
Mutual Summaries: Unifying Program
Comparison Techniques

Chris Hawblitzel1, Ming Kawaguchi2, Shuvendu K. Lahiri1, and Henrique
Rebêlo3

1 Microsoft Research, Redmond, WA, USA
2 University of California, San Diego

3 Federal University of Pernambuco, Brazil

Abstract. In this paper, we formalize mutual summaries as a contract
mechanism for comparing two programs, and provide a method for check-
ing such contracts modularly. We show that mutual summary checking
generalizes equivalence checking, conditional equivalence checking and
translation validation. More interestingly, it enables comparing programs
where the changes are interprocedural. We have prototyped the ideas in
SymDiff, a Boogie based language-independent infrastructure for com-
paring programs.

1 Introduction

The ability to compare two programs statically has applications in various do-
mains. Comparing successive versions of a program for behavioral equivalence
across various refactoring and ensuring that bug fixes and feature additions do
not introduce compatibility issues, is crucial to ensure smooth upgrades [3, 7, 4].
Comparing different versions of a program obtained after various compiler trans-
formations (translation validation) is useful to ensure that the compiler does not
change the semantics of the source program [8, 6]. There are two enablers for
program comparison compared to the more general problem of (single) program
verification. First, one of the two programs serves as an implicit specification for
the other program. Second, exploiting simple and automated abstractions for
similar parts of the program can lead to greater automation and scalability.

In spite of the recent progress in program comparison, there are several un-
satisfactory issues. There appears to be a lack of uniform basis to formalize
these techniques — techniques for comparing programs range from the use of
verification condition generation [3, 4] to checking simulation relations [6]. Most
techniques focus on intraprocedural transformations of loops [8, 6] and do not
extend to interprocedural transformations. The ones that focus on interproce-
dural transformations use coarse abstractions of procedures as uninterpreted
functions [3, 4] and are not extensible.

In this paper, we formalize mutual summaries as a uniform basis for com-
paring two programs in a programming language without loops and jumps (but
containing recursive procedures). Mutual summaries generalize single program

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357286981?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

contracts such as preconditions and postconditions by relating the summaries
of two procedures, usually from two different programs. We provide a sound
method for checking mutual summaries modularly. We then describe sound pro-
gram transformations that can transform unstructured programs (containing
loops and jumps) to the language above. We demonstrate that our framework
is general enough to capture many existing techniques for comparing programs,
including those based on checking simulation relations [6]. Our framework cur-
rently lacks the automation provided for specific forms of equivalence checking
(e.g. identifying procedures to inline while checking programs with mutually
recursive procedures [3], or automatically synthesizing a class of simulation rela-
tions for compiler transformations [6]). On the other hand, we show examples of
comparing two programs with interprocedural changes for monotonic behavior
(§3) and conditional equivalence (§4.2) that are beyond the capabilities of earlier
works.

Mutual summaries are currently being incorporated into SymDiff [4], a
language-independent framework for comparing programs based on Boogie [1].
Programs in various source languages (C, .NET, x86) are analyzed by translating
them to Boogie (e.g. we use Havoc [5] to translate C programs into Boogie).
SymDiff provides functionalities to report differences as program traces at the
source files along with values of program expressions. As a future direction, we
hope to extend the framework to formalize frameworks for comparing classes of
concurrent programs [10].

2 Programs

In this section, we present a simple programming language that supports recur-
sive procedures, but does not support loops and unstructured jumps. We will
show a way to transform programs with unstructured jumps (including loops)
into the language presented in this section (§4.3).

2.1 Syntax and semantics

Figure 1 shows the syntax of the programming and the assertion language. The
language supports variables (Vars) and various operations on them. The type of
any variable x ∈ Vars is integer (int). Variables can either be procedure local or
global. We denote G ⊆ Vars to be the set of global variables for a program.

Expressions (Expr) can be either variables, constants, result of a binary op-
eration in the language (e.g. +,−, etc.). Expressions can also be generated by
the application of a function symbol U to a list of expressions (U(e, . . . , e)).
The expression old(e) refers to the value of e at the entry to a procedure. For-
mula represents Boolean valued expressions and can be the result of relational
operations (e.g. {≤,=,≥}) on Expr , Boolean operations ({∧,¬}), or quantified
expressions (∀u : int.φ). Formulas can also be the result of applying a relation
R to a list of expressions. A R ∈ Relations represents a relation symbol, some

x ∈ Vars
R ∈ Relations
U ∈ Functions
e ∈ Expr ::= x | c | e binop e | U(e, . . . , e) | old(e)
φ ∈ Formula ::= true | false | e relop e | φ ∧ φ | ¬φ

R(e, . . . , e) | ∀u : int. φ
s ∈ Stmt ::= skip | assert φ | assume φ | x := e | havoc x

s; s | s � s | x := call f(e, . . . , e)
p ∈ Proc ::= pre φf post ψf

int f(xf : int, . . .) : retf { s }

Fig. 1. A simple programming language.

of which may have specific interpretations. For any expression (or formula) e,
FV(e) refers to the variables that appear free in e.

A map can be modeled in this language, by introducing two special functions
sel ∈ Functions and upd ∈ Functions; sel(e1, e2) selects the value of a map value
e1 at index e2, and upd(e1, e2, e3) returns a new map value by updating a map
value e1 at location e2 with value e3.

The statement skip denotes a no-op. The statement assert φ behaves as a skip
when the formula φ evaluates to true in the current state; else the execution of
the program fails. The statement assume φ behaves as a skip when the formula
φ evaluates to true in the current state; else the execution of the program is
blocked. The assignment statement is standard; havoc x scrambles the value of a
variable x to an arbitrary value. s; t denotes the sequential composition of two
statements s and t. s � t denotes a non-deterministic choice to either execute
statements in s or t. The s � t statement along with the assume can be used
to model conditional statements; the statement if (e) {s} else {t} is a syntactic
sugar for {assume e; s} � {assume ¬e; t}.

A procedure p ∈ Proc has a name f , a set of parameters Params(f) of type
int, a return variable retf of type int, a body s. Procedure calls are denoted using
the call statement. The procedure call can have a side effect by modifying one
of the global variables. Procedures can be annotated with contracts: a precondi-
tion pre φf and a postcondition post ψf . φf is a formula, such that FV(φf) ⊆
Params(f) ∪ G; ψf is a formula, such that FV(ψf) ⊆ Params(f) ∪ G ∪ {retf}.
We refer to preconditions and postconditions as single program contracts in the
rest of the paper, to distinguish from contracts relating two programs.

A state σ of a program at a given program location is a valuation of the
variables in scope, including procedure parameters, locals and the globals. We
omit the definition of an execution as it is quite standard.

For a program annotated with contracts, there are standard methods of
transforming them into logical formulas (often referred to as verification con-
ditions) [1]. A procedure call is first replaced by assert φf ; havoc g; assume ψf ,
and the resulting call-free fragment is translated into a formula by variants of
weakest-precondition transformer [2]. If the resulting formula is valid (usually

int g1;

pre x1 >= 0

void Foo1(int x1){

if (x1 < 100){

g1 = g1 + x1;

Foo1(x1 + 1);

}

}

int g2;

pre x2 >= 0

void Foo2(int x2){

if (x2 < 100){

g2 = g2 + 2*x2;

Foo2(x2 + 1);

}

}

Fig. 2. Example demonstrating mutual summaries.

checked by a Satisfiability Modulo Theories (SMT) solver [9]), then the program
satisfies its contracts.

3 Mutual summaries

3.1 Definition

A program P consists of a set of procedures {f1, . . . , fk}. For the sake of this
paper, we assume that programs are closed; i.e., if a procedure f1 ∈ P calls a
procedure f2, then f2 ∈ P .

We use the notation C = λf1.f2. φ(f1, f2) to be an indexed (by a pair
of procedures) set of formulas such that C(f1, f2) denotes the formula for the
pair (f1, f2). We extend this notation to refer to an indexed set of expressions,
constants, sets of states, etc. Hereafter, for simplicity of exposition, we assume
that each procedure f takes a single parameter xf . Unless otherwise mentioned,
g refers to the only global variable in a program that can be read and written
to by any procedure.

Definition 1 (Mutual summaries). For any pair of procedures f1 ∈ P 1 and
f2 ∈ P 2, a formula C(f1, f2) is a mutual summary, if the signature of C(f1, f2)
only refers to variables that are in scope at exit from either f1 or f2. This
includes the parameters, the globals, the return variables for both f1 and f2; in
addition, C(f1, f2) can refer to the value of the globals at entry to a procedure
using the old(.) notation.

For an execution of a procedure f , the summary of the execution is a relation-
ship between the pre and the post states of the execution. Given two programs
P 1 and P 2, an indexed set of mutual summaries C : P 1 × P 2 → Formula, we
define the mutual summary checking problem as follows:

For any pair of procedures (f1, f2), the summaries of any pair of execu-
tions of f1 and f2 should satisfy C(f1, f2).

We expect C to be sparse; i.e., it will be defined for a few pair of procedures
and will be true for most pairs.

Example 1. Consider the two programs in Figure 2. Consider the following mu-
tual summary C(Foo1,Foo2) for this pair of procedures:

(x1 = x2 ∧ old(g1) ≤ old(g2)) =⇒ (g1 ≤ g2)

The summary says that if the procedures Foo1 and Foo2 are executed in a state
where the respective parameters are equal, and the global g1 is less than or equal
to g2 (the old(.) used to denote the state at entry to the procedures), then the
resulting state (if both procedures terminate) will satisfy g1 ≤ g2.

Instead of specifying the preconditions, we could have alternately strength-
ened the antecedent in the mutual summary with x1 ≥ 0. We chose to use the
precondition to demonstrate the use of single program contracts in checking
mutual summaries.

3.2 Checking mutual summaries

In this section, we describe a modular method for checking a program pair
(P 1, P 2) annotated with a set of mutual summaries C. This consists of a method
for guaranteeing that a mutual summary C(f1, f2) holds and a method for as-
suming the mutual summaries of smaller executions while modularly checking
the mutual summaries.

First, we define the following augmented procedure MutualCheck〈f1, f2〉
that defines how to check a mutual summary C(f1, f2):

void MutualCheck〈f1, f2〉(x1 : int, x2 : int){
inline r1 := call f1(x1);
inline r2 := call f2(x2);
assert C(f1, f2)(x1, x2, old(g1), old(g2), r1, r2, g

1, g2);
}

The only new thing to be explained is the “inline” keyword used for inlining a
procedure. Consider a procedure f in a program P with a precondition φ, and a
postcondition ψ, and body fbody . When we use inline at a call site of f , the call is
replaced by a assume φ; fbody , with appropriate substitutions for the parameters
of f .

Second, we define an uninterpreted summary predicate for each procedure
f , and add it as a “free” postcondition for f . The “free” postconditions of a
procedure are unchecked postconditions that are only assumed at call sites, but
never asserted.

free post Rf (x, old(g), ret, g)
modifies g
int f(x : int) : ret;

For the cases when the global g is not modified in the procedure f , one can
remove the modifies clause on g and add a postcondition post g = old(g).

Finally, we relate the uninterpreted summary predicates of a pair of proce-
dures using an axiom1 (ignore the expressions inside {.} for now):

1 An axiom in Boogie does not refer to any program state.

axiom(
∀x1, x2, g1, g2, r1, r2, g′1, g′2 : {Rf 1 (x1, g1, r1, g

′
1),Rf 2 (x2, g2, r2, g

′
2)}

Rf 1 (x1, g1, r1, g
′
1) ∧ Rf 2 (x2, g2, r2, g

′
2) =⇒

C(f1, f2)[g1/old(g1), g2/old(g2), g′1/g1, g
′
2/g2]

);

The axiom states that if we encounter a pair of terminating procedure calls
f1 and f2, then we can assume the mutual summary C(f1, f2) holds for the
summaries of these two nested callees, while proving the mutual summaries of the
callers. Observe that this is analogous to modular (single) program verification,
where we assume the postconditions of callees while checking the contracts in
the caller.

Theorem 1. If P 1 and P 2 satisfy their single program contracts, and the con-
tracts on each of the MutualCheck〈f1, f2〉 procedures hold modularly for every
pair of procedures (f1, f2) ∈ P 1 × P 2, then the two programs satisfy the mutual
summary specifications C.

One may wonder whether the use of the quantified axiom above adds com-
plexity to the resulting verification conditions, in particular when the contracts
are expressed in a ground (quantifier-free) fragment. However, the presence of
the triggers in the axiom (a list of expressions inside {.}, containing all the bound
variables) ensure that the axioms only get instantiated at a bounded number of
times. The trigger above instructs the SMT solver to instantiate this quantifier
once for every pair of procedure calls of (f1, f2) in the verification condition,
which is statically bounded.

4 Applications of mutual summaries

4.1 Equivalence checking

In various equivalence checking applications [3, 7], one checks if two procedures
have identical input output behavior. For any two procedures (f1, f2) that are
expected to be equal, the formula C(f1, f2) can be automatically generated to
be:

(xf1 = xf2 ∧ old(g1) = old(g2)) =⇒ retf1 = retf2 ∧ g1 = g2

There is usually an optimization for the purpose of equivalence checking:
instead of using two relations for the summary of the two equivalent procedures,
one can use an identical uninterpreted function for both the procedures. Using
an identical uninterpreted function implicitly ensures the axiom above due to
the congruence rule of functions, which ensures that the same input yields the
same output.

On the other hand, use of an uninterpreted function restricts these analysis
to deterministic procedures. The generality provided by using uninterpreted re-
lations for a summary along with mutual summaries allows greater flexibility,
without affecting the automation or efficiency needed for checking equivalence
in the above cases.

int f1(int x1){

if (Op[x1] == 0)

return Val[x1];

else if (Op[x1] == 1)

return f1(A1[x1]) + f1(A2[x1]);

else if (Op[x1] == 2)

return f1(A1[x1]) - f1(A2[x1]);

else

return 0;

}

int f2(int x2, bool isU){

if (Op[x2] == 0)

return Val[x2];

else if (Op[x2] == 1){

if (isU)

return uAdd(f2(A1[x2], true),

f2(A2[x2], true));

else

return f2(A1[x2], false) +

f2(A2[x2], false);

}

else if (Op[x2] == 2){

if (isU)

return uSub(f2(A1[x2], true),

f2(A2[x2], true));

else

return f2(A1[x2], false) -

f2(A2[x2], false);

}

else

return 0;

}

Fig. 3. Example for conditional equivalence.

4.2 Conditional equivalence checking

Bug fixes and feature additions result in two versions of a program that are
behaviorally equivalent under a set of inputs. In conditional equivalence [4], the
notion of equivalence can be extended to prove behavioral equivalence under a
set of conditions (e.g. when the feature is turned off, or for non-buggy inputs).
The key idea is to use identical uninterpreted functions for a procedure summary
for inputs that would make the procedures behave the same; and use different
uninterpreted functions for other inputs. We show how mutual summaries can
be used for showing conditional equivalence, and more importantly helps address
one of the problematic issues of using identical uninterpreted functions.

Figure 3 contains two versions of a procedure f (denoted as f1 and f2 respec-
tively) that recursively evaluates an expression rooted at the argument x. The
new version differs in functionality when an additional argument isU is provided
that indicates “unsigned” arithmetic instead of the signed arithmetic represented
by {+,-}.

The goal for conditional equivalence is to show that two versions of f are
identical when isU is false. The following mutual summary C(f1, f2) can be used
to ensure such a fact:

(x1 = x2 ∧ ¬isU) =⇒ retf1 = retf2

Earlier work [4] of using identical uninterpreted function for the two versions
was problematic because of an additional parameter in the second version. Using
an uninterpreted function of arity one would be unsound, as the return value of
f2 depends on isU parameter. On the other hand, using an uninterpreted function
of arity two would require an user to intervene to provide the second argument
when modeling f1’s summary.

4.3 Translation validation

Translation validation [8, 6] is a special case of equivalence checking, where the
goal is to verify that a transformed program is equivalent to the original program.
This is useful for verifying correct compilation of a program by a compiler. For
example, a translation validator might compare a source program in a high-level
language with the assembly language program generated by a compiler from
the source program. Alternately, a translation validator might compare the a
compiler’s intermediate representation of the source program before and after
each compiler phase.

This section describes how to use SymDiff to perform translation validation,
focusing on the validation of compiler loop optimizations. The validation consists
of three steps:

1. First, for each of the two versions of the program, loops (or, more generally,
unstructured gotos) are transformed into recursive procedures, using user-
provided or compiler-provided labels to guide the transformation.

2. Second, for each of the two versions of the program, calls to these recursive
procedures may be inlined zero or more times to express the effect of loop
optimizations such as loop unrolling.

3. Finally, mutual summaries are used to express the relation between the two
versions of the program after loop extraction and inlining.

Figure 4 shows an example of three versions of a program: Foo1 is the original
program (a simple while loop), Foo2 is an optimized version of Foo1 (a do-while
loop, with strength reduction applied to v and t hoisted from the loop), and Foo3

is a heavily optimized version of Foo1 (an unrolled do-while loop). The first two
versions are taken from Necula [6], which describes a technique that validates
the equivalence of these two versions, while the third version demonstrates loop
unrolling, an optimization not handled by Necula [6]. In this example code, g
and n are global constants, a is a global variable, and other variables are local
variables. For clarity, we have replaced some of the memory references in the
original example code with ordinary variable names. This simplification omits
some reasoning about aliasing, but doesn’t otherwise alter the nature of the
example.

Loops and unstructured control SymDiff expects loops to be translated
into recursive procedures. Compiler internal languages not only have loops, but
may have unstructured (non-reducible) control flows built from arbitrary labels

int Foo1() {

i := 0;

//FUNCTION

While1://LABEL

if(i < n) {

t := g;

u := t * i;

v := u + 3;

a[i] := v;

i := i + 1;

goto While1;

}

return i;

}

int Foo2() {

i := 0;

if (n > 0) {

t := g;

v := 3;

do2:

a[i] := v;

i := i + 1;

v := v + t;

//FUNCTION

While2://LABEL

if (i < n)

goto do2;

}

return i;

}

int Foo3() {

i := 0;

v := 3;

if (n > 1) {

t := g;

do3:

a[i] := v;

v := v + t;

a[i + 1] := v;

v := v + t;

i := i + 2;

//FUNCTION

While3://LABEL

if (i + 1 < n)

goto do3;

}

if (i < n) {

a[i] := v;

i := i + 1;

}

return i;

}

Fig. 4. Translation validation example

and goto statements. To translate arbitrary unstructured control flow graphs into
recursive procedures, we require the program to declare certain labels as special
function labels. Each function label is used to generate one (possibly recursive)
procedure, and each goto to that function label becomes a tail-recursive call to
the procedure generated for that function label. To ensure that the resulting
program has no loops, we require that every cycle in the original program pass
through at least one function label.

In Figure 4, the labels While1, While2, and While3 are marked as func-
tion labels, while the other labels (do2 and do3) are ordinary local labels. In
addition, the beginning of each procedure is implicitly marked with a function
label. In this example, we have placed the function labels so that they match
as closely as possible between the three versions of the program: in each ver-
sion, the While function label appears directly before the loop condition. While
this careful placement is not strictly necessary for performing the verification, it
makes it easier to write the mutual summary formula that relates the states of
the programs at the function labels.

Given a program where every cycle passes through a function label, the fol-
lowing simple algorithm transforms this program into a set of mutually recursive
procedures. First, each function label becomes a procedure, whose parameters
are all local variables and procedure parameters in scope. Second, the body for
each procedure is the collection of statements reachable from that procedure’s
function label via paths that do not pass through a function label. Finally, each

goto statement to a function label (or implicit fall-through to a function label)
becomes a tail-recursive call to the procedure for that function label. Notice that
in the second step, the same statements might be included separately in different
procedures, if those statements are reachable from different function labels. In
the worst case, each statement could be included in each generated procedure,
so the worst-case size of the resulting program is the product of the original
program size and the number of function labels.

Validating optimized code Figure 5 shows the result of translating Figure 4
into recursive procedures. For example, the new procedure Foo1 consists of only
the statements that are reachable from the beginning of the original Foo1 pro-
cedure without passing through the function label While1. Some statements
are duplicated between procedures; for example, do2 is reachable from both the
beginning of Foo2 and from While2, and thus appears in both the new Foo2 pro-
cedure and the new While2 procedure. To avoid confusion between immutable
procedure parameters and mutable local variables, we have introduced new lo-
cal variables (e.g. i1’) for each procedure parameter that is modified by the
procedure body.

We now describe how to use SymDiff to validate the code in Figure 5, specif-
ically the equivalence of Foo1, Foo2, and Foo3 and the equivalence of While1,
While2, and While3.

To validate While1 with While2, we need only relate the state of these pro-
cedures as follows:

C(While1,While2) =

(i1 = i2∧g = t2∧3 + g ∗ i1 = v2∧old(a1) = old(a2)) =⇒ (r1 = r2∧ a1 = a2)

Given this, SymDiff automatically checks that While1 with While2 are
equivalent.

In contrast to the closely related While1 and While2, Figure 5’s Foo1 and
Foo2 don’t look similar at first glance. Nevertheless, we can make them compa-
rable by inlining a copy of While1 into Foo1:

int Foo1() {

i1 := 0;

i1’ := i1;

if(i1’ < n) {

t1 := g;

u1 := t1 * i1’;

v1 := u1 + 3;

a1[i1’] := v1;

i1’ := i1’ + 1;

return While1(i1’);

}

return i1’;

}

int Foo1() {

i1 := 0;

return While1(i1);

}

int While1(int i1) {

i1’ := i1;

if(i1’ < n) {

t1 := g;

u1 := t1 * i1’;

v1 := u1 + 3;

a1[i1’] := v1;

i1’ := i1’ + 1;

return While1(i1’);

}

return i1’;

}

int Foo2() {

i2 := 0;

if (n > 0) {

t2 := g;

v2 := 3;

a2[i2] := v2;

i2 := i2 + 1;

v2 := v2 + t2;

return While2(

i2, t2, v2);

}

return i2;

}

int While2(int i2,

int t2,

int v2) {

i2’ := i2;

v2’ := v2;

if (i2’ < n) {

a2[i2’] := v2’;

i2’ := i2’ + 1;

v2’ := v2’ + t2;

return While2(

i2’, t2, v2’);

}

return i2’;

}

int Foo3() {

i3 := 0;

v3 := 3;

if (n > 1) {

t3 := g;

a3[i3] := v3;

v3 := v3 + t3;

a3[i3 + 1] := v3;

v3 := v3 + t3;

i3 := i3 + 2;

return While3(

i3, t3, v3);

}

if (i3 < n) {

a3[i3] := v3;

i3 := i3 + 1;

}

return i3;

}

int While3(int i3,

int t3,

int v3) {

i3’ := i3;

v3’ := v3;

if (i3’ + 1 < n) {

a3[i3’] := v3’;

v3’ := v3’ + t3;

a3[i3 + 1] := v3’;

v3’ := v3’ + t3;

i3’ := i3’ + 2;

return While3(

i3’, t3, v3’);

}

if (i3’ < n) {

a3[i3’] := v3’;

i3’ := i3’ + 1;

}

return i3’;

}

Fig. 5. Translation validation example

After this inlining, the following mutual summary suffices to check the equiv-
alence of Foo1 and Foo2:

C(Foo1,Foo2) = (old(a1) = old(a2)) =⇒ (r1 = r2 ∧ a1 = a2)

(Currently, we rely on the user or compiler to specify the mutual summaries and
to specify which procedure calls should be inlined. However, SymDiff completes
the remaining equivalence checking automatically.)

The verification of While2 to While3 and Foo2 to Foo3 is similar: simply in-
line While2 once into Foo2 and inline While2 once into itself, so that While2 and
Foo2 express the same degree of loop unrolling that While3 and Foo3 express.
(Note that the number of times inlining is performed will depend on the degree
of loop unrolling.) Given this inlining and the following definitions, SymDiff au-
tomatically checks the equivalence of While2 and While3, and Foo2 and Foo3:

C(Foo2,Foo3) = (old(a2) = old(a3)) =⇒ (r2 = r3 ∧ a2 = a3)
C(While2,While3) =
(i2 = i3 ∧ t2 = t3 ∧ v2 = v3 ∧ old(a2) = old(a3)) =⇒ (r2 = r3 ∧ a2 = a3)
In summary, we can use SymDiff to check programs with loops for equiv-

alence, even if the control flow is unstructured (non-reducible). In fact, in each
case above, the SymDiff tool was able to check equivalence in just a few sec-
onds. Nevertheless, this process is not entirely automated, since it relies on three
pieces of information: the location of function labels, the desired inlining, and
the definitions of mutual summaries. In the case of compiler validation, however,
this information can be produced by the compiler, or, for common compiler op-
timizations, it might be automatically inferred, using techniques described by
Necula [6].

In addition to the examples above, we have been able to encode the transla-
tion validation proofs of many common compiler optimizations using mutual
summaries [?]. For example, it is possible to validate instances of software
pipelining, loop peeling and restricted cases of loop fusion and loop fission. On
the other hand, optimizations such as loop reversal, loop interchange that may
change the order of updates to an array cannot be handled solely based on mutual
summaries. We are currently investigating encoding the Permute rule [?] using
mutual summaries; the rule has been needed to validate such transformations.

5 Conclusion

In this paper, we introduced mutual summaries as a mechanism for comparing
programs and provided a method for checking them modularly using modern
SMT solvers. Mutual summaries are general enough to encode many existing
equivalence checking proofs, including those based on checking simulation re-
lations for translation validation. More interestingly, it enables comparing pro-
grams with interprocedural changes. We are currently working on extending the
technique to handle more complex interprocedural program transformations, and
automating the generation of mutual summaries.

References

1. M. Barnett and K. R. M. Leino. Weakest-precondition of unstructured programs.
In Program Analysis For Software Tools and Engineering (PASTE ’05), pages 82–
87, 2005.

2. E. W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of
programs. Communications of the ACM, 18:453–457, 1975.

3. B. Godlin and O. Strichman. Regression verification. In DAC, pages 466–471,
2009.

4. M. Kawaguchi, S. K. Lahiri, and H. Rebêlo. Conditional equivalence. Technical
Report MSR-TR-2010-119, Microsoft Research, 2010.

5. S. K. Lahiri and S. Qadeer. Back to the Future: Revisiting Precise Program Veri-
fication using SMT Solvers. In Principles of Programming Languages (POPL ’08),
pages 171–182, 2008.

6. G. C. Necula. Translation validation for an optimizing compiler. In ACM SIG-
PLAN Conference on Programming Language Design and Implementation (PLDI
’00), pages 83–94, 2000.

7. S. Person, M. B. Dwyer, S. G. Elbaum, and C. S. Pasareanu. Differential symbolic
execution. In SIGSOFT FSE, pages 226–237, 2008.

8. A. Pnueli, M. Siegel, and E. Singerman. Translation validation. In Tools and
Algorithms for Construction and Analysis of Systems (TACAS ’98), pages 151–
166, 1998.

9. Satisfiability Modulo Theories Library (SMT-LIB). Available at
http://goedel.cs.uiowa.edu/smtlib/.

10. S. F. Siegel and T. K. Zirkel. Collective assertions. In Verification, Model Checking,
and Abstract Interpretation (VMCAI ’11), LNCS 6538, pages 387–402, 2011.

