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The Simulation of IVIixing Layers 
Driven by Compound Buoyancy 
and Shear 
Fully developed compound shear and buoyancy driven mixing layers are predicted 
using a k-e turbulence model. Such mixing layers present an exchange of equilibrium 
in mixing flows. The k-e buoyancy constant C^j = 0.91, defined in this study for 
buoyancy unstable mixing layers, is based on an approximate self-similar analysis 
and an accurate numerical solution. One-dimensional transient and two-dimensional 
steady calculations are presented for buoyancy driven mixing in a uniform flow 
fleld. Two-dimensional steady calculations are presented for compound shear and 
buoyancy driven mixing. The computed results for buoyancy alone and compound 
shear and buoyancy mixing compare well with measured data. Adding shear to an 
unstable buoyancy mixing layer does not increase the mixing growth rate compared 
with that from buoyancy alone. The nonmechanistic k-e model which balances energy 
generation and dissipation using constants from canonical shear and buoyancy stud­
ies predicts the suppression of the compound mixing width. Experimental observations 
suggest that a reduction in growth rate results from unequal stream velocities that 
skew and stretch the normally vertical buoyancy plumes producing a reduced mixing 
envelope width. 

Introduction 

An unstable thermal stratification occurs when cold fluid 
overlays warm fluid under the influence of gravity. The buoy­
ancy of the cool (heavy fluid) above the warmer (light fluid) 
makes the thermal interface unstable and causes the two fluids 
to mix. More generally, an acceleration directed from the heavy 
fluid to the light fluid imposes a pressure gradient at the density 
interface that drives the development of Rayleigh-Taylor insta-
biUty (Taylor, 1950 and Chandrasekhar, 1961). The initial lin­
ear instability gives way to nonlinear mixing as heavy fluid falls 
through light fluid and light fluid rises through heavy fluid. In 
the nonlinear, three-dimensional process, vortices form between 
the moving fluid interfaces which leads to turbulent mixing. 
More typical of an application is that buoyancy often is accom­
panied by shear. Buoyancy produces a normal force at the inter­
face, while parallel ^(reams of unequal velocity produce a tan­
gential shear force at the interface. Free shear perturbations 
arise as Kelvin-Helmholtz instabilities and are followed by 
growth and pairing of vortices that eventually form a turbulent 
mixing layer as observed by Brown and Roshko (1974). 

Unstable thermal stratification occurs in both environmental 
and industrial processes (Sharp, 1984). Compound buoyancy 
and shear mixing occur in nature from effluent discharge into 
rivers and estuaries or from flow into ponds, lakes, or reservoirs 
(Imberger and Hamblin, 1982). Above the atmospheric bound­
ary layer, buoyancy turbulence from phase change forms orderly 
plumes of cumulus clouds (Deardorff, 1970 and Vinnichenko 
et al., 1980). In heat exchangers, cold fluid enters the top of 
the exchanger, falls rapidly, and mixes with the warm fluid 
underneath. Swirl is used in pipes and internal combustion en­
gines to generate an unstable thermal layer and promote heat 
transfer (Dhir and Chang, 1992). Furnaces and combustion 
chambers introduce cool fuel mixtures over hot gases, and 
chemical reactors mix chemicals of different densities. All these 
applications exhibit closely coupled compound buoyancy and 
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shear flows. This close coupling between canonical shear and 
buoyancy results in compound interactions that are poorly un­
derstood and lead to a novel mixing process. Indeed, this com­
pound buoyancy and shear presents an intriguing situation of 
two canonical equilibrium flows that exchange equilibria as 
the flow develops. Developed shear layers grow linearly with 
distance (Rajaratnam, 1976), while unstable buoyancy driven 
layers grow quadratically with streamwise distance (Youngs, 
1984). The mixing process progresses through shear dominated 
flow with a linear growth rate to end with buoyancy mixing 
with a quadratic growth rate. 

Calculations for developed shear layers have been made with 
turbulence models, such as that by Launder et al. (1973), and 
by direct numerical solution such as that by Comte et al. (1989) 
and Rogers and Moser (1994). Rayleigh-Taylor mixing from 
initially stagnant layers has been calculated using a transient, 
two-fluid model without a turbulence model by Youngs (1991), 
and a direct numerical solution by Li (1993). The prediction 
of compound buoyancy and shear mixing has been largely di­
rected at the stable mixing layer (light fluid above heavy fluid). 
However, Andrews and Spalding (1990) reported "tilted" ex­
periments where large scale overturning motion superimposed 
a shearing across a Rayleigh-Taylor mixing interface. Snider 
and Andrews (1994) presented detailed experiments of com­
pound shear and unstable buoyancy mixing. 

This study simulates fully developed compound shear and 
unstable buoyancy mixing in a plane layer using a two-equation 
turbulence model. Figure 1 illustrates a compound shear and 
buoyancy mixing layer. Turbulence transport is modeled by an 
eddy-diffusivity relation with closure completed using a two 
equation k-e turbulence model. The k-e turbulence closure 
model (Launder and Spalding, 1974) was chosen because of 
its popularity and its success in predicting a variety of turbulent 
flows. The model has recognized limitations (Bradshaw et al., 
1991) with one major shortcoming being that its accuracy partly 
depends on empirical constants tailored for specific situations. 
This is especially true of the buoyancy dissipation constant C^^ 
(Eq. (7)) . Reported values for Ĉ s range from 0.8 to 1.44 and 
are often defined together with a Richardson number (Rodi, 
1991, 1993 and Yang and Aung, 1985). Launder (1988) used 
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Fig. 1 Illustration of the buoyancy and shear mixing layer 

Cs = d in calculating flow near a heated vertical wall. Hanjalic 
and Vasic (1993) reported C ĵ = 0.8 for an accurate prediction 
of pure buoyancy driven flows. In this study, the turbulence 
constant Ĉ s that appears in the buoyancy term of the dissipation 
is carefully evaluated from an analytical self-similar solution 
and an accurate numerical solution. 

The turbulence model has been used successfully to simulate 
stable stratified flows where buoyancy suppresses the growth 
of the shear layer (Tennekes and Lumley, 1972). Calculations 
in this study are presented for unstable buoyancy and shear 
driven mixing. It might be expected that addition of the two 
unstable mixing mechanisms would increase the mixing layer 
growth rate beyond that of either of the two individual layers. 
This study shows that the k-e model predicts a suppression of 
the buoyancy layer growth rate from addition of shear. The 
structure of experimentally measured data is examined to evalu­
ate the validity of the calculated behavior. From a practical 
point this result indicates that shear can be used to mitigate the 
mixing growth due to unstable buoyancy, or conversely, unsta­
ble buoyancy can be used as a limited means to promote shear 
mixing. 

Experimental Data. This numerical work makes use of 
experimental data from Snider and Andrews (1994) who devel­
oped a statistically steady experiment where buoyancy and shear 
were copresent and independently controlled. Details of the 
experiment can be found in Snider and Andrews (1994). Two 
parallel flowing water streams were separated by a thin splitter 
plate. At the end of the splitter plate, the flows met. A buoyancy 
unstable interface formed if the stream temperatures were differ­
ent. An unstable shearing interface formed if the velocities were 
different, and a compound mixing layer formed if both tempera­
tures and velocities were different. The mixing angle was cho­
sen to be small to ensure parabolic flow. 

Governing Equations and k-€ Model 

The water mixing layer is a Newtonian incompressible fluid 
with constant kinematic viscosity. Temperature differences are 
small and density variations are limited to the buoyancy terms 
using the Boussinesq approximation. The ensemble averaged 
equations for conservation of mass, momentum, and energy 
equations are: 
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where u and v are ensemble average velocities and p, p, and 
T are ensemble averaged pressure, density, and temperature, 
respectively. The expansion coefficient is /3 = -{\lp„)l{dpl 
dT), and T„ and p„ are the mean temperature and corresponding 
density. The «', v', p', and T' are fluctuating components. The 
u'u', v'v', and u'v' are the ensemble averaged Reynolds 
stresses, and u'T' and v'T' are the turbulent heat fluxes. Clo­
sure is completed using a Boussinesq approximation and a tur­
bulent kinetic energy and kinetic energy dissipation model. The 
equations of closure are: 

u u = —v,\ 2 —• 
dx 3 • 1 ^ , 

r, dv\ 2 , 
2 — + -k 

dy) 3 

du dv 

dy dx 
{5a) 

Nomenclature 

A = Atwood number: A = (pi 
- P2)/(Pl + Pi) 

C/i, C j i , 

Ca, Cc3 = constants in turbulence 
model 

Civ, Cj,, 
C,, Cp = constants in assumed self-

similar profiles 
B = equation (20) 
g = gravity acceleration 

G,, = production of kinetic en­
ergy from shear 

Gfc = production of kinetic en­
ergy from buoyancy 

h = half-width of the mixing 
layer (see Fig. 1 and Fig. 8) 

k = ensemble averaged turbu­
lent kinetic energy 

/ = turbulent length scale 
p = ensemble averaged pressure 

Ri = Richardson number 
t = time 

T = ensemble averaged temperature 
To = reference temperature 

r , , Ta = freestream temperatures 
u,v = ensemble averaged velocities 

u', v' = fluctuating velocities 
t/|, i/2 = freestream velocities 

X, y = spatial coordinate in stream-
wise and vertical directions, re­
spectively 

a = buoyancy growth constant 
P = coefficient of expansion 
6^ = vorticity thickness 
K = thermal conductivity 
u = kinematic viscosity 

v, = turbulent kinematic viscos­
ity 

T' = fluctuating temperature 
u'iUj = Reynolds stress 
T'uj = fluctuating components of 

temperature 
e = ensemble averaged kinetic 

energy dissipation 
tr = ensemble averaged turbu­

lence heat flux dissipation 
77 = buoyancy similarity vari­

able y/t^ 
p = ensemble averaged density 

P\, p2 = freestream densities 
Po = reference density at T„ 
p' = fluctuating density 

(TT, cTk, o"£. = Prandtl numbers 
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where the turbulent viscosity is v, = Cf^ik^/e). The closure for 
the turbulent heat flux is an eddy diffusivity model with the 
thermal time scale, T' ^/2ej-, equal to the mechanical time scale, 
k/e where CT is the molecular diffusion of turbulent temperature 
variance (Hanjalic, 1994): 

CTT- \ dx 
T'v' = - — 

u, ( QT 

Or \ dy 
{5b) 

The simple gradient model neglects two important effects. First, 
the model does not predict an intensive turbulent heat flux where 
the mean temperature gradient is uniform or where the gradient 
may be in the same direction as the heat flux vector. Second, 
at a vertical heated wall where the major source of turbulence 
is induced by vertical heat flux, the temperature gradient in the 
vertical direction is small. This study of the unstable buoyancy 
layer does not suffer from the above two shortcomings. Buoy­
ancy induced turbulence is in the direction of turbulent heat 
flux and opposite the temperature gradient. 

The ensemble averaged turbulent kinetic energy and the dissi­
pation equations are: 

dk dk dk 
h M h 11 — 

dt dx dy 

dx \ak dx/ dy \ai,dy , 
(6) 
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where k and e are ensemble averaged kinetic energy and kinetic 
energy dissipation, respectively. The turbulent diffusivity is as­
sumed much larger than the molecular diffusivity. The turbulent 
kinetic energy production from shear for two-dimensional in­
compressible flow is: 

G, = ly, 
Jdu 

\dx 
+ 2 —V + 

dy) "̂  

du dv 
— -H — 
3y dx 

(8) 

and the turbulent kinetic energy production from buoyancy is: 

i^,g dp 
G,= 

CTTPO dy (7T c(y 
(9) 

where g is gravity, and ar is the Prandtl number. 
The k-e constants are C^ = 0.09, C,, = 1.44, Ca = 1.92, a^ 

= 1, and a^ = 1.3 (Launder and Spalding, 1974), and Oj = 
0.6 for the free mixing layer calculations (White, 1991). The 
constant Ca is assigned the value 0.91 in this study. 

Determination of C^ 
The Cs3 constant in Eq. (7) for Rayleigh-Taylor mixing in a 

plane layer is defined here. A value is determined from ari 
approximate analytical self-similar solution and then with an 
accurate numerical solution. 

Self-Similar Buoyancy Mixing. Here we describe a one-
dimensional self-similar solution for the present problem similar 
to that of Andrews (1984) and a later analysis by Spitz and Haas 
(1991). In the experimental arrangement (Snider and Andrews, 
1994) a buoyancy driven turbulent mixing layer grows when 
the upper and lower fluids have the same velocity, and the upper 
layer is colder than the lower layer as illustrated in Fig. 1. The 
mean vertical and horizontal velocities are zero in a Galilean 
frame moving with the mean velocity and, consequently, con-

vective terms in the k, e, and T transport equations are zero. 
The governing Eqs. (4), (6) , and (7) reduce to: 

dt dy \aT dy 

dk 

dt dy \ a j . dy 

V, dk 
+ G. 

dt dy \ac dy J k 
Q2 

(10) 

(11) 

(12) 

The energy equation is recast in terms of density using a 
constant expansion coefficient, 0. 

(13) 
dp d j V, dp\ 

dt (Sy \aT dy / 

Initial conditions are: 

at t = 0 for JI > 0: p = p2. 

at f = 0 for y < 0: p = p\. 

k = 0, 

k = Q, 

e = 0 

e = 0 

(14) 

Exterior quiescent fluid boundary conditions are appUed at the 
mixing layer boundary, ±h(t) shown in Fig. 1, as follows: 

for y > h: p = p2, k = Q, e = 0 

for y < -h: p = px, k = 0, e = 0 (15) 

The above set of equations has a self similar solution using 
the similarity variables: 77 = y/t^, k{t, y) = t^Tc{T}), e(t, y) 
= te(r]), p(t,y) = p(r]). 

Introducing similarity variables into Eqs. (10) to (12) gives 
the following ordinary differential equations in fe, e, and p: 

df) ar dri \ e drj / 

2k-2,^ = ^ ^ ( ~ ^ ^ ] ^ ^ ~ ^ ^ ' - l - e (17) 
dri ffic dr] \ i driJ GT ? po dt] 

dr] ffc dr) \ £ drj) Po drj 
C,2T (18) 

k 

The constant Ĉ s is calculated from the integration of Eqs. 
(16) to (18) using approximate profiles for k, e, and p. The 
turbulent kinetic energy and dissipation are approximated by 
parabolic profiles and the density within the mixing layer is 
approximated by a linear profile. It is shown later that these 
profiles are reasonable approximations to the true profiles. The 
approximate profiles are: 

^ = C , ( 1 - ^ ^ ) e = CXl-v') p = C,fi + p, 

where the self-similar length scale is normalized based on the 
mixing half width, C„ = h/t^: 

V = 
V (19) 

CK and Ce are constants, and for the linear density profile C^ = 
(P2 - pi)/2 and pi = (pi -1- p2)/2. The equations are integrated 
across the mixing layer from - 1 < ^ < 1, and the constants 
calculated: 
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CJ2, C^, and (TT-, in Eqs. (20), are the standard k-t constants, 
Cp is given by the density differences between the layers, and 
the self-similar mixing width C^ = hlt^ can be obtained from 
experimental data for the half-width of the mixing layer: 

h = aKgt^ (21) 

where A is the Atwood number and a is the growth rate constant 
of a = 0.07 from Snider and Andrews (1994). Solving the Cvi 
Eq. (30) for C,3 gives a value of C,^ = 0.88. 

Numerical One-Dimensional Transient Solution. The 
transient one-dimensional Eqs. (10) to (12) were solved numer­
ically using a range of C^ values around the analytical self-
similar value of 0.88. The numerical method used finite vol­
umes, with staggered momentum nodes and a SIMPLE solution 
method (Patankar, 1980). Transient solutions were made using 
time steps from 0.05 s to 0.1 s and spatial grids ranging from 
100 to 500 nodes uniformly spaced over a computational length 
of 0.5 m. The total volume error at each time step was less than 
10"^ m^ Solutions were found grid independent at nodal-
izations greater than 200 nodes as shown in Fig. 2. 

Two methods can start the transient problem. In the first, the 
self-similar distribution oik, e, and T are specified across the 
initial mixing width and the numerical solution quickly becomes 
self similar. In the second, which is used in this study, reason­
able initial values for k, e, and T are specified in an initial 
mixing width, and the numeric solution, Uke the experiment, 
progresses to a self-similar state. In the second approach, a 
virtual origin is defined which accounts for the development 
time to self-similar mixing. Both methods produced the same 
self-similar solution. 

Figure 3 shows the growth rate constant, a, for the numeri­
cally calculated mixing layer plotted versus Cjs. The Ca from 
the self-similar solution is shown for comparison. The computed 
CJ3 ranges from 0.88 to 0.94 for the corresponding range of 
measured growth constants of a = 0.05 to 0.077 reported in 
the literature by Read (1984), Youngs (1992), Linden et al. 
(1992), Andrews and Spalding (1990), and Snider and An­
drews (1994). Figure 3 shows the value Qs = 0.8 given by 
Hanjalic and Vasic (1993) gives a mixing layer growth rate a 
~ 0.12 which is larger than that measured. A value of C,3 = 
0.91 gives an a = 0.07 which compares well with measurements 
by Snider and Andrews (1994) and so is used in this study. 
The computed self-similar k, e, and T compare reasonably with 
the approximate profiles used in the analytical self-similar solu­
tion, which explains the good agreement between analytical and 
computed Cjs. 

Two-Dimensional Steady Boundary Conditions 
A two-dimensional plane mixing layer generally forms as two 

parallel streams at different velocities and different temperatures 
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meet downstream from the splitter plate as illustrated in Fig. 1. 
The temperature of the bottom stream is higher than that of the 
top stream giving buoyancy unstable flow. With the same bot­
tom and top velocities, the mixing is from buoyancy only, and 
with a uniform temperature field, the mixing is from shear only. 

Constant freestream velocities Ui and f/j and temperatures 
Ti and T2 are apphed at the inlet and in the far-field above and 
below the mixing region. The inlet k was set at 5 percent of 
the average free stream flow value based on measured data 
by Browand and Weidman (1976), which had experimental 
conditions close to those of this study. The inlet dissipation is 
based on a length scale associated with the 7 mesh/cm screen 
at the end of the splitter plate and is, einiei = {klixjl), where 
the length scale is taken as the mesh spacing / = 0.12 cm. The 
gradient of k and e are zero in the far field above and below 
the mixing layer. The exit boundary condition is local one-way 
which gives an outflow with no exit streamwise diffusion. The 
outlet condition matches the parabolic design of the experiment 
(Snider and Andrews, 1994). 

The calculation domain begins near the end of the splitter 
plate. Flow from the end of the splitter plate forms a wake that 
is complicated as boundary layers pass through a full screen. 
The k-e model cannot be expected to work well in the near wake 
of the splitter plate because of the large change in anisotropy of 
the Reynolds stresses that occur as flow leaves the solid plate 
to a free density interface. This study focuses on calculating 
the developed turbulent mixing layer and requires only reason­
able inlet values for the inlet mixing region. The experiment 
by Snider and Andrews (1994) used a full screen at the end of 
the splitter plate. Koop (1976) found that the full screen reduced 
boundary layer effects and gave nearly a step profile across the 
mixing layer. To model the experiment, the inlet velocity and 
temperature were specified as error functions across a narrow 
inlet mixing width. As detailed above the inlet value for k was 
taken from experimental data by Browand and Weidman (1976) 
and approximated by a bell shaped curve with a reasonable 
peak k value of 5 percent of the freestream flow. The initial 
mixing width was 2 to 3 computational nodes wide, which gave 
only a sparse representation of the curves. However, our interest 
was in the fully developed region downstream where profiles 
develop across many nodes. 

Table 1 shows further details of the computations. The calcu­
lations are for buoyancy, shear, and compound shear and buoy­
ancy mixing. Two-dimensional steady solutions are listed as 
' 'spatial'' and the one-dimensional transient calculation is listed 
as "temporal." 

The numerical method used two-dimensional, finite volumes 
with staggered momentum nodes. A hybrid numerical scheme 
(Spalding, 1972), and a SIMPLE solution scheme (Patankar, 
1980) were employed. Steady calculations were made using 
node sizes ranging from 25 X 50 to 100 X 200 (axial-stream-
wise direction by vertical direction). The computation domain 
was 0.7 m in the streamwise direction and 1.2 m in the vertical 
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Fig. 3 Turbulence constant C^ compared to buoyancy growth constant a 
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Table 1 Boundary conditions and nodalization for numeric calculations, buoy: buoyancy calculation, shear: shear calcula­
tion, spatial: two-dimensional steady calculation, temporal 1-D: one-dimension transient solution. 

Run 

1 
2 
3 
4 
5 
6 
7 
8 

Exper'. 

2-68 
2-68 
3-11 

Comment 

shear, spatial 
shear, spatial 
shear, spatial 
buoy, temporal, 1-D 
buoy, spatial 
buoy and shear, spatial 
buoy, spatial 
buoy and shear, spatial 

U^ 
(cm/s) 

3.4 
5.0 
4.1 
— 
4.8 
4.1 
4.4 
5.4 

f/2 
(cm/s) 

5.4 
10.0 
4.7 
— 

4.9 
4.7 
4.4 
3.4 

T^ 
(K) 

300.0 
300.0 
300.0 
310.3 
310.3 
311.2 
311.2 
311.2 

T2 
(K) 

300 
300 
300 
306.7 
306.7 
306.8 
306.8 
306.8 

Inlet h 
(cm) 

0.90 
0.81 
0.72 
0.19 
0.49 
0.67 
0.54 
0.27 

Grid 
XX Y 

50 X 100 
50 X 100 
50 X 100 

1 X 500 
50 X 100 
50 X 100 
50 X 100 
50 X 100 

Experiments listed are from Snider and Andrews (1994). 

direction. Grid spacing was uniform in the streamwise direction 
and varied non-linearly in the vertical direction with the vertical 
grid size on the order of 0.24 cm at the slip line and 8 cm at 
the far field boundary. The total volume error for convergence 
was less than 10^' m^. Solutions were grid independent at node 
sizes greater than 50 X 100 as shown in Fig. 2. Applying 
variations in the specified inlet and initial mixing layer widths 
gave some change in distance (or time) to reach self-similar 
mixing but did not alter the developed mixing layer growth 
rate. 

Buoyancy Mixing 
Our work described above with a one-dimensional mixing 

model provided a value for C^^. This section gives results from 
two-dimensional steady calculations of the buoyancy mixing 
layer compared with measured data. The two-dimensional solu­
tion is motivated by a possible asymmetric behavior produced 
by shear. A transient analytical approximation of the free shear 
layer can be made for discontinuous flow (see Schlichting, 
1958), but the common self-similar approach uses the two-
dimensional boundary layer equations. The two-dimensional 
equations predict an asymmetric mixing layer that compares 
well with measured data with the asymmetry vanishing as the 
free stream velocity ratio exceeds 85 percent (Rajaratnam, 
1976). Strong asymmetric mixing layers were not observed nor 
expected for the experiments predicted in this study, but to 
ensure that we fully capture the physical processes in both shear 
mixing, and compound shear and buoyancy mixing the full two-
dimensional equations were solved. 

Calculated and measured mixing half-widths, / j , for a buoy­
ancy layer are compared in Fig. 4. Snider and Andrews (1994) 
designed the experiment stream velocities to give a parabolic 
flow where the buoyancy mixing was carried in a moving frame 
of reference. The upper stream is cooler than the lower stream 
which gives a buoyancy unstable interface. Experimental results 
are formed from ensemble averaging a set of measurements. 
Further, Snider and Andrews (1994) showed that by nondimen-
sioning experimental data, the data collapsed to a single curve 
in the developed mixing region. Calculated and measured results 
are presented for only two experiments in this study, but calcula­
tions for other tests compare equally well. Results from the 
spatial two-dimensional calculation (Run 5) and temporal cal­
culation (Run 4) are compared with measured data from Test 
2-68 in Fig. 4. There is a central region marked on the figure 
where the mixing is self-similar and the experimental and nu­
merical results are comparable. Upstream the mixing is devel­
oping, and downstream of the marked self-similar region the 
channel ceiling and floor influence the mixing layer. The mea­
sured and calculated data are adjusted to a virtual origin to 
account for developing flow. Figure 4 shows growth rate differ­
ences between the spatial and temporal solutions at the start of 
the mixing layer. The difference arises from different temporal 
initial conditions and spatial inlet conditions. For established 
mixing {xlW > 3) , the temporal and spatial calculations give 

the same mixture growth rate independent of inlet or initial 
conditions, and both calculations compare well with measured 
data. 

Shear Mixing Alone 
A two-dimensional, steady calculation of the shear mixing 

layer with no temperature gradient was made. Table 1 gives the 
flow conditions for the three shear calculations. Run 1, Run 2, 
and Run 3. The width of the mixing layer is defined by the 
vorticity thickness 5„ = (L', - U2)l{duldy)ma^. As expected for 
the shear layer, the calculated 6^ grows linearly with streamwise 
distance except near the splitter plate. The slope of the calcu­
lated vorticity thickness is compared with measured data in Fig. 
5. There is a significant spread in the measured data. However, 
it is evident that the calculated mixing layer thickness compares 
well and lies within the measured range. 

Compound Buoyancy and Shear Mixing 

In compound mixing both a temperature and velocity differ­
ence are applied between the upper and lower streams. The 
upper stream is cooler giving a buoyancy unstable interface. 
The governing equations are solved with turbulence constants 
defined from canonical shear and buoyancy mixing. Figure 6 
compares measured data from Test 3-11 with the predicted 
mixing layer growth rate from compound shear and buoyancy 
calculation and from a buoyancy only calculation. Table 1 gives 
conditions for experimental Test 3-11. Again Test 3-11 is a 
typical compound mixing experiment where presented data are 
from ensemble averaging of measured data over the duration 
of the test. Both calculated and measured data are adjusted to 
a virtual origin. The steady compound mixing calculation and 
the pure buoyancy transient calculation agree well with mea­
sured data. Considering the good agreement with the pure buoy­
ancy calculation, buoyancy appears as the dominate mixing 
process for the low shear values of Test 3-11 (Ai7 = 0.6 cm/ 

1.0 

X Test 2.68 
Spatial k-e numeric solution 

• Temporal k-e numerical soiution 

0.8 • Channel half widtliW=10cm 

0.6 

Fig. 4 Calculated pure buoyancy mixing width compared with measured 
data 
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Fig. 5 Sliear layer thickness 

s), as might be expected from its quadratic growth. Figure 6 
shows that buoyancy alone has a slightly greater mixing layer 
growth than for compound shear and buoyancy. We initially 
thought that the addition of shear to buoyancy mixing might 
increase the mixing width. However, the figure shows that addi­
tion of shear reduced the mixing width. Uncertainty in the ex­
perimental measured mixing width at low velocity differences 
was too large to verify the numerically observed effect of a 
reduced mixing layer from shear. However, it is important to 
note that the compound mixing in the experiment did not in­
crease the mixing width, which is in agreement with the calcula­
tion. 

The nonmechanistic k-e model which balances energy gener­
ation and dissipation using constants from canonical shear and 
buoyancy studies predicts the suppression of the compound 
unstable shear and buoyancy mixing width. Indeed, numerical 
calculations beyond the limits of the experiments, with the same 
mean velocity but high shear rates, predict significant reduction 
in the mixing width from that of pure buoyancy. The k-e terms 
represent a competition between the canonical shear and buoy­
ancy mixing, and the ratio of buoyancy to shear turbulence 
production (Richardson number, Ri = -{g{dpldy)lp{dul 
dyY)) near — 1 suggests significant contribution by both mech­
anisms. 

To understand better why compound shear and buoyancy do 
not produce a wider mixing region, we present two photographs 
in Figs. 7(a) and l{b) for measured pure buoyancy mixing 
and compound mixing. Inspection of the photographs reveals 
that the cause of the reduced mixing width may be explained 
mechanistically as skewing and rounding of the normally verti­
cal plumes by the velocity gradient. In a constant convective 

flow, buoyant plumes are fed from upper and lower streams at 
the same horizontal velocity and form vertical structures in a 
moving frame of reference as seen experimentally in Fig. 7(fo) 
and illustrated on the left side of Fig. 8. Compound mixing of 
buoyancy with different stream velocities is seen experimentally 
in Fig. 7(a) and illustrated on the right side in Fig. 8. The 
buoyant heavy and light fluids interpenetrate each other at near 
the same rate as that in a constant moving frame of reference. 
However, the vertical velocity gradient stretches and thins the 
normally vertical plumes which in turn reduces the vertical 
height of the structures and the mixing width. Figure 8 illustrates 
the process where fast, heavy fluid (white) enters the mixing 
layer from the upper side, and slow, light fluid (gray) enters 
the mixing layer from the lower side. The high velocity stream 
entering the top of mixing layer pushes rising plumes of origi­
nally slow fluid, and the lower, slow stream drags descending 
plumes of originally fast fluid. This skews plumes and forms 
vortices that appear similar to shear layer mixing. The result of 
compound mixing is stretched, skewed plumes with rounded 
fronts and a reduced mixing growth rate. 

Concluding Remarks 

The k-e model predicted well the pure buoyancy mixing layer 
and the compound shear and buoyancy mixing layer. A transient 
one-dimensional solution or a two-dimensional steady solution 
did equally well in predicting the pure buoyancy mixing layer. 
The turbulence constant C^-^ = 0.91 defined here for a buoyancy 
mixing layer provides good predictions for all cases. 

Adding shear to an unstable buoyancy mixing layer does not 
increase the mixing growth rate beyond that from buoyancy 
alone. The measured flow structures suggest that shear skewing 
and stretching of vertical buoyant plumes reduces the growth 
of a unstable buoyancy mixing layer. The velocity difference 
in the available experimental data was too low to quantify differ­
ences in growth rate for buoyancy mixing width with and with­
out shear. Further experiments with higher shear rates are re­
quired to resolve the differences. 

. High velocity 

^B In 

.\....Jm. : 
Uniform flow Low velocity 

Fig. 6 Calculated combined shear and buoyancy mixing widtli com­
pared with measured data 

Fig. 8 Illustration of the buoyancy mixing and combined shear and buoy­
ancy 

Journal of Fluids Engineering JUNE 1996, Vol. 1 1 8 / 3 7 5 

Downloaded From: https://fluidsengineering.asmedigitalcollection.asme.org on 07/01/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



References 
Andrews, M. J., and Spalding, D. B., 1990, "A Simple Experiment to Investi­

gate Two-Dimensional Mixing by Rayleigh-Taylor Instability," Physics of Fluids, 
Vol. 2, pp. 922-927. 

Andrews, M. J., 1984, "The k-f Model Applied to the Development of Ray­
leigh-Taylor Instability," Phoenix Demonstration Report, PDR/CFDU IC/13, 
Computational Fluid Mechanics Unit, Imperial College of Science and Technol­
ogy, London, UK. 

Bradshaw, P., Launder, B. E., and Lumley, J., 1991, "Collaborative Testing 
of Turbulence Models," ASME JOURNAL OF FLUIDS ENGINEERING, Vol. 113, pp. 
3-4. 

Browand, F. K,, and Weidman, P. D., 1976, "Large Scales in the Developing 
Mixing Layer," Journal of Fluid Mechanics, Vol. 76, pp. 127-144. 

Brown, G. L., and Roshko, A., 1974, "On Density Effects and Large Structure 
in Turbulent Mixing Layers," Journal of Fluid Mechanics, Vol. 64, pp. 775-
816. 

Chandrasekhar, S., 1961, Hydrodynamic and Hydromagnetic Stability, Oxford 
University Press. 

Comte, P., Lesieur, M., Laroche, H., and Normand, X., 1989, "Numerical 
Simulation of Turbulent Plane Shear Layers," Turbulent Shear Flow 6, Springer-
Verlag, Berlin, pp. 360-380. 

Deardorff, J. W., 1970, "Convective Velocity and Temperature Scale for the 
Unstable Planetary Boundary Layer and for Rayleigh Convection," Journal of 
Atmospheric Sciences, Vol. 27, pp. 1211-1213. 

Dhir, V. K., and Chang, F., 1992, "Heat Transfer Enhancement Using Tangen­
tial Injection," ASHRAE Transactions, BA-92-4-1. 

Hanjalic, K., and Vasic, S., 1993, "Some Further Exploration of Turbulence 
Models for Buoyancy Driven Flows," Turbulent Shear Flow 8, Springer-Verlag, 
Berlin, pp. 319-341. 

Hanjalic, K., 1994, "Achievements and Limitations in Modeling and Computa­
tion of Buoyant Turbulent Flows and Heat Transfer," Proceedings Tenth Interna­
tional Heat Transfer Conference, Brighton, UK, Vol. 1, Taylor Francis Publishing 
Co., pp. 1-18. 

Imberger, J., and Hamblin, P. P., 1982, "Dynamics of Lakes and CooUng 
Ponds," Annual Review of Fluid Mechanics, pp. 153-187. 

Koop, G. K., 1976, "Instability and Turbulence in a Stratified Shear Layer," 
Ph.D. thesis, University of Southern California. 

Launder, B. E., Morse, A. P., Rodi, W„ and Spalding, D. B., 1973, "The 
Prediction of Free-Stream Flows—A Comparison of the Performance of Six 
Turbulence Models," NASA SP 320. 

Launder, B. E., 1988, "On the Computation of Convective Heat Transfer in 
Complex Turbulent Flows," ASME Journal of Heat Transfer, Vol. 110, pp. 
1112-1128. 

Launder, B. E., and Spalding, D. B., 1974, "The Numerical Computation of 
Turbulent Flows," Computer Methods in Applied Mechanics and Engineering, 
pp. 269-289. 

Li, X. L., 1993, "Study of Three Dimensional Rayleigh Taylor Instabilities in 
Compressible Fluids Through Level Set Method and Parallel Computation," Phys­
ics of Fluids A, Vol. 5, pp. 1904-1913. 

Linden, P. F., Redondo, J. M., and Caulfield, C. P., 1992, "Molecular Mixing 
in Rayleigh-Taylor Instability," Advances in Compressible Turbulent Mixing, 
W. P. Dannevik, A. C. Buckingham, and C. E. Leith, eds., pp. 95-104. 

Miles, J. B., and Shih, J., 1968, "Similarity Parameter for Two-Stream Turbu­
lent Jet-Mixing Region," Journal AIAA, Vol. 6, p. 1429. 

Mills, R. D., 1968, "Numerical and Experimental Investigation of the Shear Layer 
Between Two Parallel Stteams," Journal of Fluid Mechanics, Vol. 33, p. 591. 

Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, Hemisphere 
Publishing Co. 

Patel, R. P., 1973, "An Experimental Study of a Plane Mixing Layer," Journal 
AIAA, Vol. 11, p. 67. 

Pui, N. K., 1969, "The Plane Mixing Layer Between Parallel Streams," M.A. 
Science thesis. University of British Columbia. 

Rajaratnam, N., 1976, Turbulent Jets, Elsevier Science Publishing, Amsterdam, 
pp. 87-114. 

Read, K. I., "Experimental Investigation of Turbulent Mixing by Rayleigh-
Taylor Instability," Physica I2D, pp. 45-58, 1984. 

Rodi, W., 1993, Turbulence Models and Their Application in Hydraulics, A 
State of the Art Review, Third edition, AA Balkema, Rotterdam, Brookfield. 

Rodi, W., 1991, "Examples of Turbulence Model Applications," Introduction 
to the Modeling of Turbulence, vonKarmen Institute for Fluid Dynamics, Lecture 
Series 1991-02. 

Rogers, M. M., and Moser, R. D., 1994, "Direct Simulation of a Self-Similar 
Turbulent Mixing Layer," Physics of Fluids, Vol. 6, pp. 903-923. 

Sharp, D. H., 1984, "An Overview of Rayleigh-Taylor Instability," Physica 
12D, p. 3. 

SchUchting, H., 1958, Boundary Layer Theory, McGraw-Hill, NY, p. 489. 
Spalding, D. B., 1972, "A Novel Finite-Difference Formulation for Differential 

Expressions Involving Both First and Second Derivatives," International Journal 
for Numerical Methods Engineering, Vol. 4, p. 551. 

Spencer, B. W., and Jones, B. G., 1971, "Statistical Investigation of Pressure 
and Velocity Fields in the Turbulent Two-Stream Mixing Layer," AIAA Paper 
no. 71-613. 

Spitz, P. B., and Haas, J., 1991, "Numerical Calibration of Rayleigh-Taylor 
Induced Turbulent Flows With k-i Mix Model,'' Proceedings of the 3rd Interna­
tional Workshop on the Physics of Compressible Turbulent Mixing, Royaumont, 
pp. 511-521. 

Snider, D. M., and Andrews, M. J., 1994a, "Rayleigh-Taylor and Shear Driven 
Mixing with an Unstable Thermal Stratification," Boundary Layer and Free Shear 
Flows, J. F. Donovan and J. C. Dutton, eds., ASME Fluids Summer Meeting 
1994. 

Taylor, G. I., 1950, "The Instability of Liquid Siufaces When Accelerated in 
a Direction Perpendicular to Their Planes I," Proceedings of the Royal Society 
of London Series A, Vol. CCI, pp. 192-196. 

Tennekes, H., and Lumley, J. L., 1972, A First Course in Turbulence, MIT 
Press, pp. 97-102. 

Vinnichenko, N. K., Pinus, N. Z., Shmeter, S. M., and Shur, G. N., 1980, 
Turbulence in the Free Atmosphere, Consultants Bureau, NY, pp. 145-164. 

White, F. M., 1991, Viscous Fluid Flow, McGraw-Hill, Inc., pp. 482-483. 
Wygnanski, I., and Fielder, H. E., 1970, "The Two-Dimensional Mixing Re­

gion," Journal of Fluid Mechanics, Vol. 41, p. 327. 
Yang, R. J., and Aung, W., 1985, "Equations and Coefficients for Turbulence 

ModeUng," Natural Convection Fundamentals and Applications, Hemisphere 
Publishing Co. 

Yule, A. J., 1972, "Two-Dimensional Self-Preserving Turbulent Mixing Layers 
at Different Free Stream Velocity Ratios," Aero. Res. Counc. R&M., no. 3683. 

Youngs, D. L., 1991, "Three-Dimensional Numerical Simulation of Turbulent 
Mixing by Rayleigh-Taylor Instability," Physics of Fluids A, pp. 1312-1320. 

Youngs, D. L., 1992, "Numerical Simulation of Turbulent Mixing by Experi­
mental Investigation of Turbulent Mixing by Rayleigh-Taylor Instability," Ad­
vances in Compressible Turbulent Mixing, W. P. Dannevik, A. C. Buckingham, 
and C. E. Leith, eds., pp. 607-626. 

Youngs, D. L., 1984, "Numerical Simulation of Turbulent Mixing by Rayleigh-
Taylor Instability," Physica 12D, pp. 32-44. 

376 / Vol. 118, JUNE 1996 Transactions of the ASME 

Downloaded From: https://fluidsengineering.asmedigitalcollection.asme.org on 07/01/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use




