid line always being below
the dashed line (dimension 2) and the dash dotted line always being below the dotted line
(dimension 5) in figure 1(b). Finally, it should be noted that the relative difference between
the optimal coding strategy and that of a time-sharing strategy increases as the parameter k
increases, as shown by the strong curvature in the classically-enhanced quantum coding and
entanglement-assisted coding curves for high values of k.

Theorem 14. The quantum dynamic capacity region for the qudit Unruh channel, where C
is the classical communication rate, Q is the quantum communication rate, and E is the
entanglement generation rate, is given by the convex hull over the regions characterized by
the following set of inequalities:

d [ee)
C+20< =) wilogui+ Y  pe@)HB), — H(EIX),,). (68)

i=1 k=1
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Q+E <)Y p()(HBIX), — H(EIX),,), (69)
k=1
C+Q+E<) pi@(HB), — HEIX),,), (70)
k=1

where py is the output of the 1 — k universal qudit cloner with an input of the form of (45). A
special case of the CQE capacity region is the CQ trade-off curve for the qudit Unruh channel,
given by the convex hull over the following set of points:

(Zpk(Z)(H(B)pk —H(BIX),,), Zpk(z)(H(BIX)pk _H(E|X)pk)) » (7D

k=1 k=1
and the CE trade-off curve for the qudit Unruh channel, given by the convex hull over the
following points:

oo d d
<Z Pi(2)(H(B),, — H(EIX),) — Y pilog i, — Y pilog m) .7

k=1

Proof. We can again use the state from (45) to obtain the points on the CQE triple trade-off
region since the same argument from theorem 12 can be repeated for the qudit Unruh channel.
Thus the output of the isometric extension of the Unruh channel ¢/ for an input state of the
form in (45) is

) = z)*EBzz Z > iicnmoaa/ 1+ bili)*

i=1 B(k—1)
Xl(bn,...,1+bi,.-.,bd)) Bl(or, . biy . ba))E. (73)

Now since each k corresponds to a particular block, we can write the output of the Unruh
channel as follows:

pXAPE =$(|1>< K@yt +- -+ ld) (@ @ vy™) (74)
k+d—
)"*‘EB ( " )(|1><1| YL + -+l @ yiiF)  (75)

)d+1 @ (k + d— >,0]§ABE7 (76)

where /% are the outputs for each block, which also correspond to the outputs of a I — &
universal qudit cloner, as outlined in the previous theorem. Therefore,

= -1
H(BIX), =H(y) =H (EB<1 — gt (k +Z )w£d> (77)
k=1

=) H ((1 — gyt (" e l)wk‘id) (78)
k=1
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(a) Classically-enchanced quantum capacity region (b) Entanglement-assisted classical capacity region

Figure 2. Plots of the (a¢) CQ and (b) CE capacity regions for the qudit Unruh channel, for
dimensions d = 2, 5, with acceleration parameter z = 0, 0.25, 0.5, 0.75. The logarithms taken in the
calculation of the entropic quantities are in base d. Both the classically-enhanced quantum region
and the entanglement-assisted classical region are larger than that of the time-sharing protocols and
the difference between these two regions grows as the acceleration parameter increases (downwards
and to the left for the CQ region and upwards and to the left for the CE region).

=Y —pe() log pi(2) + pr(DDH (BIX) . (79)
k=1

where we have defined pi(z) = (1 — z)‘”lz"*l(k*Z*l). Thus, similarly we can derive the
following:

H(B), =Y —pi(2)10g ps(2) + peR)H(B),, (80)
k=1
oo
H(E|X), =Y —pi(2)1og pi(z) + pu(H(E|X),,. (81)
k=1
Finally, the quantity H(A|X), remains the same as that of the universal cloning channel, that
is, H(AIX) = — YL uilog ;. O

Figure 2 plots the CQ and CE regions for the qudit Unruh channel for dimensions 2
and 5. The figure shows that both classically-enhanced quantum coding and entanglement-
assisted classical coding beat a time-sharing protocol. Moreover, the difference between these
optimal coding strategies and the time-sharing strategy increases as the acceleration parameter
z increases. This should come as no surprise because a larger value of z implies an increased
weight on 1 — k universal qudit cloners for higher values of k. Finally, figure 3 shows
the full triple trade-off between the resources of noiseless classical communication, quantum
communication, and entanglement consumption for dimension 3 and acceleration parameter
z=0.75.

4.2. Private dynamic capacity formula

In this section we consider the trade-off between the noiseless classical resources of public
communication, private communication, and secret key. Similar to the CQE triple trade-off
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Figure 3. Plot of the full triple-trade off region of the qudit Unruh channel for dimension d = 3
and acceleration parameter z = 0.75. The region extends infinitely in several directions as it
characterizes the capabilities of the classically-enhanced father protocol [18] combined with the
protocols of entanglement distribution (ED), teleportation (TP), and super-dense coding (SD).

region, this triple trade-off region characterizes the ability to use these resources along with the
quantum channel to generate other noiseless classical resources. As in the case when we were
considering quantum resources, we can determine these capabilities with aid from a capacity
formula [21]. The private dynamic capacity formula for a quantum Hadamard channel Ny is
as follows:

P (Ny) = max[(YX; B)o, + AH(BIX),, — H(EIX)o] + ulH (B)o — H(EIX)o],
where o is a state of the following form:

P =" pry (6 ) ) (X @ 1y) (17 @ U, (),

X,y

Uy, 1s an isometric extension of the channel Ny, and the states Y,y are pure.

Theorem 15. An ensemble of the following form suffices to maximize the private dynamic
capacity formula of a 1 — k universal qudit cloning channel:

1 , ,
S(IaF e v -+ ) @ g ) (82)
where

Y = (1= v =g DI @ DAY + 22 @ 1221 + -
+vgild)dl” @ |d)(dl”,

T — o)A @ 1A +w2) 2] @ 12) 21" -
+ (A —v = — v d)d|” @ |d)(d|".

Proof. We shall denote the 1 — k universal qudit cloner as CI 1(‘2 . and its complement by S,fd).
We exploit the following classical-quantum states:
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XA = pr @) prix G0 1) (X @ [y) 0 @ ¢

X,y
d—1

’ l . . . .
T = D 03 Spx () prix Gl 1) (@ ) 1" @ 1) (il ® 1) (71
x,y i, j=0
®X ()Z(j)dp,Z" (HXT (),

where the states ¢fy are pure, X (i) and Z (j) are the generalized Pauli operators and let
pXVBE and oXY1/BE pe the states obtained by transmitting the A’ system through the isometric
extension of the universal cloning channel. Let a;” = ZV prix lx) [y) (y|Y ® qb?”y.

The universal qudit cloning channel is covariant by construction [6-8] and the following

relationships hold for any input density operator ¢ and any unitary V acting on the input
system A’:
' (vovhy = RyCl?, (o) R},

SPWovT) =858 (o) 8],

where Ry and Sy are higher-dimensional irreducible representations of the unitary V on the
respective systems B and E. The state o® is equal to the maximally mixed state on the
completely symmetric subspace of N qudits for the following reasons:

, &
of =1l (") = ci?, (7> =ChY, ( / VoV' dV) = / RyCL®), () Ry: dV
pi-1

1
=g 2 I, (83)
k i=0

) and the fourth equality exploits the linearity and covariance of the
(d)

k+d—1
d-1
universal qudit cloning channel CI;”;,.

Consider the following chain of inequalities:
H(B), — HBIYX), + A[H(B|X), — H(E|X),] + ulH (B), — H(E|X),]
= (u+1)HB), —HB|IYX),+1H (BIX), — (A + n)H (EX),
— (u+1)H B), — H (BIYXI]), + AH (BIXI]), — (» + p) H (E|X1]),
(u+1)H B), —H BIYX1)), + H (BIX1)), — (A + p)H (E|X1J),
(1 + Dlog (p{) = Y px () prix G HB) o )
%y

+ > px ) [AH B) g oy = O+ 1) H (E) o) |

X

< (u+ Dlog(p) — HB) ) (g + M B) gy gy = A+ WH(E) g5
d
= log(p}) — H(B)leﬂk@) + )»[H(B)szﬂﬁk(gx*) - H(E)S,i‘“(a;‘)]
+ [ log(p) — H(E)Skgn((,:)].

The first equality follows by rearranging terms. The second equality follows because the
conditional entropies are invariant under unitary transformations:

H(B)RofprZf = H(B)pfv H(E)Sujpfslj = H(E)pf’

where p{ = (

N

where R, and S, are higher-dimensional representations of o; on systems B and E,
respectively. The first inequality follows because entropy is concave, i.e. the local state o® is a
mixed version of p®. The third equality follows because (83) implies that H (B),» = log (p?),
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from applying unitary covariance of the universal cloning channel to the term H (B|YXI),
Zx y Px (x) pyix OIx) H (B)Cl(‘” (60r)? since all pure states have the same output entropy we
have just replaced the state ¢, , by an arbitrary pure state ¢ of our choice, and from expanding
the conditional entropies H (B|X1J), and H (E|X1J),. The second inequality follows because
the maximum value of a realization of a random variable is not less than its expectation. The
final equality follows by rearranging terms.

The entropies H (B) A (o) and H(E) 59 (a2 depend only on the eigenvalues of the input
state o by the covariance of both the universal cloning channel and its complement. We

can therefore choose o to be a state diagonal in the {|1),]2), ..., |d)} basis of A’, and
without loss of generality, suppose these eigenvalues are equal to {vy, ..., v;}. The ensemble
defined to consist of {X (j)o}X ( ])}‘1 , assigned equal probabilities then saturates the upper
bound. O

Theorem 16. The private dynamic capacity region for the qudit Unruh channel is given by
the convex hull of the regions characterized by the following set of inequalities, where R is the
rate of classical public communication, P is the rate of classical private communication, and
S is the rate of secret key generation:

b b
R+P< Zpk(z) (H(B)M Zmbk—klog ) (84)
k=1
P+S<Y pi(o) (HBIX), — H(EIX),,). (85)
k=1
R+P+S<Y pi(2) (HB), — H(EIX),,). (86)
k=1

Pr Is the output state of a 1 — k universal qudit cloner with an input state of the form (45),

= (05, and My = (47,

Proof. Theorem 15 provided the form of the input states needed to calculate the private
dynamic capacity region for universal qudit cloning channels and since the qudit Unruh
channel is composed of such channels, these states will be sufficient to characterize the private
dynamic capacity region for the qudit Unruh channel. We now proceed to calculating the
various entropies required to characterize the region for the output state pX"5E.

p¥1PE = é(ﬂ)( M@y + -+ ld)d © yy"") (87)

Z)d“EB <k+d >(|1><| UIEE+ -+ ld)d* @y EE), (88)

where y5¥ are the output states of the 1 — k universal qudit cloner. Since the form of the
input state given by (82) is identical to the input state for the quantum dynamic capacity region,
given by (45), the entropic quantities H(B), H(B|X), and H(E|X) will all be equal to those
calculated in theorem 14. That is,
[o¢]
H(B) =) —pi()log pi(2) + pi()H (B),, (89)
k=1
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Figure 4. Private dynamic capacity region of the qudit Unruh channel for dimension d = 5
and acceleration parameter z = 0.75. The region combines the publicly-enhanced private father
protocol [28] along with the protocols of the one-time pad (OTP), private-to-public communication
(P2P), and secret key distribution (SKD).

H(BIX) =) —pi(2)log pi(2) + pe(2)H (BIX) . (90)
k=1
H(E|X) =) —pi(2) log pi(2) + pr(DH(EIX) O1)

k=1
where py is the output of the 1 — k universal qudit cloner with an input state of the form
(45), as described in theorem 13. Finally, if one conditions on both the X and Y subsystems,
then the output state pﬁf is pure for a given x and y. Since the channel is covariant, one can
calculate the entropies H (B|XY) and H (E|XY) by only considering an input state of the form
[1)(1]. Thus,

H(BIXY), = HN(I1)(1])) = H <EB pk<z>cz{‘2k(|1><1|>> (92)
k=1
=Y —p@log pe(@) + pr@HCLY (11)(1]) (93)
k=1
00 k b b
= ; —pi(2) 1og pi(2) + pi(2) ; Mg 108 3 (94)

where the quantities m;, = ((k_?fzd_z) and M = (k+z_l) are calculated in lemma 6. Since

H(B|XY) is calculated by taking the marginal entropy of a pure state, the marginal entropy
H(E|XY) must be identical, that is H(E|XY) = H(B|XY). O

We can then proceed to calculate the private dynamic capacity region for the qudit Unruh
channel as outlined in section 2.4. Figure 4 shows the private dynamic capacity region for
dimension d = 5 and acceleration coefficient z = 0.75. The curvature of one part of the
region’s boundary demonstrates that the use of the publicly-enhanced private father protocol
[28] allows for the sender and receiver to achieve rates that surpass those from a time-sharing
strategy.
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5. Conclusion

We have calculated the full triple trade-off capacity region for the d-dimensional Unruh
channel by proving that it belongs to the class of Hadamard channels, whose trade-off capacity
formulas single-letterize. While this is the same approach used for the qubit (2-dimensional)
Unruh channel [4], the construction of the proof is different from that of previous works in
order to capture the full generality of the dimension d. The first feature of our proof is that
the Unruh channel has a direct sum form, where the elements belonging to the direct sum are
d-dimensional universal qudit cloners. Secondly, we have provided an explicit construction
of the Kraus operators for the complementary channel of the 1 — 2 universal qudit cloner,
enabling us to conclude that the Unruh channel itself is Hadamard through an inductive
argument again based on the particular direct sum form of the channel.

The quantum dynamic capacity region for the qudit Unruh channel has a curved boundary,
demonstrating that the use of the classically-enhanced father protocol [18] achieves rates
superior to a time-sharing strategy. The relative gain coming from the use of the improved
coding strategies increases as the acceleration between the two parties increases. This is due to
an increased weight on the 1 — k universal qudit cloners with higher k when the acceleration
between the two parties is large since the probability distribution favours higher values of k
as the acceleration parameter z grows. Similarly, the private dynamic capacity region for the
qudit Unruh channel also demonstrates that the use of the publicly-enhanced private father
protocol [28] achieves rates greater than that of a time-sharing strategy when studying the
trade-off of public communication, private communication, and shared secret key.

The connection between the qudit Unruh channel and the universal qudit cloning channels
is powerful. Beyond being useful for calculations of entropic quantities, it would be interesting
to pursue this connection further in quantum optics. A 1 — 2 universal qubit cloning channel
has been experimentally realized using light amplifiers based on the physical process of
stimulated emission in an optical fiber [12]. There have been further proposals for qudits using
time-bin entangled photons in optical fibers [13, 14] which would then naturally lead to the
following question: could one implement the qudit Unruh channel in terms of these universal
optical cloning devices through a network of optical fibers and amplifiers? In such a scheme,
the acceleration parameter that was present in the relativistic setting would now be considered
as the gain of optical amplifiers characterizing the ‘strength’ of the amplification process.

While we have extended the analysis of the capacity regions to encompass the more
general d-dimensional Unruh channel, it would be interesting to extend this generalization in
future works. One could consider the capacity regions of this relativistic setting upon imposing
an energy constraint on the system, which would constrain the mean number of photons to
which Alice has access in order to encode her information. Would the freedom to encode in
any number of modes which satisfy the energy constraint provide an added benefit to that of
being restricted to encoding in a fixed d-dimensional encoder? If so, would the shape of the
capacity regions be severely altered?
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Appendix. 1 — 2 universal qudit cloning channel is Hadamard

Proof of lemma 9. States |1 (7)) form a set of rank-one operators. What remains to be shown
is the following:

S, (p) =Y EipE], (A1)
=Y EE, (A2)

where E; are the rank-one Kraus operators outlined above.
The channel Sz(d) performs the following mapping on an arbitrary pure input state:

3
S (p) =8 (Z ﬂiaj‘wac)) (A.3)
i=1
2812 + 182+ + 1Bal? B1Ba BB
1 B Bi1> + 20817+ + |Bal? BB
T d+1 : 5
B1Ba s B | Bat P+ 218412
(A4)
In order to show (A.1), consider the matrix entry |p){g| of >, EipEl:",
3
: | B
il _ Ny N
(ZEipEi> = > yrerrm Gl PN N DI
i pq ny,...,ng=0 Jj k1
< [ Y=y | (=i gl
7
BB
+y d’;’l|p><p|k><l|q><q|a<p—q> (A5)
k,l

oy (EED S e Capepony |
_ O -1y BB,
ny,....,ng=0 4d l(d + 1) JJ .kl
+ Bl pina (A.6)

d+1

in,,Jrnq (_ 1)nq
49-1(d + 1)

|
WE

> i1 BB, | 1p)l

ny,...,ng=0 k,l

BrB,
a+ 15(P—61)|P)<61|- (A7)

Consider first the case when p = ¢, (A.7) then becomes

+

3

Y EeE[ | = ) Mzinﬁ"l(—l)”’ﬂkﬁ Ip)(p|+|ﬁp|2 P){pl
— 4-1(d + 1) 4 : d+1

pp ny,..., ng =0

(A.8)
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3

—1 2n, — 2
Y | s S sd | el + Py

d—1

na,..., nd=0 4 (d+ 1) k,l

(A.9)
1 3
-y | T e e | o
""" a= <kA%£[1) k
1Byl
+dﬁj1| ) pl. (A.10)

One can show the first double sum in (A.10) is equal to zero by permuting over all possible
values of ng, which are independent of #;. In order to explicitly show the cancellation of these
terms, fix values for k and / such that k # [,

3

3 3
S =)"BB =Y "By (—)"B; =0 (A.11)

na,..., ng=! ni =0 ny =0

since Zzlzo(—i)’”ﬁl = 0 and this sum is independent of the value of n; since k # [. It is worth
noting that in the case when / = 1 this is not true since n; is fixed to be equal to 1. However in
this case we obtain 8, Zn —o " B = 0 since the sum over k is now equal to 0 because k # 1.

The coefficient in the second double sum in (A.10) is equal to 1 and we just need to
consider all permutations of n; for £ > 2 in order to obtain the desired result,

¥ 4e-1 18,]
o] o p
(2,- jEmE,-) <4d Y § 1B +d+1> P} Pl (A.12)

1
= AP 18P+ 4 1By + 218 + By -+ 1al).
(A.13)

Now consider the case p # g in (A.7),
3 Pt (— 1)

(ZEHOE,T> = 2 T dr D ;i"””’(—l)”’ﬁkﬁz p)al (A.14)

Pq ny,....,ng=0

I e

= 2 Gmaen | BB DR,
nd=0

+ Y (BB 1 Y (D) BB+ (i) D BB,

1 1 k
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) kg (p.a)
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1 2(np+ng) 2000 @ 2(ng+n,) Nty 2 B
=TT L | DN BB ) 1A,
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(I#q) (I#p) (k#q)

i (=i Y BB, + (=) Y (=1 BBy | 1p) gl
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(A.16)
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All terms in (A.17) are zero except for the second term because we can permute the values of
np, or ng in a similar way to the technique used in (A.10)—(A.12). Finally there are 49=1 copies
of the second term since this term is independent of the permuted values of n; for k > 2. Thus

1 _
ST -
(ZEpE) = T 7PPr (A.18)

Pq
which agrees with the output density matrix in (A.4).
Now show (A.2):

. 1
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Now in the case when k # I’ in (A.21), one can apply the same technique as in (A.10)—(A.12)
to show that this last term is equal to zero. However when k = [’ one obtains

3 d
. 1 . d oy
YEE = | XN+ g 2 D KK (A22)
i J ny,..., ng=0 k=1
1 d <
=—— Do Iul+ = Y. DIk (A23)
d+1 - 4
J ny,....ng=0 k
1 . . .
bl PIILIELONIVE EDWNLY (A.24)
J J J
which agrees with (A.2). O
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