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Graphic Processing Units
(GPUs)-Based Haptic Simulator
for Dental Implant Surgery
This paper presents a haptics-based training simulator for dental implant surgery. Most
of the previously developed dental simulators are targeted for exploring and drilling pur-
pose only. The penalty-based contact force models with spherical-shaped dental tools are
often adopted for simplicity and computational efficiency. In contrast, our simulator is
equipped with a more precise force model adapted from the Voxmap-PointShell (VPS)
method to capture the essential features of the drilling procedure, with no limitations on
drill shape. In addition, a real-time torque model is proposed to simulate the torque re-
sistance in the implant insertion procedure, based on patient-specific tissue properties
and implant geometry. To achieve better anatomical accuracy, our oral model is recon-
structed from cone beam computed tomography (CBCT) images with a voxel-based
method. To enhance the real-time response, the parallel computing power of GPUs is
exploited through extra efforts in data structure design, algorithms parallelization, and
graphic memory utilization. Results show that the developed system can produce appro-
priate force feedback at different tissue layers during pilot drilling and can create proper
resistance torque responses during implant insertion. [DOI: 10.1115/1.4024972]

Keywords: haptic rendering, surgical training, dental drilling, implant insertion, voxel
model, parallel computing, GPU, VPS

1 Introduction

The surgical procedure in dentistry is guided by the tactile sen-
sation that the dentist perceives through his instrument. Although
it is possible to practice the procedure on a cadaver which offers
equivalent tactile response, their supply is limited and the cost is
quite high. Alternatively, a Manikin-based training simulator pro-
vides a plastic model of the patient’s head and mouth, on which
dental procedures can be performed using actual dental instru-
ments on artificial oral tissues. Some of these simulators, such as
DentSim [1] and DSEplus [2], have been commercialized and pro-
ven to be helpful in dental education. However, they can hardly
duplicate the pathological diversity. In addition, considering the
frequent replacement of the artificial oral tissues, the cost is also
not cheap. On the other hand, with advances in virtual reality tech-
nology, there is much potential in the use of a haptics-based simu-
lator, which employs virtual models of the oral anatomy and a
haptic device as a training platform. The trainee holds the stylus
of the haptic device to manipulate a set of virtual hand-pieces,
while the tactile feedback reproduces clinical sensation during
practicing. A haptics-based simulator can be much more cost
effective. A particular surgical procedure can be virtually prac-
ticed many times, without replacing any physical models. The
critical performance requirement is to provide physically realistic
haptic simulation, in real-time.

This paper aims at the simulation of dental implant surgery for
training purposes. Dental implants are a reliable and long-lasting
replacement for missing teeth. Dental implant surgery generally
includes three procedures. First, a pilot hole is created in the jaw-
bone. Second, the root part of a dental implant is screwed into the
jaw through the pilot hole, taking the place of the root of a missing
tooth root. Finally, an abutment is installed on the root part and a
custom-made crown is placed over it. Among these three proce-
dures, the first two are the most critical to the success of this sur-
gery. The drilling procedure has to be carefully conducted within
a limited space, without damaging the underlying mandibular

canal, maxillary sinus, and adjacent tooth roots. Dentists are
required to practice and get familiar with the tactile sensation
when drilling through different oral tissues, so that they can stop
when the drill touches critical but invisible oral structures. Mean-
while, as overscrewing may cause the stripping of the implant,
dentists need to develop an intuitive sensation to achieve optimal
tightness between the implant and the bone tissue.

To reduce the aforementioned risks during the dental implant
surgery, a haptics-based training simulator has been built for novice
dentists to practice the pilot drilling procedure and the implant
insertion procedure. Both procedures may affect several types of
oral tissues, including an exterior layer of hard cortical bone, an in-
terior layer of spongy cancellous bone, the tooth enamel, dentin and
pulp. It is of vital importance for the simulator to capture the inho-
mogeneous features of the involved oral anatomy. In literature,
surface-based approaches were mostly employed [3–7], which
model the tooth/bone tissues with triangular meshes and compute
the contact resistance force based on penetration depth. Although
these approaches are effective to provide basic haptic feedback,
they are not suitable for surgical simulations involving multiple in-
homogeneous tissues, due to the difficulties in modeling the internal
structures and various tissue properties. Meanwhile, voxel-based
approaches are more convenient and intuitive for modeling the
physical properties of different inhomogeneous tissues. Attributes
like voxel density, tissue type, position and color can be assigned to
a voxel, according to its location in a specific anatomical structure.
Corresponding force feedback can be simulated using these attrib-
utes, along with the position and orientation of virtual instruments.
Voxel-based models have been commonly applied in simulations
for dental preparation [8–11], craniotomy [12,13] and bone surgery
[14,15]. However, the methods used for the voxel model construc-
tion were not the same. Some [10–13] built their models from poly-
gon models, using a particular voxelization method. Others
[8,9,14,15] built their models directly from original CT images and
reconstructed an isosurface for graphic rendering. The latter method
is adopted here as patient-specific tissue properties can be extracted
directly from CT images, upon which anatomically correct voxel
representations of patients’ oral structures can be constructed.
Image data are preprocessed to alleviate imaging noise, providing
comparable visual results to the former one.
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Realistic haptic simulation requires intensive computations for
large-scale data management, collision detection, physical-based
force computation, and real-time update of object models. How-
ever, it is quite difficult to complete of all these tasks at a stable
haptic rendering rate (1000 Hz) with traditional methods. Conse-
quently, to ease the computation burden, sphere representations of
the virtual instrument and penalty-based force models are often
used for simplification [10,11,16]. The VPS force model was first
introduced by McNeely et al. [17]. Voxmap is a collection of vox-
els representing the virtual scene, while PointShell is a set of
points distributed around the virtual tool, each having an inward-
pointing surface normal to facilitate the calculation of penetration
depths. Resistant force is computed by adding the contribution of
each point based on its penetration depth. Variations of the origi-
nal VPS model can also be seen, with improved sampling methods
and data structures [13,14,18]. Basically, VPS and its variations
can be classified as multiple-point penalty-based models.
Although more precise, the feeling is still like a touch resistance
force rather than a drilling force that comes from the rotational
motion of the cutting edges. In response, a novel drilling force
model is proposed, based on drill rotation and contact tissue prop-
erties. The new model can also accommodate various drill shapes.

Meanwhile, haptics-based torque modeling can hardly be found
in literature. To the best of the authors’ knowledge, the Osteosyn-
thesis screw insertion simulator [19] is probably the only haptics-
based screw insertion simulator for training purposes. The torque
output of this simulator was computed based on a torque-rotation
relationship derived from existing experimental data, which were
collected during an Orthopaedic surgery performed on a sheep
tibia. The current system can provide reasonably realistic screw
insertion experience on three types of bone structure, from three
rotations before and during the stripping phase. However, this
approach is not suitable to model the torque feedback on patient-
specific oral tissues, as there is no relation between the torque and
the tissue properties. In addition, no graphic display is provided.
To tackle this issue, a voxel-based torque model is proposed,
based on the tissue properties as well as the implant geometry.

Moreover, to accommodate more precise voxel models and
more computationally intensive haptic models, stable force/torque
rendering at haptic frequency (1000 Hz) becomes a major chal-

lenge. To solve this problem, the parallel computing architecture
is exploited. Unfortunately, the parallel computation power of
CPUs is limited, as more transistors are devoted to flow control
and data caching. Meanwhile, GPUs have more transistors for
data processing. This architectural feature makes GPUs more spe-
cialized for compute-intensive and highly parallel computations.
GPU-based architecture usually guarantees significant speedup
but require more complex algorithm design, due to the need to
adapt algorithms to the graphic domain. Extra efforts are made to
design proper data structures, parallelize the algorithms and utilize
appropriate graphic memory. The implementation is based on the
compute unified device architecture (CUDA), a new parallel com-
puting architecture introduced by NVIDIA [20].

The rest of this paper is organized as follows. The framework
of the system is introduced in Sec. 2. The voxel model structure
design oriented for parallel computing, details of the force/torque
model, and the GPU-based parallel rendering techniques are given
in Sec. 3. The simulation results and discussion are presented in
Sec. 4. Finally, the paper concludes in Sec. 5.

2 System Framework

The system framework of our dental bone drilling simulator is
shown in Fig. 1. The oral anatomy model was constructed directly
from anonymized clinically indicated CBCT images, using the
voxel-based method. The dimensions of the CBCT images used
for the model construction are 416� 416� 256. The correspond-
ing spacing is 0.2 mm� 0.2 mm� 0.18 mm. In the preprocessing
stage, the upper jaw and the maxillary teeth were segmented out
and smoothed. The density of a voxel node was related to the in-
tensity of a corresponding pixel in the smoothed image. The iso-
surface of the voxel model was constructed using the Marching
Cubes (MC) algorithm [21]. The virtual drills and implants were
also created and sampled in this stage. To start a typical training
procedure for the dental implant surgery, a user first selects a sur-
gical site, or a ROI (region of interest). Then, the user can choose
the virtual drill, define its diameter and set the spindle speed of
the hand-piece. During the real-time simulation, the virtual drill
can be manipulated by the user through the stylus of Phantom
Desktop, a 3DOF force feedback device by Sensable [22]. In the

Fig. 1 System framework
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haptic rendering loop (1000 Hz), a CPU process calculates the
transformation matrix of the virtual drill based on the current posi-
tion and orientation of the haptic stylus. Then, the transformation
matrix is uploaded to the GPU. The collision detection, force
computation, and the update of the oral and the tool models are all
conducted on the GPU, based on the parallel computing architec-
ture of the CUDA platform. The calculated feedback forces would
be downloaded to the CPU and output to the haptic device. In the
graphic rendering loop (30 Hz), the isosurface within the ROI is
reconstructed on the GPU based on a parallel version of the MC
algorithm, providing the visual feedback to the user. The system
works in the same way during the implant inserting simulation,
except that the virtual implant is controlled by a 1DOF torque
feedback device developed in Ref. [23]. The torque resistance is
computed by the torque model and output to the torque feedback
device. Details of the proposed force/torque modeling approaches
as well as the GPU-based haptic simulation based on CUDA
architecture are presented in Sec. 3.

3 Haptic Simulation Based on GPU

Considering the current hardware computing power and real-
time constraint for stable haptic rendering, force modeling based
on penalty-based methods was applied in most of the previously
developed haptic drilling systems. Most of these systems only tar-
geted for a spherical-shaped drill bit due to its simplicity in colli-
sion detection and force calculation, although cylindrical or
conical drill bits are commonly used in the real case. In addition,
the traditional methods are not suitable for drilling applications as
rotation-based drilling forces are not modeled properly. For a
more precise drilling force model, more computations are
required. Consequently, the computational efficiency becomes a
much more severe issue. The modeling of the torque resistance is
facing the same problem, where a more physically realistic oral
model with higher resolution is required to build a practical train-
ing simulator for dentists to practice the procedures based on
subtle force/torque variations. In this work, we tried to tackle this
challenge through GPU-based parallel computing with the CUDA
platform. More detailed description of the features and advantages
of GPU and CUDA can be found in [24].

3.1 GPU-Oriented Voxel Model Structure. To describe our
voxel model structure, two entities have to be defined first: Voxel
Cell and Voxel Node. Voxel Cell, also termed as voxel, is a cubic
volumetric element, which is a 3D counter-part of the pixel. Voxel
Nodes are the eight vertices of the Voxel Cell. The relationship
between these two entities is illustrated in Fig. 2. In our voxel
model, only the voxel nodes are actually stored in the simulation
system. A voxel cell can be represented by the voxel nodes
located at its bottom-left-back corner and its top-right-front corner
(nodes 0 and 6 in Fig. 2). The index of a voxel cell is defined to be
the same as the index of its bottom-left-back voxel node. The den-
sity of voxel nodes may change during the run-time to simulate
the material removal process. The connectivity and positions
remain the same, assuming no deformation of the bone and tooth
tissues.

Two types of data structures are generally used for voxel-based
models: octrees and lookup tables (LUT). An Octree [25] parti-
tions and organizes a 3D voxel space by recursively subdividing it
into eight child nodes. The Octree data structure, once optimally

built, is efficient for locating and neighbor searching of voxel
nodes. However, there is a large amount of overhead in
reconstructing the neighbor information in a dynamic environ-
ment. In addition, the recursive tree traversal process makes it dif-
ficult to be parallelized. On the other hand, with fixed voxel cell
dimensions and a predefined resolution, neighbors of each voxel
node stored in LUT can be obtained dynamically. More impor-
tantly, nodes stored in LUT are independent, which are suitable
for the parallel computing on GPUs. Thus, an LUT is used to store
voxel nodes in our approach.

To minimize the data transfers between CPU and GPU, which
would incur great performance loss, all computations for isosur-
face reconstruction and force/torque modeling are carried out on
the GPU. Considering the limited GPU memory, only a density
value, a flag value and a collision indicator are recorded for each
node. The data structure for each voxel node is defined as follows.

struct voxel node f
float density;

bool flag;

g;

The density value is assigned with the intensity value of a corre-
lated pixel in CBCT images and is to be used for the force compu-
tation. Harder tissues have higher density value and vice versa. The
flag value indicates whether or not a particular voxel is to be used
for the isosurface reconstruction. During the real-time simulation,
the density value is updated at haptic frequency (1000 Hz), while
the flag value is updated at graphic frequency (30 Hz). The grid
position of a voxel node is encoded in its index to LUT. Suppose
the volume size is 2x � 2y � 2z, the grid position of voxel node i
can be extracted in run-time through a set of bit-wise operations as
follows. The bitwise AND operator “&” takes two binary represen-
tations of two numbers and perform the logical AND operation on
each pair of corresponding bits. The right shift operator “�” is
equivalent to dividing i by 2x and by 2xþy, respectively.

grid position:x ¼ i ð2x � 1Þ (1)

grid position:y ¼ ði� xÞ ð2y � 1Þ (2)

grid position:z ¼ ði� ðxþ yÞÞ ð2z � 1Þ (3)

The stream processors on the GPU have fast bitwise operation
units in their ALUs (Arithmetic Logic Unit). Besides, the computa-
tions for each voxel node are encapsulated in a lightweight CUDA
thread, which is processed in parallel with negligible context switch
overheads, so that the above computations can be quickly finished.
It is a trivial task to calculate the Cartesian coordinate of each voxel
node in run-time, once its grid position and the voxel cell dimen-
sions (0.2 mm� 0.2 mm� 0.18 mm, the same as the CBCT image
spacing used in this work) are known. The LUT for the voxel model
is stored in the texture memory space on the GPU, which allows
efficient memory access of the voxel data using a texture cache.

3.2 Haptic Modeling and GPU-based Implementation

3.2.1 Force Modeling. Our force model was inspired by the
VPS model. However, unlike the VPS model, which represents
dynamic objects by a set of points sampled from the entire sur-
face, our model only collects point samples along the cutting
edges of the drill bit. These sampled points are called cutting ele-
ments. During each haptic update, the elementary forces on each
cutting element are calculated based on its current position in the
oral anatomy, which is a combination of the hand-piece’s global
motion transformation and the cutting element’s rotational motion
with respect to the drill axis. The force model illustration is shown
in Fig. 3. The normal elementary force Fn

i and the tangentialFig. 2 A voxel cell and its nodes
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elementary force Ft
i acting on cutting element i are calculated as

follows.

Fn
i ¼ Dik

n
i Di (4)

Ft
i ¼ Dik

t
iDi (5)

Di equals 1 if element i collides with a voxel cell and equals 0 oth-
erwise; kn

i and kt
i are the stiffness values in the normal and tangen-

tial directions, respectively (Presently, the k values were adjusted
according to users’ feedback on the trial simulator. They would be
calibrated through the measurement of actual drilling forces in the
future); Di is the approximated density of the oral tissue where the
element is currently located.

If hi is defined as the angle between the normal vector and the
drill axis, the elementary force in the axial and the radial direc-
tions can be calculated as:

Fa
i ¼ Fn

i cos hi (6)

Fr
i ¼ Fn

i sin hi (7)

To render forces on a haptic device, Fa
i and Ft

i should be pro-
jected to the coordinate of the haptic stylus (haptic coordinate).
Suppose at time t, element i has moved a degrees with the rotation
of the drill bit, the following transformations are applied:

Fx
i ¼ �Fr

i cos a� Ft
i sin a ¼ �Fr

i cos xt� Ft
i sin xt (8)

Fy
i ¼ �Fr

i sin aþ Ft
i cos a ¼ �Fr

i sin xtþ Ft
i cos xt (9)

Fz
i ¼ Fa

i (10)

where x is the spindle speed of the handpiece.
The final force output is obtained by summing all the elemen-

tary forces:

Fx ¼
X

i

ð�Fn
i sin hi cos xt� Ft

i sin xtÞ (11)

Fy ¼
X

i

ð�Fn
i sin hi sin xtþ Ft

i cos xtÞ (12)

Fz ¼
X

i

Fn
i cos hi (13)

3.2.2 Torque Modeling. For the surgical screw insertion pro-
cess, there are normally three major phases.

(1) Insertion phase: At the beginning of the screw insertion, the
resistance torque rises gradually due to the increasing fric-
tion between the bone tissue and the screw.

(2) Tightening phase: After the screw head touches the bone
surface, the resistance torque rises sharply, usually over one
rotation, as the screw threads are forced against the newly
formed bone threads.

(3) Stripping phase: If the rotation continues after the tighten-
ing phase, the resistance torque would drop rapidly,
because the bone threads would be removed/damaged by
the overturn of the screw.

Successful insertion of the dental implant would only include
the insertion phase and the tightening phase. When the stripping
phase occurs, the procedure fails due to the loosening of the
implant. The torque model should be able to simulate all three
phases so that the user can practice achieving the maximum
implant-bone tightness in the tightening phase and avoiding the
stripping phase. To simulate all three torque phases with patient-
specific tissue properties, a voxel-based torque computation model
has been developed. The model calculates the torque response
based on the geometry of the screw implant and the property of
the contacted oral tissue. More specifically, it calculates the torque
contribution of each thread element based on the collision detec-
tion results. The magnitude of the individual torque contribution,
or elementary torque, is related to the density of the collided oral
voxel and the current torque mode (insertion/tightening/stripping).
Summation of all of the elementary torques will give the total tor-
que response at the current moment. The details of the torque
computation model are described as follows.

The state transition of the three torque modes is shown in
Fig. 4. The torque modes are switched according to the rotary
position of the implant and the collision detection results. The tor-
que mode is initially set to insertion mode. It would switch to
tightening mode when all the thread elements intersect with the
voxel-based oral model. In other words, the full immersion of the
screw thread into the oral volume will trigger the transition from
insertion mode to tightening mode. Stripping mode starts after one
rotation of the implant in the tightening mode. If none of the
thread elements intersects with the voxel model after stripping,
meaning that the implant is no longer contacting the oral volume,
the torque mode would be reset to insertion mode again. The illus-
tration of the torque model is shown in Fig. 5.

The elementary torque Ti contributed by thread element i can
be calculated as follows:

Ti ¼ Firi ¼ DiKDiri (14)

Fi is the tangential elementary force on thread element i. ri is its
radial distance to the screw axis. Definitions of Di and Di are the
same as those in Eqs. (4) and (5). K is the virtual contact stiffness
which is related to the current torque mode.

Fig. 3 Illustration of force model

Fig. 4 State transitions of torque modes
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For insertion mode

K ¼ Kins (15)

For tightening mode

K ¼ Kinsð1þ shÞ (16)

For stripping mode

K ¼ Kinsð1þ 2psÞ (17)

Kins is a constant representing the virtual contact stiffness for
the insertion mode. s is a constant scaling factor. h records the
rotation angle of the screw from the beginning of the tightening
phase (0� h� 2p). In other words, K increases from Kins to
Kins(1þ 2ps) during the tightening phase.

The total resistance torque is the sum of all elementary torques,
as shown in the equation below

T ¼
Xn

i

Ti ¼
Xn

i

DiKDiri (18)

n is the number of thread elements. The voxel node density
remains the same for the insertion and tightening phase, as it is
assumed that there is no material loss during these two phases. As
for the stripping phase, Di is decreased in each haptic loop to sim-
ulate the damage of bone thread. (Currently, parameter Kins and s
were adjusted according to users’ feedback on the trial simulator.
They would be calibrated through the measurement of actual re-
sistance torque in the future).

3.2.3 GPU-Based Parallel Implementation. If the number of
sampled elements is small, each element will contribute signifi-
cantly to the final force output. Consequently, there can be sharp
changes in the feedback force/torque, when an element enters or
leaves a voxel cell, or when it travels through the boundary of dif-
ferent tissue layers. Due to its limited stiffness, the haptic device
can be unstable with abrupt force/torque variations. Increasing the
element number will mitigate the above effect. As traditional
methods conduct collision detection and force/torque computa-
tions element by element, increasing the element number will
increase the computation time. To solve this problem, GPU-based
parallel computing is introduced.

The cutting elements are stored in a lookup table called cut-
LUT. Each entry of the cutLUT stores a pointer to the CuttingE-
lem data structure, which holds the initial position of a cutting
element, its normal vector, as well as the angle between the nor-
mal vector and the drill axis.

struct CuttingElem f
float init pos ½3�;
float normal ½9�;
float theta;

g;

The thread elements are stored with a lookup table called threa-
dLUT. Each entry of the threadLUT contains a pointer to the
ThreadElem data structure, which holds the initial position of a
thread element and its radial distance to the screw axis.

struct ThreadElem f
float init pos ½3�;
float radial distance;

g;

Both the cutLUT and the threadLUT are stored in the constant
memory space on the GPU, since it is constant during the run-
time. The access of the constant memory is even faster than that
of the texture memory, due to the constant memory cache [20].

Based on the proposed force/torque model, the kernel function
on the GPU for force rendering is divided into nine device func-
tions, as shown in Fig. 6.

updateElemPos() calculates the current Cartesian coordinates
of an element using the drill/implant transformation matrix (stored
in the Pinned Memory of the GPU) and the original position of
the element in cutLUT/threadLUT (stored in the Constant Mem-
ory of the GPU). The Pinned Memory is nonpageable and allows
direct read/write of CPU memory by CUDA threads. getCollided-
VoxelCell() returns the index of the voxel cell that a sampled ele-
ment collided with. As we aligned the voxel space with the axes
of the world coordinate system, collision detection is simply per-
formed by:

if ð elem pos:x > cell min:xð Þ&& elem pos:x <¼ cell max:xð Þ&&

elem pos:y > cell min:yð Þ&& elem pos:y <¼ cell max:yð Þ&&

elem pos:z > cell min:zð Þ&& elem pos:z<¼ cell max:zð ÞÞ
return true;

else

return false;

elem_pos is the Cartesian coordinate of the element returned by
updateElemPos(). cell_min and cell_max are the coordinates of
nodes 0 and 6 of a target voxel cell.

Although the above algorithm is quite fast for a single voxel
cell, given millions of voxel cells in the workspace, the whole col-
lision detection process is still time-consuming. Instead of the tra-
ditional voxel-by-voxel collision detection, a top-down approach
is proposed here, which is inspired by the Octree data structure.
The collision detection process using this approach is illustrated
in Fig. 7.

Suppose the index of the collided cell is i, then getVoxelNodes()
computes the indices of its eight voxel nodes as follows:

indices 0½ � ¼ i;

indices½1 ¼ indices� ½0� þ 1;

indices½2 ¼ indices� ½1� þ volume size:x;

indices½3 ¼ indices� ½2� � 1;

indices½4 ¼ indices� ½0� þ volume size:y� volume size:x;

indices½5 ¼ indices� ½4� þ 1;

indices½6 ¼ indices� ½5� þ volume size:x;

indices½7 ¼ indices� ½6� � 1;

The distances between the cutting element and the eight voxel
nodes are computed by getNearestVoxelNode(). The density of
the nearest voxel node will be decreased by updateDensity() to
simulate the cutting process. getInterpDensity() calculates Di in
Eqs. (4) and (5) and Eq. (14), through trilinear-interpolation from
the eight neighboring voxel nodes for improved precision

Fig. 5 Illustration of torque model
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Di ¼ D0ð1� xiÞð1� yiÞð1� ziÞ þ D1xið1� yiÞð1� ziÞ
þ D2xið1� yiÞzi þ D3ð1� xiÞð1� yiÞzi

þ D4ð1� xiÞyið1� ziÞ þ D5xiyið1� ziÞ
þ D6xiyizi þ D7ð1� xiÞyizi (19)

D0 � D7 are the densities of the eight neighboring voxel nodes, xi,
yi, zi is the current world coordinate of element i. The trilinear
interpolation can be conducted in a very efficient manner using
3D texture memory under CUDA.

calcElemForceNTorque() computes the contribution of a
sampled element to the net force/torque (based on Eqs. (8)–(10)
and Eqs. (14)–(17)). The calculated elementary forces/torques are
stored in shared memory, which allows for fast data access within
the same thread block. updateTorqueMode() is called only in tor-
que computation, which changes the torque mode according to
Fig. 4. integrateElemForceNTorque() accumulates the elementary
forces/torques in the shared memory to get a final force/torque
output. The integration process is conducted with a commonly
used parallel computing pattern called reduction (or reduction
tree), which is illustrated in Fig. 8.

3.3 Isosurface Updating. The isosurface of the oral volume
needs to be updated in real time to provide a visual feedback of
the drilling effect. The original marching cubes algorithm has
been adapted for parallel implementation on the GPU. During the
real-time simulation, a CUDA thread is generated for each voxel
node at 30 Hz frequency, as required by real-time constraint for
graphic rendering. Each thread would check the density of a given
node, and clear its flag if the density is decreased to 0. Then, based

Fig. 6 Flowchart of the force computation kernel

Fig. 7 The top-down collision detection algorithm
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on the updated flag, the triangle vertices for each boundary voxel
cell are located and normals are computed. Since threads are run-
ning simultaneously, the process for isosurface reconstruction is
very efficient. Moreover, because the generated triangles are
directly written into GPU memory, the graphic rendering is also
quite fast.

4 Results and Discussion

To evaluate the proposed methods, a trial simulation experi-
ment was performed using the proposed simulator. CBCT images
of a patient with a missing molar were used for the oral model
construction. A drilling site (or ROI) was selected first on the iso-
surface of the voxel-based model with an axis-aligned bounding
box (Fig. 9(a)). Voxel nodes within ROI would be used for haptic
rendering. During the real-time haptic simulation, the densities of
the collided voxel nodes were updated, and isosurface in the ROI
was reconstructed at about 30 Hz (Fig. 9(b)). The trial surgery
started by performing a pilot drilling procedure at the hole in the
maxilla (caused by the missing molar). The drilling was stopped
after the penetration of the maxillary sinus (Fig. 9(c)). It should be
noted that in the real case, experienced dentists stop drilling once
they sense that the drill is in contact with the maxillary sinus, to
prevent irreversible damage to this critical structure. However, in
this trial procedure, the drill continues to penetrate the maxillary
sinus after the contact in order to test the response of the proposed
force model at different tissue layers.

Figure 10 illustrates the real-time rendered drilling forces in x, y
and z dimensions (Fx, Fy and Fz in Eqs. (11)–(13)) during the pro-
cedure. These forces were output to the haptic device (Phantom
Desktop in our system) in 1000 Hz. In this trial procedure, the
implant drill passed through a hard cortical bone tissue (Region A),

a softer, spongious cancellous bone tissue (Region B), and stopped
after the penetration of the maxillary sinus (Region C). The relevant
haptic properties of the involved tissues can be represented using
the proposed force model, as shown in Fig. 10. The force in the z
dimension simulated the thrust force. A sudden increase of thrust
force could be seen at the first contact of the cortical bone, followed
by smaller resistance at the cancellous bone. Finally, an abrupt rise
of thrust force signaled the hitting of the maxillary sinus. In addi-
tion, the oscillation of the implant drill could be simulated by forces
rendered in x and y dimensions. When all cutting elements are cut-
ting at the same tissue, the magnitudes of the radial force (Fr

i ) and
the tangential force (Ft

i) acting on an element are almost the same
as the ones on its symmetric counterpart (with respect to the drill
axis), but the corresponding force directions are opposite. Thus, in
this case, the oscillation forces are quite small. However, at the be-
ginning stage of drilling, the oscillation forces are relatively large,
as shown in Region A of Fig. 10. To explain this phenomenon, con-
sider at a particular moment of this stage: a cutting element was
cutting a hard cortical bone, while its symmetric counterpart was
cutting in the air. In this situation, Fr

i and Ft
i contributed by this pair

differ greatly, resulting in large oscillation. This is consistent with
drilling oscillation in the real case. Due to the same reasons, large
oscillation also occurs during the penetration at the boundary of dif-
ferent tissues.

To evaluate the torque model and the torque feedback device, a
trial procedure for the dental implant insertion was also per-
formed. Figure 9(d) shows the real-time graphic rendering results
when inserting a dental implant into the pilot hole. In order to test
the torque response of the simulator in all three phases, screwing
continued until nearly no torque can be felt.

Fig. 9 Graphic rendering results: (a) ROI selection; (b) real-
time interaction during drilling; (c) penetration of the maxillary
sinus; and (d) real-time interaction during implant insertion

Fig. 10 Haptic rendering results of drilling forces

Fig. 8 Force integration based on reduction tree

Journal of Computing and Information Science in Engineering DECEMBER 2013, Vol. 13 / 041005-7

Downloaded From: https://computingengineering.asmedigitalcollection.asme.org on 07/01/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



The recorded torque-rotation profile during this trial procedure is
shown in Fig. 11. The three major phases during the implant inser-
tion can be easily identified from the above figure. During the inser-
tion phase (Region A), the screw implant was moving toward the
oral model along its axis. The resistance torque gradually increased
as more and more thread points came into contact with the bone
voxels, contributing their elementary torques to the total output.
The tightening phase (Region B) began once the screw head
touched the bone surface. The screw was rotating at the same posi-
tion because its advancing movement was stopped by the screw
head. The number of thread points intersecting with the bone vol-
ume was kept the same during this phase. The sudden rise of the re-
sistance torque was caused by the rapid increase of the virtual
contact stiffness K in Eq. (14), indicating growing load between the
screw threads and newly formed bone threads. After one rotation, it
finally came to the stripping phase (Region C). In this phase, the
density of the contacted bone voxels was decreasing to simulate the
damage of the newly formed bone threads. As a result, a quick drop
of resistance torque could be felt. It should be noted that there were
a few dips in the torque-rotation profile. These dips were generated
when the user stopped screwing momentarily during the procedure,
resulting in zero torque resistance at a given moment. The dips
were more intensive in the tightening phase, as the rotation of the
screwdriver was slowed down and the user stopped more frequently
due to larger torque resistance. The torque-rotation profile is con-
sistent with the profiles given in Refs. [19,26].

To compare the computational performance on the CPU-based
environment and the GPU-based environment, the same force/

torque model was implemented in two versions: a serial version
on the CPU side and a parallel version on the GPU side. Both ver-
sions are programmed in Cþþ with Microsoft Visual Studio 2003
and are compiled with default compilation flags.The force/torque
computation time for each haptic cycle was recorded during the
trial procedures with fixed drilling location and direction. Consid-
ering the variable response time at every cycle and the related
implementation overheads, an averaged cycle time for a sample
haptic drilling was used for performance comparison. The test
was conducted on a Dell Precision 380 equipped with a 64-bit
Intel

VR

Pentium
VR

D CPU (3.20 GHz & 2� 1 MB L2 cache), an
800 MHz Front side bus, a 4 GB DDR2 533 MHz memory, an
NVIDIA Quadro FX 3800 graphics card (1 GB GDDR3, 256-bit,
51.2 GB/s, CUDA compute capability 1.3) and the Windows XP
operating system.

Figure 12 gives a summarized view of the measured cycle times
with different volume sizes and different numbers of cutting ele-
ments. It can be seen that the force/torque computation time
increases very slowly with the increase of the volume size, thanks
to the Octree-inspired top-down collision detection method
described in Sec. 3.2.3. However, for the CPU-based serial imple-
mentation, a drastic rise of time cost can be seen with a larger
number of cutting elements. The desired haptic frame rate
(1000 Hz or 1 ms) cannot be achieved with more than 300 cutting
elements. Actually, based on our experience, the force/torque
feedback becomes unstable when using 300 elements with a
128� 128� 128 volume, probably due to the extra time cost and
overhead for the marching cubes isosurface reconstruction. In

Fig. 11 Haptic rendering results of resistance torques

Fig. 12 Performance comparison between CPU and GPU
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contrast, for the CUDA-parallelized implementation on the GPU,
a remarkable speedup of 6–12 times can be gained. The computa-
tion time is still under 0.2 ms even with a volume size of
128� 256� 128 and 500 cutting elements, which can satisfy the
real-time haptic rendering constraint.

5 Conclusions and Future Work

This paper presents the development of a haptics-based training
simulator for dental implant surgery. For the accurate representa-
tion of the oral anatomy, patient-specific CBCT images are utilized
to construct the oral model, using the voxel-based approach. The
core, and also the major advantage of our training simulator is the
adapted VPS drilling force model, the voxel-based torque model
and the GPU-based parallel architecture. In the proposed force
model, cutting elements are sampled from the cutting edges of a
drill. The drilling forces are computed based on the rotational
motion of the sampled cutting elements. The method captures the
essential features of the drilling process. Appropriate thrust force
and oscillation can be simulated during real-time simulation, as
demonstrated in the trial results. With the simulated drilling force
feedback, users can become familiar with the differences in tactile
sensation when drilling through different oral tissues, avoiding
severe damage to critical dental tissues and structures. Moreover,
with the simulated oscillation forces, users can learn to control the
drill oscillation after proper training. In the proposed torque model,
thread elements are sampled along the screw thread. The resistance
torque is modeled based on the voxel density and the virtual contact
stiffness throughout the insertion, tightening and stripping phases.
With the simulated resistance torque feedback, users are able to
learn what stripping feels like and how much torque may cause
stripping, in order to prevent stripping while trying to achieve the
maximum tightness between the dental implant and the bone tissue.
The real-time constraint for haptics-based rendering has been
achieved by parallelizing the force/torque computation algorithm
on the GPU, using the NVIDIA CUDA architecture. The CPU-
GPU comparison results show an impressive speedup with the
GPU-based method, which makes it possible to simulate larger vol-
umes and greater numbers of elements, if necessary.

Future work will measure the actual response force/torque
when performing the pilot drilling procedure and the implant
insertion procedure on the jaw of an adult pig. The collected
force/torque data would be used to calibrate the force/torque
model, thus providing better accuracy for the simulator. Addition-
ally, the system can be enhanced by simulating the gum tissue,
bone debris accumulation, irrigation and suction while drilling, as
well as the mounting of an artificial crown.
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