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Abstract

In a recent paper, Khanra, Ghosh and Chaudhuri’s (2011) presented an EOQ model
for a deteriorating item with time dependent quadratic demand under permissible delay in
payment. Deterioration considered in most of the EOQ models is constant, while in most
of the practical cases the deterioration rate increases with time. This work is motivated by
Khanra, Ghosh and Chaudhuri’s (2011) paper extending their model to allow for a variable
rate of deterioration when delay in payment is permissible. The time varying demand rate
is taken to be a quadratic function of time. For settling the account, the model is developed
under two circumstances: case-1: The credit period is less than or equal to the cycle time
and case-2: the credit period is greater than the cycle time. A numerical example is provided
to illustrate the model. Sensitivity analysis has also been conducted to study the effect of
the parameters.

Keywords: EOQ model, quadratic demand, permissible delay in payment, variable deteri-
oration rate

1 Introduction

The classical economic order quantity (EOQ) inventory models were developed under the as-
sumptions of constant demand rate. Later, many researchers developed EOQ models taking
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linearly increasing or decreasing demand and exponentially increasing or decreasing demand.
The study of inventory model comes into force in 1915. Harris [1] was the first mathematician
who studied on inventory problems. He established the simple but famous EOQ formula that
was also derived, apparently independently, by Wilson [2]. Gradually, demand of goods may
vary with time or with price or with the instantaneous inventory level displayed in a market. In
recent years, inventory modelers are working for finding the economic replenishment policy for
an inventory system having time dependent demand pattern. Silver and Meal [3] first developed
a heuristic approach to determine EOQ in the general case of a time varying-demand pattern.
Donaldson [4] first come out with a full analytic solution of the inventory replenishment problem
with a linear trend in demand pattern over a finite-time horizon. Wagner and Whitin [5], Ritchie
[6, 7, 8], Kicks and Donaldson [9], Buchanan [10], Mitra et al. [11], Ritchie and Tsado [12], Goyal
[13], Goyal et al. [14] etc. made valuable contributions in this direction. Researchers like Dave
and Patel [15], Bahari-Kasani [16], Goswami and Chaudhuri [17], Chung and Ting [18], Hariga
[19], Jalan, Giri and Chaudhuri [20], Giri, Goswami and Chaudhuri [21], Jalan and Chaudhuri
[22] etc. developed the inventory models for deteriorating items with trended demand. Khanra,
Ghosh and Chaudhuri [23] developed inventory model considering time-quadratic demand rate.

During a delay period (or trade credit period) suppliers usually offer their retailers a certain
credit period with interest during the permissible delay period. Goyal [13] first developed the
EOQ model under the conditions of permissible delay in payment. Shinn, Hwang and Sung [24],
Chu, Chang and Lan [25], Chung, Chang and Yang [26] also entered Goyal’s model for the case
of deteriorating items. Other notable works in this direction come from Davis and Gaither [27],
Mandal and Phaujder [28], Aggarwal and Jaggi [29], Chang and Dye [30], Salmeh, Abboud, Ei-
Kassar and Ghattas [31], Chung and Lio [32], Sana and Chaudhuri [33] etc. Recently, Khanna,
Ghosh and Chaudhuri [23] developed an EOQ model for a deteriorating item with quadratic
demand rate under permissible delay in payment. In real life situations, we see that items like
fruits and vegetables whose deterioration rate increases with time. Ghare and Schrader [34] were
the first to use the concept of deterioration followed by Covert and Philip [35] who formulated
an inventory model with variable rate of deterioration with two-parameter Weibull distribution.

This study is related to an EOQ model for a deteriorating item with time dependent quadratic
demand and variable deterioration under permissible delay in payment, which is the extension
of author’s earlier paper having quadratic demand pattern constant rate of deterioration. The
motivation behind developing an EOQ model in the present paper is to introduce time dependent
rate of deterioration when the demand is taken as quadratic function of time. The proposed
inventory model is based on deteriorating items like fruits and vegetables whose deterioration
rate increases with time. Among the various time-varying demands in EOQ models, the more
realistic demand approach is to consider a quadratic demand rate along with variable rate of
deterioration. For setting the account, the model is developed under two circumstances: case-1:
The credit period is less than or equal to the cycle time and case-2: the credit period is greater
than the cycle time. Main emphasis is laid on working out on exact solution for the model.
An example is provided which stands in support of the developed model. The sensitivity of the
solution with the changes of the values of the parameters associated with the model is discussed.
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2 Assumptions

The following assumptions are made in developing the model:

(i) The demand rate for the item is represented by a quadratic and continuous function of
time.

(ii) Replenishment rate is infinite, i. e., replenishment rate is instantaneous.

(iii) Shortage is not allowed.

(iv) The deterioration rate is variable rate of deterioration on the on-hand inventory per unit
time and there is no repair or replenishment of the deteriorated items within the cycle.

(v) Time horizon is infinite.

3 Notations

The following notations have been used in developing the model:

(i) The time-dependent demand rate is D(t) = a + bt + ct2, a > 0, b �= 0 & c �= 0. Here a is
the initial rate of demand, b is the rate with which the demand rate increases. The rate
of change in the demand rate itself changes at a rate c.

(ii) p is the unit purchase cost of item.

(iii) hp is the inventory holding cost (excluding interest charges) per rupee of unit purchase
cost per unit time.

(iv) θ(t) = θt where 0 < θ << 1 is the variable rate of deterioration of an item.

(v) K is the replenishment cost.

(vi) Ip is the interest charges per rupee investment in stock per year.

(vii) Ie is the interest earned per rupee in a year.

(viii) t1 is permissible period (in year) of delay in settling the accounts with the supplier.

(ix) T is the time interval (in year between two successive orders).

4 Mathematical Formulation and Solution of the Model

The instantaneous inventory level I(t) at any time t during the cycle time t is governed by the
following differential equation

dI(t)
dt

+ θ(t)I(t) = −D(t), 0 ≤ t ≤ T, (4.1)
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where I(0) = I0, I(T ) = 0 and D(T ) = a + bt + ct2.

The solution of Eq. (4.1) is

I(t) =
[
a

(
T +

θT 3

6

)
+ b

(
T 2

2
+

θT 4

8

)
+ c

(
T 3

3
+

θT 5

10

)]
e−

θt2

2

−
[
a

(
t +

θt3

6

)
+ b

(
t2

2
+

θt4

8

)
+ c

(
t3

3
+

θt5

10

)]
e−

θt2

2 , 0 ≤ t ≤ T. (4.2)

(neglecting the higher power of θ as 0 < θ << 1)
If c = 0 , then Eq. (4.2) represents the instantaneous inventory level at any time t for the

linear demand rate. Also, putting b = c = 0 in Eq. (4.2) represents the instantaneous inventory
level at any time t for the constant demand rate.

Thus, the initial order quantity is

I0 = I(0) = a

(
T +

θT 3

6

)
+ b

(
T 2

2
+

θT 4

8

)
+ c

(
T 3

3
+

θT 5

10

)
. (4.3)

The total demand during the cycle period [0, T ] is

∫ T

0
D(t)dt =

∫ T

0
(a + bt + ct2)dt = T

(
a +

bT

2
+

cT 2

3

)
.

The number of deteriorating units is

I0 −
∫ T

0
D(t)dt =

θT 3

120
(
20a + 15bT + 12cT 2

)
.

The deterioration cost for the cycle [0, T ] = p× (number of deteriorated units)

=
pθT 3

120
(
20a + 15bT + 12cT 2

)
. (4.4)

The total holding cost for the cycle [0, T ] is

HC = h

∫ T

0
I(t)dt = h

∫ T

0

[
a

(
T +

θT 3

6

)
+ b

(
T 2

2
+

θT 4

8

)
+ c

(
T 3

3
+

θT 5

10

)]
e−

θt2

2 dt

−h

∫ T

0

[
a

(
t +

θt3

6

)
+ b

(
t2

2
+

θt4

8

)
+ c

(
t3

3
+

θt5

10

)]
e−

θt2

2 dt

= h

[
a

(
T 2

2
+

θT 4

12

)
+ b

(
T 3

3
+

θT 5

15

)
+ c

(
T 4

4
+

θT 6

18

)]
(4.5)
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where h = hpp.
(neglecting the higher power of θ as 0 < θ << 1)

Case 1: Let T > t1.

Since the interest is payable during the time (T − t1), the interest payable in any cycle [0, T ]
is

IP1 = pIp

∫ T

t1

I(t)dt

= pIp

∫ T

t1

[
a

(
T +

θT 3

6

)
+ b

(
T 2

2
+

θT 4

8

)
+ c

(
T 3

3
+

θT 5

10

)]
e−

θt2

2 dt

−pIp

∫ T

t1

[
a

(
t +

θt3

6

)
+ b

(
t2

2
+

θt4

8

)
+ c

(
t3

3
+

θt5

10

)]
e−

θt2

2 dt

= pIp

[
a

(
T +

θT 3

6

)
+ b

(
T 2

2
+

θT 4

8

)
+ c

(
T 3

3
+

θT 5

10

)][
(T − t1) − θ(T 3 − t31)

6

]

−pIp

[
a

(
T 2 − t21

2
− θ(T 4 − t41)

12

)
+ b

(
T 3 − t31

6
− θ(T 5 − t51)

40

)]

−pIp

[
c

(
T 4 − t41

12
− θ(T 6 − t61)

90

)]
. (4.6)

(neglecting the higher power of θ as 0 < θ << 1)
Interest earned in the cycle period [0, T ] is

IE1 = pIe

∫ T

0
tD(t)dt = pIe

∫ T

0
t(a + bt + ct2)dt

=
pIeT

2

12
(6a + 4bT + 3cT 2). (4.7)

Total variable cost per cycle = replenishment cost + inventory holding cost + deterioration
cost + interest payable during the permissible period − interest earned during the cycle.

So, the total variable cost per cycle per unit time is

Z1(T ) =
K

T
+

h

T

[
a

(
T 2

2
+

θT 4

12

)
+ b

(
T 3

3
+

θT 5

15

)
+ c

(
T 4

4
+

θT 6

18

)]
+

pθT 2

120
(
20a + 15bT + 12cT 2

)
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+
pIp

T

[
a

(
T +

θT 3

6

)
+ b

(
T 2

2
+

θT 4

8

)
+ c

(
T 3

3
+

θT 5

10

)][
(T − t1) − θ(T 3 − t31)

6

]

−pIp

T

[
a

(
T 2 − t21

2
− θ(T 4 − t41)

12

)
+ b

(
T 3 − t31

6
− θ(T 5 − t51)

40

)
+ c

(
T 4 − t41

12
− θ(T 6 − t61)

90

)]

−pIeT

12
(6a + 4bT + 3cT 2). (4.8)

Our aim is to find minimum variable cost per unit time.
The necessary and sufficient conditions to minimize Z1(T ) for a given value of t1 are respec-

tively dZ1(T )
dT = 0 and d2Z1(T )

dT 2 > 0.

Now dZ1(T )
dT = 0 gives the following non-linear equation in T :

dZ1(T )
dT

= (a + bT + cT 2)
[
h

(
1 +

θT 3

3

)
+

pθT

2

]

+
(a + bT + cT 2)

T

[
pIp

(
1 +

θT 2

2

)(
T − t1 − θ(T 3 − t31)

6

)
− pIeT

]
− Z1(T )

T
= 0. (4.9)

(neglecting the higher power of θ as 0 < θ << 1)
To get the optimal cycle length T = T1, we have to solve Eq. (4.9) provided it satisfies the

following condition d2Z1(T )
dT 2 > 0.

The EOQ in this case is as follows:

I0(T1) = a

(
T1 +

θT 3
1

6

)
+ b

(
T 2

1

2
+

θT 4
1

8

)
+ c

(
T 3

1

3
+

θT 5
1

10

)
. (4.10)

The minimum annual variable cost Z1(T ∗
1 ) is obtained from Eq. (4.8) for T = T1.

Case 2: Let T < t1.

In this case, the customer earns interest on the sales revenue up to the permissible delay
period and no interest is payable during the period for the item kept in stock.

Interest earned for the period [0, T ] is

pIe

∫ T

0
tD(t)dt =

pIeT
2

12
(
6a + 4bT + 3cT 2

)
. (4.11)

Interest earned for the permissible delay period [T, t1] is

pIe(t1 − T )
∫ T

0
D(t)dt =

pIeT (t1 − T )
6

(6a + 3bT + 2cT 2). (4.12)
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Hence total interest earned during the cycle = Interest earned for the period [0, T ] + Interest
earned for the permissible delay period [T, t1], i. e. ,

IE2 = pIe

∫ T

0
tD(t)dt + pIe(t1 − T )

∫ T

0
D(t)dt

= pIeT

[(
a +

bT

2
+

cT 2

3

)
t1 −

(
aT

2
+

bT 2

6
+

cT 3

12

)]
(4.13)

In this case, the total variable cost per cycle = replenishment cost + inventory holding cost +
deteriorating cost − interest earned during the cycle.

Hence, the total variable cost per unit time is

Z2(T ) =
K

T
+

h

T

[
a

(
T 2

2
+

θT 4

12

)
+ b

(
T 3

3
+

θT 5

15

)
+ c

(
T 4

4
+

θT 6

18

)]

−pIe

[(
a +

bT

2
+

cT 2

3

)
t1 −

(
aT

2
+

bT 2

6
+

cT 3

12

)]

+
pθT 2

120
(20a + 15bT + 12cT 2). (4.14)

As before, we have to minimize Z2(T ) for a given value of t1.

The necessary and sufficient condition to minimize Z2(T ) for a given value of t1 are respec-
tively dZ2(T )

dT = 0 and d2Z2(T )
dT 2 > 0.

Now dZ2(T )
dT = 0 gives the following non-linear equation in T :

dZ2(T )
dt

= (a + bT + cT 2)
[
h

(
1 +

θT 2

3

)
+

pθT

2

]

−pIe

T

[
(a + bT + cT 2)t1 −

(
aT +

bT 2

2
+

cT 3

3

)]
− Z2(T )

T
= 0. (4.15)

The EOQ in this case is as follows:

I0(T2) = a

(
T2 +

θT 3
2

6

)
+ b

(
T 2

2

2
+

θT 4
2

8

)
+ c

(
T 3

2

3
+

θT 5
2

10

)
.

The minimum annual cost Z2(T ∗
2 ) is obtained from equation (4.14) for T = T2.
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Case 3: Let T = t1.

For T = t1, both the cost function Z1(T ) and Z2(T ) are identical and the cost function is
obtained by putting T = t1 either in Eq.(4.8) or in Eq.(4.14) and is given by

Z3(t1) =
K

t1
+

h

t1

[
a

(
t21
2

+
θt41
12

)
+ b

(
t31
3

+
θt51
15

)
+ c

(
t41
4

+
θt61
18

)]

+
pθt21
120

(20a + 15bt1 + 12ct21) −
pIet1
12

(6a + 4bt1 + 3ct21). (4.16)

The EOQ in this case is as follows:

I0(t1) = a

(
t1 +

θt31
6

)
+ b

(
t21
2

+
θt41
8

)
+ c

(
t31
3

+
θt51
10

)
. (4.17)

5 Solution Procedure for Economic Order Quantity: Algorithm

The following steps are to be followed to find the optimum cost and economic order
order quantity unless T = T1.

Step 1: Determine T ∗
1 from Eq. (4.9). If T ∗

1 > t1 , evaluate Z1(T ∗
1 ) from Eq. (4.8).

step 2: Determine T ∗
2 from Eq. (4.15). If T ∗

2 < t1 , evaluate Z2(T ∗
2 ) from Eq. (4.14).

step 3: If the condition T ∗
1 > t1 > T ∗

2 is satisfied, then go to step 4. Otherwise go to step 5.

step 4: Compare Z1(T ∗
1 ) & Z2(T ∗

2 ) and find the minimum cost.

step 5: If the condition T ∗
1 > t1 is satisfied but T ∗

2 > t1, then Z1(T ∗
1 ) is the minimum cost ,

else if T ∗
1 < t1 but T ∗

2 < t1 then, Z2(T ∗
2 )is the minimum cost.

step 6: Compare I∗0 (t1) or I∗0 (t2) for the respective minimum cost .

6 Numerical Example

In this section, we provide a numerical example to illustrate the above theory.

Example 1:Let us consider the values of the system as a = 1000 units per year,b = 150
units per year, c = 15 units per year, K = Rs.200 per order, Ip = 0.15 per year, Ie = 0.13 per
year, h = Rs.0.12 per year, p = Rs.20 per unit, θ = 0.20 and t1 = 0.25 year.

Solving Eq.(4.9), we have T ∗
1 = 0.535024 year and the minimum average cost is Z1(T ∗

1 ) =
Rs.121.76.

Again, solving Eq.(4.15), we have T ∗
2 = 0.331048 year and the minimum average cost is

Z2(T ∗
2 ) = Rs.471.718.

Here T ∗
2 > t1 this contradicts Case-II. Only Case-I holds as T ∗

1 > t1. Hence the minimum
average cost in this case is Z1(T ∗

1 ) = Rs.121.76 where the optimum cycle length is T ∗
1 = 0.535024

year.
The economic order quantity is given by I∗0 (T ∗

1 ) = Rs.562.684.
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7 Sensitivity Analysis

We now study the effects of changes of values of the system parameters a, b, c,K, Ip, Ie, h, p, θ
and t1 on the optimal total cost and number of reorder. The sensitivity analysis is performed
by changing each of parameters by +50%,+10%,−10% and −50% taking one parameter at a
time and keeping the remaining parameters unchanged.

The analysis is based on the example-1 and the results are shown in the Table-1. The
following points are observed.

(i) T ∗
1 , T ∗

2 , Z1(T ∗
1 ) & Z2(T ∗

2 ) decrease with increase in the value of the parameter a. Here T ∗
1 ,

T ∗
2 & Z2(T ∗

2 ) are moderately sensitive to change in a while Z1(T ∗
1 ) is highly sensitive to

change in a.

(ii) T ∗
1 , T ∗

2 , Z1(T ∗
1 ) & Z2(T ∗

2 ) decrease with increase in the value of the parameter b. Here T ∗
1 ,

T ∗
2 , Z1(T ∗

1 ) & Z2(T ∗
2 ) are all lowly sensitive to change in b.

(iii) T ∗
1 , Z1(T ∗

1 ) & Z2(T ∗
2 ) decrease while T ∗

2 increases with increase in the value of the param-
eter c. Here T ∗

1 , T ∗
2 , Z1(T ∗

1 ) & Z2(T ∗
2 ) are all insensitive to change in c.

(iv) T ∗
1 , T ∗

2 , Z1(T ∗
1 ) & Z2(T ∗

2 ) increase with increase in the value of the parameter K. Here T ∗
1

& T ∗
2 are moderately sensitive to change in K while Z1(T ∗

1 ) & Z2(T ∗
2 ) are highly sensitive

to change in K.

(v) T ∗
1 decreases and Z1(T ∗

1 ) increases while T ∗
2 & Z2(T ∗

2 ) remain same with increase in the
value of the parameter Ip. Here T ∗

1 is moderately sensitive, Z1(T ∗
1 ) is highly sensitive to

change in Ip while T ∗
2 & Z2(T ∗

2 ) are insensitive to change in Ip.

(vi) T ∗
1 increases while T ∗

2 , Z1(T ∗
1 ) & Z2(T ∗

2 ) decrease with increase in the value of parameter
Ie. Here T ∗

1 , T ∗
2 & Z2(T ∗

2 ) are moderately sensitive to change in Ie while Z1(T ∗
1 ) is highly

sensitive to change in Ie.

(vii) T ∗
1 & T ∗

2 decrease while Z1(T ∗
1 ) & Z2(T ∗

2 ) increase with increase in the value of the pa-
rameter h. Here T ∗

1 & T ∗
2 are lowly sensitive to change in h while Z1(T ∗

1 ) & Z2(T ∗
2 ) are

moderately sensitive to change in h.

(viii) T ∗
1 , T ∗

2 , Z1(T ∗
1 ) & Z2(T ∗

2 ) decrease with increase in the value in the parameter p. Here T ∗
1 ,

T ∗
2 & Z2(T ∗

2 ) are moderately sensitive to change in p while Z1(T ∗
1 ) is highly sensitive to

change in p.

(ix) T ∗
1 & T ∗

2 decrease while Z1(T ∗
1 ) & Z2(T ∗

2 ) increase with increase in the value of the pa-
rameter θ. Here T ∗

1 , T ∗
2 & Z2(T ∗

2 ) are moderately sensitive to change in θ while Z1(T ∗
1 ) is

highly sensitive to change in θ.

(x) T ∗
1 & T ∗

2 increase while Z1(T ∗
1 ) & Z2(T ∗

2 ) decrease with increase in the value of the param-
eter t1. Here T ∗

1 is moderately sensitive, T ∗
2 is lowly sensitive to change in t1 while Z1(T ∗

1 )
& Z2(T ∗

2 ) are highly sensitive to change in t1.
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Table 1: Sensitivity analysis

pa-
ra-
me-
ter

%
Cha-
nge

T ∗
1 Z1(T ∗

1 ) T ∗
2 Z2(T ∗

2 )
Re-
mark

Solu-
tion

a

50
10
-10
-50

0.491045
0.523973
0.547718
0.626004

...
97.1051
145.628
228.864

...

...
0.346299
0.440076

...

...
483.035
491.969

...
T ∗

1 > t1
T ∗

1 > t1
T ∗

1 > t1

...
Z1(T ∗

1 )
Z1(T ∗

1 )
Z1(T ∗

1 )

b

50
10
-10
-50

0.532152
0.534434
0.535622
0.538098

117.317
120.875
122.643
126.154

0.330155
0.330867
0.331229
0.331968

468.896
471.155
472.281
474.53

T ∗
1 > t1

T ∗
1 > t1

T ∗
1 > t1

T ∗
1 > t1

Z1(T ∗
1 )

Z1(T ∗
1 )

Z1(T ∗
1 )

Z1(T ∗
1 )

c

50
10
-10
-50

0.534902
0.534999
0.535048
0.535146

121.636
121.735
121.785
121.885

0.33105
0.331048
0.331047
0.331045

471.643
471.703
471.733
471.793

T ∗
1 > t1

T ∗
1 > t1

T ∗
1 > t1

T ∗
1 > t1

Z1(T ∗
1 )

Z1(T ∗
1 )

Z1(T ∗
1 )

Z1(T ∗
1 )

K

50
10
-10
-50

0.59099
0.547173
0.522287
0.463718

299.165
158.71
83.941
...

0.394302
0.345041
0.316171
...

747.148
530.879
409.92
...

T ∗
1 > t1

T ∗
1 > t1

T ∗
1 > t1

T ∗
1 > t1

Z1(T ∗
1 )

Z1(T ∗
1 )

Z1(T ∗
1 )

...

Ip

50
10
-10
-50

0.451271
0.513535
0.559861
0.707724

215.611
144.883
95.6372
...

0.331048
0.331048
0.331048
0.331048

471.718
471.718
471.718
471.718

T ∗
1 > t1

T ∗
1 > t1

T ∗
1 > t1

T ∗
1 > t1

Z1(T ∗
1 )

Z1(T ∗
1 )

Z1(T ∗
1 )

Z2(T ∗
2 )

Ie

50
10
-10
-50

0.704461
0.562188
0.51057
0.434042

...
46.3757
193.406
449.661

...

...
0.341698
0.395231

...

...
493.928
566.946

T ∗
1 > t1

T ∗
1 > t1

T ∗
1 > t1

T ∗
1 > t1

...
Z1(T ∗

1 )
Z1(T ∗

1 )
Z1(T ∗

1 )

h

50
10
-10
-50

0.528993
0.533805
0.536249
0.541215

138.769
125.179
118.334
104.542

0.328515
0.330537
0.331561
0.333635

481.983
473.778
469.655
461.37

T ∗
1 > t1

T ∗
1 > t1

T ∗
1 > t1

T ∗
1 > t1

Z1(T ∗
1 )

Z1(T ∗
1 )

Z1(T ∗
1 )

Z2(T ∗
2 )

p

50
10
-10
-50

0.493901
0.524581
0.547131
0.625549

...
92.812
149.999
251.372

...
0.318017
0.345962
0.439352

...
455.248
485.735
506.555

T ∗
1 > t1

T ∗
1 > t1

T ∗
1 > t1

T ∗
1 > t1

...
Z1(T ∗

1 )
Z1(T ∗

1 )
Z1(T ∗

1 )

θ

50
10
-10
-50

0.478985
0.521537
0.550136
0.637499

212.568
141.697
100.68
0.156279

0.314673
0.327449
0.334841
...

507.729
479.227
464.037
...

T ∗
1 > t1

T ∗
1 > t1

T ∗
1 > t1

T ∗
1 > t1

Z1(T ∗
1 )

Z1(T ∗
1 )

Z1(T ∗
1 )

Z1(T ∗
1 )

t1

50
10
-10
-50

0.608972
0.548769
0.52198
0.478973

...
80.2409
165.961
373.229

0.333074
0.33145
0.330646
0.329054

138.445
405.068
538.367
804.94

T ∗
1 > t1

T ∗
1 > t1

T ∗
1 > t1

T ∗
1 > t1

Z2(T ∗
2 )

Z1(T ∗
1 )

Z1(T ∗
1 )

Z1(T ∗
1 )
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... indicates the infeasible solution.

8 Conclusion

This study can help substantially retailers or buyers in deciding their payment time, considering
the benefits of the permissible delay in payment. The model considered above is suited for items
having variable deterioration rate, earlier models have considered items having constant rate of
deterioration. This model can be used for items like fruits and vegetables whose deterioration
rate increases with time. With the help of this model total cost is obtained. The practical aspects
of inventory management like opportunity cost and the effect of permissible delay in payment
are also considered. The total cost obtained then can be used to obtain an average inventory
variable cost, which can be optimized using calculus techniques. A numerical illustration proves
the applicability of the suggested model.

The suggested model can be extended for items having constant demand, linear increasing
demand, stock dependent demand, price dependent demand or power demand. This model can
further be extended a three-parameter Weibull distribution or Gamma distribution. This study
will act as a catalyst for the study of permissible delay in payment.
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