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Abstract: Several formalisms have been applied for addressing development issues in Mobile Ad-hoc NETworks 
(MANETs), however they usually lack of understandability, expressiveness and executability features. Instead, the 

Abstract State Machine (ASM) formalism does not suffer these limitations and can provide a useful conceptual tool for 
reasoning about MANET behavior. This paper shows the practical suitability of ASMs in capturing the specific MANET 
issues: concurrency, communications, and so on. To this end, the Ad-hoc On-demand Distance Vector (AODV) routing 

protocol for MANETs is modeled, and some properties of interest are proved.  
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1. INTRODUCTION 

In recent years, wireless technology has attracted 

great interest and considerable popularity. Its uses 

span in a wide range of application domains: ambient 

intelligence, real-time systems, transportation, video 

surveillance, and so on.  

In this context, a Mobile Ad-hoc NETwork (MANET 

for short) is a wireless network designed for 

communications among nomadic hosts [1]; it does not 

need any fixed infrastructure, and communication 

sessions between initiator and destination are 

established and maintained by the cooperation of hosts 

in the network. MANETs are useful, sometimes 

necessary, for allowing hosts to communicate when 

fixed physical infrastructures cannot be used, for 

example for supporting rescue teams operating where 

pre-existing infrastructures are not reliable [2]. Hosts 

are intended as autonomous agents and they can 

dispose without according to a predefined topology; 

moreover, during their lifetime, they can enter or leave 

the network at will and continuously change their 

relative position.  

The twofold role played by hosts (end-point and 

intermediate router), as well as the continuous change 

of the network topology due to movement, poses 

several problems: study of performance, analysis of 

synchronization issues, concurrency and cooperation, 

and so on. Among them, we focus on the need to 

define specific routing protocols for properly managing 

the lack of a fixed infrastructure. Since each host can 

directly communicate only within the area established 
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by its transmission range, these protocols need to 

ensure broadcasting and unicasting of packets and to 

take into account the contribution of intermediate hosts 

for realizing communications. The Ad-hoc On-demand 

Distance Vector (AODV) [3] is one of the most relevant 

and widely used routing protocols for MANETs. 

Traditionally, literature discusses routing protocols 

with the support of tools simulating the MANET 

behavior; for example [4] and [5]. The simulation-based 

approach is very effective from the execution point of 

view, mainly for evaluating performance and comparing 

different solutions. However, it can take into account 

only a limited, predictable range of different scenarios 

and it is not able to formally prove properties of 

interest. In other words, these tools are just simulators: 

they implement the network at a low abstraction level, 

but they cannot support specifications and analysis at 

higher level. Moreover, according to [6] and [7], the 

obtained results are sometimes inaccurate and poorly 

reliable. 

On the contrary, formal methods can be useful for 

reasoning about MANET behavior and can provide 

more reliable results. In fact, representing a system-

under-study at high level of abstraction allows 

developers to focus on algorithmic aspects, rather than 

on specific realizations of solutions at lower levels. 

Moreover, the mathematical foundation of formal 

methods provides complete and more accurate 

investigations about the properties and the behavior 

the system-under-study is required to exhibit.  

Several formalisms have been successfully applied 

in the MANET domain: process calculi, finite state 

machines, Petri nets, and so on (for example, see [8], 

[9], [10]). However, these approaches present some 

drawbacks concerning: understandability, since they 
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are based on a syntax dissimilar to traditional 

programming languages; expressiveness, because 

they typically provide only a single level of abstraction; 

executability, since, especially process calculi, are not 

directly executable.  

With respect to these features, Abstract State 

Machines (ASMs) [11] provide advantages under 

several viewpoints. When the model expressivity is 

considered, literature agrees that ASM-based models 

show versatility in capturing both sequential and 

parallel computations at any desired level of 

abstraction, e.g. [12], [13]. Secondly, considering 

methodological issues, the ASM formalism has been 

successfully applied in both academia and industry for 

the design and the analysis of complex systems in 

several domains, and a specific development method 

got prominence in the last years [14]. Thirdly, 

considering the implementation point of view, the 

capability of translating formal models into executable 

ones is provided by tools like AsmL [15], CoreASM 

[16], and ASMETA [17]. Finally, the ASM approach 

provides a way to describe algorithmic issues in a 

simple abstract pseudo-code, which can be translated 

into a high level programming language source code in 

a quite simple manner. 

The aim of this paper is to show the practical 

suitability of the ASM formalism in capturing the 

specific MANET features: mobility, concurrency, 

communications, structures for representing and 

storing information, and so on, and for reasoning about 

them. To this end, in this paper the AODV routing 

protocol for MANETs is modeled and some properties 

of interest are proved.  

The rest of this paper is structured as follows. 

Section 2 is about related work. Section 3 provides a 

background knowledge on both ASMs and AODV. Our 

contribution is mainly reported in Section 4, which 

deals with the ASM-based model of AODV and 

reasons about its correctness. Section 5 concludes the 

paper. 

2. RELATED WORK 

Several process calculi specifically tailored for 

MANETs have been proposed in literature, for 

example: the -calculus [8], CMN (Calculus of Mobile 

Ad Hoc Networks) [18], and AWN (Algebra for Wireless 

Network) [19]. These formalisms naturally capture 

essential characteristics of network nodes: from the 

host mobility to the packet broadcasting and unicasting. 

In fact, the expressiveness of process calculi is very 

suitable for representing the parallel activities of the 

nodes and for abstracting the underlying 

communication mechanisms. However, these process 

calculi are not directly executable, so, executing 

models for conducting simulations is not possible. 

Moreover, they are typically based on mathematic 

notions that developers could find unfamiliar for their 

purposes. Instead, ASMs overcome both these issues 

by providing several tools for developing executable 

models and by offering a syntax very similar to 

traditional high level programming languages. 

Various general purpose state-based models have 

also been used in the MANET domain, for example, 

finite state machines [9] and Petri nets [10]. With 

respect to process calculi, state-based models provide 

a comfortable way for representing algorithmic issues, 

especially from the graphical point of view: in fact, they 

are very useful for representing the execution flow 

along computational states. Moreover, they are 

typically equipped with tools, such as CPN Tools [20], 

that allow to execute models and conduct validation 

activities. Nevertheless, state-based models lack of 

expressiveness: basically, they provide only a single 

level of abstraction and cannot support refinements to 

executable source code. Conversely, ASMs are Turing-

equivalent [11], so, they can represent systems at any 

desired level of abstraction till to models whose 

features are very close to implementation details.  

An example of application of formal methods for 

specifically addressing issues in the AODV protocol 

can be find in [21], where a variant which improves the 

route selection of the original protocol is specified by 

means of Coloured Petri nets. However, the formalism 

is not used for proving correctness. Another example is 

[22], where a rigorous analysis of AODV and two 

variants is conducted by means of the previously 

mentioned AWN. These variants concern the problem 

of non-optimal route selection and that of failure in 

discovering routes. In this case, the formalism helps in 

proving correctness, nevertheless the focus is only on 

the loop-freedom property, i.e. the absence of loop 

routes. 

Along the years, ASMs have been successfully 

used for modeling several systems, often concurrent 

and distributed, and for investigating their properties. 

For example, [23] and [24] show the application of 

ASMs for verifying several safety and liveness 

properties of two popular case studies: the Railroad 

Crossing and the Production Cell, respectively. More 
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recently, an ASM specification to model concurrency in 

a Web browser and to prove some consistency 

properties has been proposed in [25]; ASMs have also 

been used to model and validate vision-based robot 

control applications in [26]; and they have been applied 

for studying some aspects of Grid systems, e.g. 

reachability and reversibility, in [27]. These works 

attested how ASMs are sufficiently general for 

modeling systems in a very broad range of domains. 

To our best knowledge, concerning the specific 

MANET domain, the ASM-based approach has been 

used only for modeling specific issues. In [28], the 

authors use ASMs for specifying location services and 

position-based routings among known locations, 

however they focus on the communication among the 

various architecture layers and do not formally prove 

properties of interest. Instead, in [29], a variant of the 

AODV protocol, which improves the network topology 

awareness of each node, is specified and formally 

proved by means of an ASM-based model, but the 

work does not emphasize the capability of the ASM 

formalism to face the MANET-specific modeling 

challenges. 

3. BACKGROUND 

3.1. Abstract State Machines 

Informally speaking, ASMs are finite sets of so-

called rules of the form if condition then updates 

(possibly with the else clause in addition) which 

transform the abstract states of the machine [14]. The 

concept of abstract state extends the usual notion of 

state occurring in finite state machines: it is an arbitrary 

complex structure, i.e. a domain of objects with 

functions and relations defined on them. On the other 

hand, the concept of rule reflects the notion of 

transition occurring in traditional transition systems: 

condition is a first-order formula whose interpretation 

can be true or false; while updates is a finite set of 

assignments of the form f(t1, …, tn) := t, whose 

execution consists in changing in parallel the value of 

the specified functions to the indicated value. 

According to [14], pairs of function names together 

with values for their arguments are called locations: 

they abstract the notion of memory unit. The current 

configuration of locations together with their values 

determines the current state of the ASM. In each state, 

all conditions are checked, so that all updates in rules 

whose conditions evaluate to true are simultaneously 

executed, and the result is a transition of the machine 

from a state to another, i.e. from a configuration of 

values in locations to another. Moreover, for the 

unambiguous determination of the next state, updates 

must be consistent, i.e. no pair of updates must refer to 

the same location. 

The formalism also supports the mechanism of 

procedure calls; this is achieved by the definition of 

ASM submachines, i.e. parameterized rules, which 

allow the declaration of local functions, so that each 

call of a submachine works with its own instantiation of 

its local functions. 

A generalization of basic ASMs is represented by 

Distributed ASMs (DASMs) [14], capable to capture the 

formalization of multiple agents acting in a distributed 

environment. Essentially, a DASM is intended as an 

arbitrary but finite number of independent agents, each 

executing its own underlying ASM. In a DASM the 

keyword self is used for supporting the relation 

between local and global states and for denoting the 

specific agent which is executing a rule. 

Finally, the ASM Method defined in [14] encloses 

development phases from requirements capture to 

implementation in a unique ASM-based framework. 

Requirements can be captured by constructing so-

called ground models, i.e. representations at high level 

of abstraction that can be graphically depicted; then, 

starting from ground models, a hierarchy of 

intermediate models is constructed by stepwise 

refinements, leading to executable code: each 

refinement describes the same system at a finer 

granularity. The method then allows both verification, 

through formal proof, and validation, through 

simulation. 

3.2. Ad-hoc On-Demand Distance Vector Protocol 

AODV is a reactive protocol that discovers and 

maintains routes on-demand, i.e. routes are built only 

as desired by initiator nodes using a route 

request/route reply cycle, which allows updating routing 

tables stored in each node [3]. When an initiator needs 

to start a communication session to a destination, and 

it does not know a proper route, it broadcasts a route 

request (RREQ) packet to all its neighbors. An RREQ 

packet, among the others, includes: initiator address 

and broadcast id (this pair uniquely identifies the 

packet); destination address; destination sequence 

number, which expresses the freshness of the 

information about destination; and hop count, initially 

set to 0, and increased by each intermediate node, for 
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expressing the distance. Because of broadcast 

transmissions, each intermediate node can receive 

several instances of a given RREQ from different 

neighbors: possible duplications of RREQs are 

discarded. 

Knowledge of routes is stored into routing tables, 

recorded into a cache memory of each node. A routing 

table in a node lists all other nodes in the network, and 

the best (known) route to reach each of them. To this 

end, each entry of the routing table includes the 

address of the node, its sequence number, the hop 

count to reach it, and the next hop field identifying the 

next node in the route to reach it. 

When a node receives an RREQ, it checks if one of 

the following holds: it is the destination, or destination 

is one of its neighbors, or it knows a route to 

destination with corresponding sequence number 

greater than or equal to the one contained in the RREQ 

(this means that the knowledge about the route is 

recent). If so, it unicasts a route reply (RREP) packet 

back to initiator; otherwise, it updates the hop count 

field, and rebroadcasts the RREQ. The process is so 

reiterated until a route to destination is found, or until a 

previously set timeout expires. An RREP packet 

contains: initiator and destination address, destination 

sequence number, and hop count. While RREP travels 

towards initiator, routes are set up inside the routing 

tables of the traversed hosts. Once initiator receives 

the RREP, communication starts. 

The protocol also includes mechanisms for 

recording the up-to-date information about hosts. But, 

for the sake of simplicity, we do not consider this 

feature. 

4. ASM-BASED MODEL OF AODV 

A MANET that adopts the AODV routing protocol 

can be modeled by a DASM including a homogeneous 

set of agents = {a1, …, an}, where each agent models 

the behavior of a node executing the protocol (we can 

think that each ai is univocally identified by its IP 

address).  

Note that the intrinsic parallel execution of multiple 

ASMs, each of them executing sequential processes 

that, in turn, may be run in parallel, is a natural way for 

modeling the parallel composition of hosts in a MANET 

and their own computation.  

Since all agents implement the same protocol, each 

agent behaves according to the same ASM, so only 

one ASM is discussed in the following. Each ASM can 

be in one of different computational states, which are 

characterized by the following predicates: 

• idle: the agent is inactive. Its configuration is 

given by: wishToInitiate(self, dest) = false; 

receivedRREQ(self, dest) = false, with dest  

agents, isEmpty(replies(self)) = true;  

• router: the agent has received an RREQ. It is 

characterized by receivedRREQ(self, dest) = 

true; 

• initiator: the agent has to start a new 

communication session. It is characterized by 

wishToInitiate(self, dest) = true; 

• forwarding: the agent is forwarding an RREP to 

another destination. It is characterized by 

isEmpty(replies(self)) = false. 

The functions dealing with the idle, router and 

initiator computational states are: 

• wishToInitiate: agents  agents  boolean, 

which indicates whether a new communication 

session to dest is required by the environment; 

• receivedRREQ: agents  agents  boolean, 

which acts as a flag indicating whether an RREQ 

packet has been received. 

For modeling broadcasting and unicasting, each 

agent is associated with two types of queues of 

messages: requests and replies, which include RREQ 

and RREP packets, respectively. This allows us to 

model sending/receiving of packets by means of 

enqueuing/dequeuing abstract messages into the 

corresponding queue. These queues are managed by 

the function isEmpty, which states if a queue is empty 

or not, and by some specific ASM framework 

constructs: enqueue, dequeue, empty, and top, which 

adds an element to a queue, removes an element from 

a queue, removes all elements from a queue, and 

returns the top element of a queue, respectively. Each 

RREQ, RREP, or record (i.e. an entry of a routing 

table) is built by concatenation of the information 

described in Section 3.2 (in the pseudo-code the dot 

notation helps in identifying the value of a specific field 

of a packet). 

When the MANET starts operating, each agent is 

idle, i.e. for each agent both wishToInitiate(self, dest) 

and receivedRREQ(self, dest) evaluate to false for 
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each dest, and isEmpty(replies(self)) evaluates to true. 

During the normal execution of an agent, for example, 

it can be in the router computational state with respect 

to a destination, but at the same time it can be in 

different computational states for other destinations: 

the value of the parameter dest is used for 

distinguishing these cases. Moreover, note that a 

destination computational state is not necessary: a host 

knows to be the destination when, in router, it receives 

an RREQ directed to it. 

In addition, each ASM includes the following 

functions: 

• neighb: agents  PowerSet(agents), which 

specifies the nodes in the neighborhood of each 

agent. Note that only the environment can set it; 

• routingTable: agents  PowerSet(records), 

which represents the information about the 

nodes recorded into the agent’s routing table. 

It is worth noting that in general a host is 

characterized by more features, in particular, the 

amplitude of the area in which it is able to transmit, and 

the direction and the speed of its movement. In fact, 

due to their mobility, nodes can move in and out of a 

transmission range, and, as extreme case, they can 

leave the MANET space and become unreachable 

from any other node. However, for representing 

physical connection links, these features can be 

abstracted away: for each agent we can simply take 

into account its neighborhood.  

On the other hand, the capability of ASMs to 

manipulate objects of arbitrary complexity, provides a 

useful way for expressing data structures which store 

entries of routing tables. Note that the routingTable 

function indirectly depends on the value of the requests 

and replies functions. In fact, whenever a node 

receives an RREQ or an RREP, it updates its routing 

table according to the content of the received packet. 

Moreover, in order to check if information about a host 

is stored into the agent’s routing table, the function 

hostInRT: PowerSet(records)  PowerSet(agents) is 

defined: it returns the set of the agents stored in a 

given routing table. 

The values of the neighb and routingTable 

functions, as well as the set agents, depend on the 

particular scenario: they are dynamically set according 

to the MANET evolution, with respect to both the host 

mobility and the computational history.  

The ASM pseudo-code of the i-th agent is shown 

below: 

AgentProgram(ai) = 
if ¬(isEmpty(requests(self))) then { 

RREQ = top(requests(self)) 

nextHop = sender of top(requests(self)) 
update routingTable(self) 
receivedRREQ(self, dest) := true 
Router(RREQ, nextHop) 

}  
if wishToInitiate(self, dest) = true then 

Initiator(dest) 
if ¬(isEmpty(replies(self))) { 

RREP = top(replies(self)) 
nextHop = select c.nextHop  

hostInRT(routingTable(self)) with RREP.init = c.dest 
update routingTable(self) 
UnicastRREP(RREP, nextHop) 
dequeue RREQ from replies(self) 

} 
UnicastRREP(RREP, a) =  

enqueue RREP into replies(a) 

In the pseudo-code above, the instruction “update 

routingTable(self)” is not specified: it simply indicates 

that the agent’s routing table is updated according to 

the received packet, i.e. an RREQ or an RREP. 

Informally speaking, each agent is inactive until a 

new communication session is required by the 

environment; or until its computation is solicited by the 

receipt of an RREQ; or until it has to forward a unicast 

packet to the next hop in the route to reach the receiver 

of that packet. So, activation of an agent unfolds 

different computational branches: two of them lead to 

the execution of the Router or Initiator submachine, 

respectively; in the third case, forwarding computation 

of RREPs is executed. It is worth noting that all these 

activities evolve concurrently. 

Finally, the UnicastRREP rule simply enqueues the 

RREP packet into the replies queue. 

4.1. Router 

Figure 1 shows the ground model of the ASM 

representing the behavior of router. According to the 

traditional notation of ASMs, circles represent 

computational states, diamonds represent conditions, 

and boxes represent updates. Moreover, note that this 

notation forces the usual syntax of flow charts because 

of the intrinsic parallel execution of ASM models: for 

example, ASM notation allows using diamonds with 

only one outgoing arc. 



34     Global Journal of Advanced Software Engineering, 2014, Vol. 1 Bianchi et al. 

The corresponding pseudo-code is shown below: 

Router(RREQ, nextHop) = 
 dest = RREQ.dest 

if dest = self  dest  neighb(self )  

dest  hostInRT(routingTable(self)) then { 

if  c  routingTable(self) with c.dest = dest  

c.destSeqNum  RREQ.destSeqNum then { 
create RREP 
UnicastRREP(RREP, nextHop) 

} 
dequeue RREQ from requests(self) 
receivedRREQ(self, dest) := false 

} 

else { 
BroadcastRREQ(RREQ) 
dequeue RREQ from requests(self) 
receivedRREQ(self, dest) := false 

} 
BroadcastRREQ(RREQ) = 

forall n  neighb(self) do { 

forall r  requests(n) do { 

if RREQ.dest = r.dest  RREQ.id = r.id then 

discard RREQ 

} 
increase RREQ.hopCount 
enqueue RREQ into requests(n) 

} 

Note that UnicastRREP behave as well as in the 

main program. 

The Router submachine includes the endRouting 

computational state, which specifies that the execution 

of the routing activities due to the route discovery 

process is completed. This computational state is 

characterized by the value false for the 

receivedRREQ(self, dest) function. If router is the 

destination of the received RREQ (dest evaluates to 

self) or if it knows a fresh route to dest (dest  

neighb(self)  dest  hostInRT(routingTable(self))), 

then it unicasts an RREP packet back to initiator. 

Otherwise, it rebroadcasts the RREQ to all its 

neighbors. In both cases, the computation evolves to 

the endRouting computational state for that value of 

dest.  

4.2. Initiator 

Figure 2 shows the ground model of initiator. The 

corresponding pseudo-code is shown below: 

Initiator(dest) = 

if dest  neighb(self)  dest  

hostInRT(routingTable(self)) then { 
StartCommunicationSession(dest) 

wishToInitiate(self, dest) := false 
sentRREQ(self) := false 

} 
else { 
 create RREQ 

BroadcastRREQ(RREQ) 
sentRREQ(self) := true 

} 

if sentRREQ(self)  ¬(isEmpty(replies(self))) then { 

select r  replies(self) with maximum 

destSeqNum 
update routingTable(self) 
StartCommunicationSession(dest) 
empty replies(self) 
wishToInitiate(self, dest) := false 
sentRREQ(self) := false 

} 

if sentRREQ(self)  isEmpty(replies(self))  

¬(timeout(self) = 0) then 

timeout(self) := timeout(self) – 1 

if sentRREQ(self)  isEmpty(replies(self))  

timeout(self) = 0 then { 
wishToInitiate(self, dest) := false 
sentRREQ(self) := false 

} 

 

Figure 1: Ground model of router. 
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In the pseudo-code above: BroadcastRREQ 

behaves analogously to the Router submachine; 

instead, StartCommunicationSession is not described 

because it is not strictly part of the routing protocol. 

The Initiator submachine is characterized by three 

local functions: sentRREQ: agents  boolean, which 

indicates whether an RREQ has been sent; timeout: 

agents  integer, which models the maximum waiting 

time for RREPs; and the aforementioned replies. This 

means that a new queue of replies is instantiated for 

each specific communication session. This submachine 

includes additional computational states, characterized 

by the following predicates: 

• waiting: it indicates that the agent is waiting for 

responses concerning that dest from the other 

agents. Its configuration is given by: 

wishToInitiate(self, dest) = true; sentRREQ(self) 

= true; isEmpty(replies(self)) = true; time-

out(self) > 0; 

• endInitiating: it indicates that the computational 

activities executed by initiator, concerning the 

route discovery for that dest, are completed. Its 

configuration is: wishToInitiate(self, dest) = 

false; sentRREQ(self) = false. 

If a route to dest is known, then the communication 

session simply starts; otherwise, BroadcastRREQ is 

executed. Its result consists in inserting a new RREQ 

into the requests queue of all the agent’s neighbors 

and in evolving the current computational state to 

waiting. When an RREP is received (i.e. 

 

Figure 2: Ground model of initiator. 
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isEmpty(replies(self)) evaluates to false), then the 

computation continues: the communication session 

starts and the replies queue is emptied; otherwise, 

when the timeout expires, the route discovery process 

ends. 

Note that the model does not include the notification 

to the user about the timeout expiration. In order to 

acknowledge the impossibility to start the 

communication, the ASM can easily be refined, but, for 

the sake of brevity, we do not consider this feature. 

4.3. Correctness 

The DASM described so far behaves correctly, in 

the sense that it never starves and the expected packet 

is always received back by initiator. The proof of 

correctness is quite simple, so it is only sketched. 

4.3.1. Starvation-Freedom 

First of all, it is worth noting that the execution of 

each ASM does not starve. In fact, both the program of 

each agent, and the Router and Initiator submachines 

allow their execution always evolve: even when they 

must wait for external events, the waiting time is finite. 

For what concerns the overall machine, the branch 

dealing with the unicast forwarding of packets restores 

the idle computational state, so, the computation 

normally continues after this activity. The Router 

submachine returns back an RREP or rebroadcasts the 

previously received RREQ, depending on the values of 

the guard conditions, and then it evolves to the 

endRouting computational state. The Initiator 

submachine starts the communication session or 

enables nodes in neighborhood to execute the 

protocol. If the latter happens, then, if initiator receives 

back at least one RREP, it appropriately continues the 

execution by starting the communication session; 

otherwise, it stops waiting for the timeout expiration. In 

fact, if the computation loops within the waiting 

computational state, the value of the locations changes 

because of the update decreasing the timeout, which, 

under the assumption that it is greater than 0, will 

surely converge to 0. In this way, it is guaranteed that 

the state of the ASM can change, and the computation 

can evolve. 

One more comment concerns the permanence in 

the idle computational state: it is not a case of 

starvation, but it simply indicates that the agent does 

not need to execute any activity. In ASM terms: the 

system evolution from idle only depends on the 

wishToInitiate(self, dest) and isEmpty(requests(self)) 

functions. If no one of them changes its value means 

that the agent is not proactive (it does not need to start 

a new communication) neither reactive (it has not 

received any RREQ). 

4.3.2. Correctness of Received Packets 

The ASM model shows that the correct packet is 

received back by initiator. In particular: 

a. initiator receives back one or more RREPs if and 

only if a route to destination exists; 

b. initiator does not receive back any packet if and 

only if no route to destination exists, or if it is 

isolated. 

In order to prove issue (a) above, note that 

receiving RREPs means that the replies queue in the 

Initiator submachine is not empty, and this occurs if 

and only if the UnicastRREP rule has been executed: 

only this rule enqueues an RREP into replies. In turn, 

according to the guard conditions, UnicastRREP is 

executed if and only if that router or one of its 

neighbors is the destination, or a route to destination is 

recorded into its routing table. An analogous proof for 

issue (b). 

Finally, it is easy to show that the execution of the 

protocol goes only through the described computational 

state: the rules execution transforms the values of the 

locations only into the desired way, so, no unexpected 

behavior can occur. 

5. CONCLUSION 

In this paper, the Ad-hoc On-demand Distance 

Vector routing protocol for Mobile Ad-hoc NETworks is 

modeled by means of an Abstract State Machine-

based model. This case study allowed to show that the 

ASM approach is very useful for capturing the specific 

MANET features and for reasoning about them. 

A MANET is characterized by a parallel composition 

of network nodes in which different sequential activities 

are, in turn, executed in parallel. The notion of run in a 

Distributed ASM, in which several ASMs are 

simultaneously executed, and the intrinsic parallel 

computation of ASM rules allow to express the nodes’ 

execution in a very natural manner. Secondly, ASM 

functions, that can be defined over universes of objects 

of arbitrary complexity, can be used for representing 

nodes in neighborhood, so abstracting from physical 

features, and for recording the information about routes 

stored in routing tables. Thirdly, broadcasting and 
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unicasting of packets can be simply modeled by 

manipulating abstract messages and by inserting or 

deleting them into abstract queues. Finally, the 

similarity between the ASM pseudo-code and the 

syntax of traditional programming languages provides a 

way for describing algorithmic issues that developers 

can find familiar for modeling the system at high 

abstraction level and for investigating some properties 

of interest. 

Furthermore, the ASM framework is equipped with 

several tools that allow to develop executable models 

and then conduct simulations. This issue is outside our 

purposes, so we do not consider it in this paper. 

However it is worth noting that the translation of the 

model we provided in Section 4 into the input required 

by an ASM tool, e.g. CoreASM, is only an exercise. 

The advantages provided by the ASM formalism 

overcome the various drawbacks which affect other 

formalisms applied for addressing the specific MANET 

issues, such as process calculi, finite state machines 

and Petri nets. Typically, these formalisms lack of 

understandability and expressiveness features or of 

frameworks for executing models. On the contrary, 

ASMs do not suffer these limitations. 
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