
 Global Journal of Advanced Software Engineering, 2014, 1, 29-38 29

© 2014 Avanti Publishers

Suitability of Abstract State Machines for Discussing Mobile
Ad-hoc Networks

Alessandro Bianchi*, Sebastiano Pizzutilo and Gennaro Vessio

Department of Informatics, University of Bari, 70125 – Bari, Italy

Abstract: Several formalisms have been applied for addressing development issues in Mobile Ad-hoc NETworks
(MANETs), however they usually lack of understandability, expressiveness and executability features. Instead, the

Abstract State Machine (ASM) formalism does not suffer these limitations and can provide a useful conceptual tool for
reasoning about MANET behavior. This paper shows the practical suitability of ASMs in capturing the specific MANET
issues: concurrency, communications, and so on. To this end, the Ad-hoc On-demand Distance Vector (AODV) routing

protocol for MANETs is modeled, and some properties of interest are proved.

Keywords: Abstract State Machines, MANET, AODV.

1. INTRODUCTION

In recent years, wireless technology has attracted

great interest and considerable popularity. Its uses

span in a wide range of application domains: ambient

intelligence, real-time systems, transportation, video

surveillance, and so on.

In this context, a Mobile Ad-hoc NETwork (MANET

for short) is a wireless network designed for

communications among nomadic hosts [1]; it does not

need any fixed infrastructure, and communication

sessions between initiator and destination are

established and maintained by the cooperation of hosts

in the network. MANETs are useful, sometimes

necessary, for allowing hosts to communicate when

fixed physical infrastructures cannot be used, for

example for supporting rescue teams operating where

pre-existing infrastructures are not reliable [2]. Hosts

are intended as autonomous agents and they can

dispose without according to a predefined topology;

moreover, during their lifetime, they can enter or leave

the network at will and continuously change their

relative position.

The twofold role played by hosts (end-point and

intermediate router), as well as the continuous change

of the network topology due to movement, poses

several problems: study of performance, analysis of

synchronization issues, concurrency and cooperation,

and so on. Among them, we focus on the need to

define specific routing protocols for properly managing

the lack of a fixed infrastructure. Since each host can

directly communicate only within the area established

*Address correspondence to this author at the Department of Informatics,
University of Bari, 70125 – Bari, Italy; Tel: +39 080 544 2283;
Fax: +39 080 544 2031; E-mail: alessandro.bianchi@uniba.it

by its transmission range, these protocols need to

ensure broadcasting and unicasting of packets and to

take into account the contribution of intermediate hosts

for realizing communications. The Ad-hoc On-demand

Distance Vector (AODV) [3] is one of the most relevant

and widely used routing protocols for MANETs.

Traditionally, literature discusses routing protocols

with the support of tools simulating the MANET

behavior; for example [4] and [5]. The simulation-based

approach is very effective from the execution point of

view, mainly for evaluating performance and comparing

different solutions. However, it can take into account

only a limited, predictable range of different scenarios

and it is not able to formally prove properties of

interest. In other words, these tools are just simulators:

they implement the network at a low abstraction level,

but they cannot support specifications and analysis at

higher level. Moreover, according to [6] and [7], the

obtained results are sometimes inaccurate and poorly

reliable.

On the contrary, formal methods can be useful for

reasoning about MANET behavior and can provide

more reliable results. In fact, representing a system-

under-study at high level of abstraction allows

developers to focus on algorithmic aspects, rather than

on specific realizations of solutions at lower levels.

Moreover, the mathematical foundation of formal

methods provides complete and more accurate

investigations about the properties and the behavior

the system-under-study is required to exhibit.

Several formalisms have been successfully applied

in the MANET domain: process calculi, finite state

machines, Petri nets, and so on (for example, see [8],

[9], [10]). However, these approaches present some

drawbacks concerning: understandability, since they

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357285983?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

30 Global Journal of Advanced Software Engineering, 2014, Vol. 1 Bianchi et al.

are based on a syntax dissimilar to traditional

programming languages; expressiveness, because

they typically provide only a single level of abstraction;

executability, since, especially process calculi, are not

directly executable.

With respect to these features, Abstract State

Machines (ASMs) [11] provide advantages under

several viewpoints. When the model expressivity is

considered, literature agrees that ASM-based models

show versatility in capturing both sequential and

parallel computations at any desired level of

abstraction, e.g. [12], [13]. Secondly, considering

methodological issues, the ASM formalism has been

successfully applied in both academia and industry for

the design and the analysis of complex systems in

several domains, and a specific development method

got prominence in the last years [14]. Thirdly,

considering the implementation point of view, the

capability of translating formal models into executable

ones is provided by tools like AsmL [15], CoreASM

[16], and ASMETA [17]. Finally, the ASM approach

provides a way to describe algorithmic issues in a

simple abstract pseudo-code, which can be translated

into a high level programming language source code in

a quite simple manner.

The aim of this paper is to show the practical

suitability of the ASM formalism in capturing the

specific MANET features: mobility, concurrency,

communications, structures for representing and

storing information, and so on, and for reasoning about

them. To this end, in this paper the AODV routing

protocol for MANETs is modeled and some properties

of interest are proved.

The rest of this paper is structured as follows.

Section 2 is about related work. Section 3 provides a

background knowledge on both ASMs and AODV. Our

contribution is mainly reported in Section 4, which

deals with the ASM-based model of AODV and

reasons about its correctness. Section 5 concludes the

paper.

2. RELATED WORK

Several process calculi specifically tailored for

MANETs have been proposed in literature, for

example: the -calculus [8], CMN (Calculus of Mobile

Ad Hoc Networks) [18], and AWN (Algebra for Wireless

Network) [19]. These formalisms naturally capture

essential characteristics of network nodes: from the

host mobility to the packet broadcasting and unicasting.

In fact, the expressiveness of process calculi is very

suitable for representing the parallel activities of the

nodes and for abstracting the underlying

communication mechanisms. However, these process

calculi are not directly executable, so, executing

models for conducting simulations is not possible.

Moreover, they are typically based on mathematic

notions that developers could find unfamiliar for their

purposes. Instead, ASMs overcome both these issues

by providing several tools for developing executable

models and by offering a syntax very similar to

traditional high level programming languages.

Various general purpose state-based models have

also been used in the MANET domain, for example,

finite state machines [9] and Petri nets [10]. With

respect to process calculi, state-based models provide

a comfortable way for representing algorithmic issues,

especially from the graphical point of view: in fact, they

are very useful for representing the execution flow

along computational states. Moreover, they are

typically equipped with tools, such as CPN Tools [20],

that allow to execute models and conduct validation

activities. Nevertheless, state-based models lack of

expressiveness: basically, they provide only a single

level of abstraction and cannot support refinements to

executable source code. Conversely, ASMs are Turing-

equivalent [11], so, they can represent systems at any

desired level of abstraction till to models whose

features are very close to implementation details.

An example of application of formal methods for

specifically addressing issues in the AODV protocol

can be find in [21], where a variant which improves the

route selection of the original protocol is specified by

means of Coloured Petri nets. However, the formalism

is not used for proving correctness. Another example is

[22], where a rigorous analysis of AODV and two

variants is conducted by means of the previously

mentioned AWN. These variants concern the problem

of non-optimal route selection and that of failure in

discovering routes. In this case, the formalism helps in

proving correctness, nevertheless the focus is only on

the loop-freedom property, i.e. the absence of loop

routes.

Along the years, ASMs have been successfully

used for modeling several systems, often concurrent

and distributed, and for investigating their properties.

For example, [23] and [24] show the application of

ASMs for verifying several safety and liveness

properties of two popular case studies: the Railroad

Crossing and the Production Cell, respectively. More

Suitability of Abstract State Machines for Discussing Mobile Global Journal of Advanced Software Engineering, 2014, Vol. 1 31

recently, an ASM specification to model concurrency in

a Web browser and to prove some consistency

properties has been proposed in [25]; ASMs have also

been used to model and validate vision-based robot

control applications in [26]; and they have been applied

for studying some aspects of Grid systems, e.g.

reachability and reversibility, in [27]. These works

attested how ASMs are sufficiently general for

modeling systems in a very broad range of domains.

To our best knowledge, concerning the specific

MANET domain, the ASM-based approach has been

used only for modeling specific issues. In [28], the

authors use ASMs for specifying location services and

position-based routings among known locations,

however they focus on the communication among the

various architecture layers and do not formally prove

properties of interest. Instead, in [29], a variant of the

AODV protocol, which improves the network topology

awareness of each node, is specified and formally

proved by means of an ASM-based model, but the

work does not emphasize the capability of the ASM

formalism to face the MANET-specific modeling

challenges.

3. BACKGROUND

3.1. Abstract State Machines

Informally speaking, ASMs are finite sets of so-

called rules of the form if condition then updates

(possibly with the else clause in addition) which

transform the abstract states of the machine [14]. The

concept of abstract state extends the usual notion of

state occurring in finite state machines: it is an arbitrary

complex structure, i.e. a domain of objects with

functions and relations defined on them. On the other

hand, the concept of rule reflects the notion of

transition occurring in traditional transition systems:

condition is a first-order formula whose interpretation

can be true or false; while updates is a finite set of

assignments of the form f(t1, …, tn) := t, whose

execution consists in changing in parallel the value of

the specified functions to the indicated value.

According to [14], pairs of function names together

with values for their arguments are called locations:

they abstract the notion of memory unit. The current

configuration of locations together with their values

determines the current state of the ASM. In each state,

all conditions are checked, so that all updates in rules

whose conditions evaluate to true are simultaneously

executed, and the result is a transition of the machine

from a state to another, i.e. from a configuration of

values in locations to another. Moreover, for the

unambiguous determination of the next state, updates

must be consistent, i.e. no pair of updates must refer to

the same location.

The formalism also supports the mechanism of

procedure calls; this is achieved by the definition of

ASM submachines, i.e. parameterized rules, which

allow the declaration of local functions, so that each

call of a submachine works with its own instantiation of

its local functions.

A generalization of basic ASMs is represented by

Distributed ASMs (DASMs) [14], capable to capture the

formalization of multiple agents acting in a distributed

environment. Essentially, a DASM is intended as an

arbitrary but finite number of independent agents, each

executing its own underlying ASM. In a DASM the

keyword self is used for supporting the relation

between local and global states and for denoting the

specific agent which is executing a rule.

Finally, the ASM Method defined in [14] encloses

development phases from requirements capture to

implementation in a unique ASM-based framework.

Requirements can be captured by constructing so-

called ground models, i.e. representations at high level

of abstraction that can be graphically depicted; then,

starting from ground models, a hierarchy of

intermediate models is constructed by stepwise

refinements, leading to executable code: each

refinement describes the same system at a finer

granularity. The method then allows both verification,

through formal proof, and validation, through

simulation.

3.2. Ad-hoc On-Demand Distance Vector Protocol

AODV is a reactive protocol that discovers and

maintains routes on-demand, i.e. routes are built only

as desired by initiator nodes using a route

request/route reply cycle, which allows updating routing

tables stored in each node [3]. When an initiator needs

to start a communication session to a destination, and

it does not know a proper route, it broadcasts a route

request (RREQ) packet to all its neighbors. An RREQ

packet, among the others, includes: initiator address

and broadcast id (this pair uniquely identifies the

packet); destination address; destination sequence

number, which expresses the freshness of the

information about destination; and hop count, initially

set to 0, and increased by each intermediate node, for

32 Global Journal of Advanced Software Engineering, 2014, Vol. 1 Bianchi et al.

expressing the distance. Because of broadcast

transmissions, each intermediate node can receive

several instances of a given RREQ from different

neighbors: possible duplications of RREQs are

discarded.

Knowledge of routes is stored into routing tables,

recorded into a cache memory of each node. A routing

table in a node lists all other nodes in the network, and

the best (known) route to reach each of them. To this

end, each entry of the routing table includes the

address of the node, its sequence number, the hop

count to reach it, and the next hop field identifying the

next node in the route to reach it.

When a node receives an RREQ, it checks if one of

the following holds: it is the destination, or destination

is one of its neighbors, or it knows a route to

destination with corresponding sequence number

greater than or equal to the one contained in the RREQ

(this means that the knowledge about the route is

recent). If so, it unicasts a route reply (RREP) packet

back to initiator; otherwise, it updates the hop count

field, and rebroadcasts the RREQ. The process is so

reiterated until a route to destination is found, or until a

previously set timeout expires. An RREP packet

contains: initiator and destination address, destination

sequence number, and hop count. While RREP travels

towards initiator, routes are set up inside the routing

tables of the traversed hosts. Once initiator receives

the RREP, communication starts.

The protocol also includes mechanisms for

recording the up-to-date information about hosts. But,

for the sake of simplicity, we do not consider this

feature.

4. ASM-BASED MODEL OF AODV

A MANET that adopts the AODV routing protocol

can be modeled by a DASM including a homogeneous

set of agents = {a1, …, an}, where each agent models

the behavior of a node executing the protocol (we can

think that each ai is univocally identified by its IP

address).

Note that the intrinsic parallel execution of multiple

ASMs, each of them executing sequential processes

that, in turn, may be run in parallel, is a natural way for

modeling the parallel composition of hosts in a MANET

and their own computation.

Since all agents implement the same protocol, each

agent behaves according to the same ASM, so only

one ASM is discussed in the following. Each ASM can

be in one of different computational states, which are

characterized by the following predicates:

• idle: the agent is inactive. Its configuration is

given by: wishToInitiate(self, dest) = false;

receivedRREQ(self, dest) = false, with dest

agents, isEmpty(replies(self)) = true;

• router: the agent has received an RREQ. It is

characterized by receivedRREQ(self, dest) =

true;

• initiator: the agent has to start a new

communication session. It is characterized by

wishToInitiate(self, dest) = true;

• forwarding: the agent is forwarding an RREP to

another destination. It is characterized by

isEmpty(replies(self)) = false.

The functions dealing with the idle, router and

initiator computational states are:

• wishToInitiate: agents agents boolean,

which indicates whether a new communication

session to dest is required by the environment;

• receivedRREQ: agents agents boolean,

which acts as a flag indicating whether an RREQ

packet has been received.

For modeling broadcasting and unicasting, each

agent is associated with two types of queues of

messages: requests and replies, which include RREQ

and RREP packets, respectively. This allows us to

model sending/receiving of packets by means of

enqueuing/dequeuing abstract messages into the

corresponding queue. These queues are managed by

the function isEmpty, which states if a queue is empty

or not, and by some specific ASM framework

constructs: enqueue, dequeue, empty, and top, which

adds an element to a queue, removes an element from

a queue, removes all elements from a queue, and

returns the top element of a queue, respectively. Each

RREQ, RREP, or record (i.e. an entry of a routing

table) is built by concatenation of the information

described in Section 3.2 (in the pseudo-code the dot

notation helps in identifying the value of a specific field

of a packet).

When the MANET starts operating, each agent is

idle, i.e. for each agent both wishToInitiate(self, dest)

and receivedRREQ(self, dest) evaluate to false for

Suitability of Abstract State Machines for Discussing Mobile Global Journal of Advanced Software Engineering, 2014, Vol. 1 33

each dest, and isEmpty(replies(self)) evaluates to true.

During the normal execution of an agent, for example,

it can be in the router computational state with respect

to a destination, but at the same time it can be in

different computational states for other destinations:

the value of the parameter dest is used for

distinguishing these cases. Moreover, note that a

destination computational state is not necessary: a host

knows to be the destination when, in router, it receives

an RREQ directed to it.

In addition, each ASM includes the following

functions:

• neighb: agents PowerSet(agents), which

specifies the nodes in the neighborhood of each

agent. Note that only the environment can set it;

• routingTable: agents PowerSet(records),

which represents the information about the

nodes recorded into the agent’s routing table.

It is worth noting that in general a host is

characterized by more features, in particular, the

amplitude of the area in which it is able to transmit, and

the direction and the speed of its movement. In fact,

due to their mobility, nodes can move in and out of a

transmission range, and, as extreme case, they can

leave the MANET space and become unreachable

from any other node. However, for representing

physical connection links, these features can be

abstracted away: for each agent we can simply take

into account its neighborhood.

On the other hand, the capability of ASMs to

manipulate objects of arbitrary complexity, provides a

useful way for expressing data structures which store

entries of routing tables. Note that the routingTable

function indirectly depends on the value of the requests

and replies functions. In fact, whenever a node

receives an RREQ or an RREP, it updates its routing

table according to the content of the received packet.

Moreover, in order to check if information about a host

is stored into the agent’s routing table, the function

hostInRT: PowerSet(records) PowerSet(agents) is

defined: it returns the set of the agents stored in a

given routing table.

The values of the neighb and routingTable

functions, as well as the set agents, depend on the

particular scenario: they are dynamically set according

to the MANET evolution, with respect to both the host

mobility and the computational history.

The ASM pseudo-code of the i-th agent is shown

below:

AgentProgram(ai) =
if ¬(isEmpty(requests(self))) then {

RREQ = top(requests(self))

nextHop = sender of top(requests(self))
update routingTable(self)
receivedRREQ(self, dest) := true
Router(RREQ, nextHop)

}
if wishToInitiate(self, dest) = true then

Initiator(dest)
if ¬(isEmpty(replies(self))) {

RREP = top(replies(self))
nextHop = select c.nextHop

hostInRT(routingTable(self)) with RREP.init = c.dest
update routingTable(self)
UnicastRREP(RREP, nextHop)
dequeue RREQ from replies(self)

}
UnicastRREP(RREP, a) =

enqueue RREP into replies(a)

In the pseudo-code above, the instruction “update

routingTable(self)” is not specified: it simply indicates

that the agent’s routing table is updated according to

the received packet, i.e. an RREQ or an RREP.

Informally speaking, each agent is inactive until a

new communication session is required by the

environment; or until its computation is solicited by the

receipt of an RREQ; or until it has to forward a unicast

packet to the next hop in the route to reach the receiver

of that packet. So, activation of an agent unfolds

different computational branches: two of them lead to

the execution of the Router or Initiator submachine,

respectively; in the third case, forwarding computation

of RREPs is executed. It is worth noting that all these

activities evolve concurrently.

Finally, the UnicastRREP rule simply enqueues the

RREP packet into the replies queue.

4.1. Router

Figure 1 shows the ground model of the ASM

representing the behavior of router. According to the

traditional notation of ASMs, circles represent

computational states, diamonds represent conditions,

and boxes represent updates. Moreover, note that this

notation forces the usual syntax of flow charts because

of the intrinsic parallel execution of ASM models: for

example, ASM notation allows using diamonds with

only one outgoing arc.

34 Global Journal of Advanced Software Engineering, 2014, Vol. 1 Bianchi et al.

The corresponding pseudo-code is shown below:

Router(RREQ, nextHop) =
 dest = RREQ.dest

if dest = self dest neighb(self)

dest hostInRT(routingTable(self)) then {

if c routingTable(self) with c.dest = dest

c.destSeqNum RREQ.destSeqNum then {
create RREP
UnicastRREP(RREP, nextHop)

}
dequeue RREQ from requests(self)
receivedRREQ(self, dest) := false

}

else {
BroadcastRREQ(RREQ)
dequeue RREQ from requests(self)
receivedRREQ(self, dest) := false

}
BroadcastRREQ(RREQ) =

forall n neighb(self) do {

forall r requests(n) do {

if RREQ.dest = r.dest RREQ.id = r.id then

discard RREQ

}
increase RREQ.hopCount
enqueue RREQ into requests(n)

}

Note that UnicastRREP behave as well as in the

main program.

The Router submachine includes the endRouting

computational state, which specifies that the execution

of the routing activities due to the route discovery

process is completed. This computational state is

characterized by the value false for the

receivedRREQ(self, dest) function. If router is the

destination of the received RREQ (dest evaluates to

self) or if it knows a fresh route to dest (dest

neighb(self) dest hostInRT(routingTable(self))),

then it unicasts an RREP packet back to initiator.

Otherwise, it rebroadcasts the RREQ to all its

neighbors. In both cases, the computation evolves to

the endRouting computational state for that value of

dest.

4.2. Initiator

Figure 2 shows the ground model of initiator. The

corresponding pseudo-code is shown below:

Initiator(dest) =

if dest neighb(self) dest

hostInRT(routingTable(self)) then {
StartCommunicationSession(dest)

wishToInitiate(self, dest) := false
sentRREQ(self) := false

}
else {
 create RREQ

BroadcastRREQ(RREQ)
sentRREQ(self) := true

}

if sentRREQ(self) ¬(isEmpty(replies(self))) then {

select r replies(self) with maximum

destSeqNum
update routingTable(self)
StartCommunicationSession(dest)
empty replies(self)
wishToInitiate(self, dest) := false
sentRREQ(self) := false

}

if sentRREQ(self) isEmpty(replies(self))

¬(timeout(self) = 0) then

timeout(self) := timeout(self) – 1

if sentRREQ(self) isEmpty(replies(self))

timeout(self) = 0 then {
wishToInitiate(self, dest) := false
sentRREQ(self) := false

}

Figure 1: Ground model of router.

Suitability of Abstract State Machines for Discussing Mobile Global Journal of Advanced Software Engineering, 2014, Vol. 1 35

In the pseudo-code above: BroadcastRREQ

behaves analogously to the Router submachine;

instead, StartCommunicationSession is not described

because it is not strictly part of the routing protocol.

The Initiator submachine is characterized by three

local functions: sentRREQ: agents boolean, which

indicates whether an RREQ has been sent; timeout:

agents integer, which models the maximum waiting

time for RREPs; and the aforementioned replies. This

means that a new queue of replies is instantiated for

each specific communication session. This submachine

includes additional computational states, characterized

by the following predicates:

• waiting: it indicates that the agent is waiting for

responses concerning that dest from the other

agents. Its configuration is given by:

wishToInitiate(self, dest) = true; sentRREQ(self)

= true; isEmpty(replies(self)) = true; time-

out(self) > 0;

• endInitiating: it indicates that the computational

activities executed by initiator, concerning the

route discovery for that dest, are completed. Its

configuration is: wishToInitiate(self, dest) =

false; sentRREQ(self) = false.

If a route to dest is known, then the communication

session simply starts; otherwise, BroadcastRREQ is

executed. Its result consists in inserting a new RREQ

into the requests queue of all the agent’s neighbors

and in evolving the current computational state to

waiting. When an RREP is received (i.e.

Figure 2: Ground model of initiator.

36 Global Journal of Advanced Software Engineering, 2014, Vol. 1 Bianchi et al.

isEmpty(replies(self)) evaluates to false), then the

computation continues: the communication session

starts and the replies queue is emptied; otherwise,

when the timeout expires, the route discovery process

ends.

Note that the model does not include the notification

to the user about the timeout expiration. In order to

acknowledge the impossibility to start the

communication, the ASM can easily be refined, but, for

the sake of brevity, we do not consider this feature.

4.3. Correctness

The DASM described so far behaves correctly, in

the sense that it never starves and the expected packet

is always received back by initiator. The proof of

correctness is quite simple, so it is only sketched.

4.3.1. Starvation-Freedom

First of all, it is worth noting that the execution of

each ASM does not starve. In fact, both the program of

each agent, and the Router and Initiator submachines

allow their execution always evolve: even when they

must wait for external events, the waiting time is finite.

For what concerns the overall machine, the branch

dealing with the unicast forwarding of packets restores

the idle computational state, so, the computation

normally continues after this activity. The Router

submachine returns back an RREP or rebroadcasts the

previously received RREQ, depending on the values of

the guard conditions, and then it evolves to the

endRouting computational state. The Initiator

submachine starts the communication session or

enables nodes in neighborhood to execute the

protocol. If the latter happens, then, if initiator receives

back at least one RREP, it appropriately continues the

execution by starting the communication session;

otherwise, it stops waiting for the timeout expiration. In

fact, if the computation loops within the waiting

computational state, the value of the locations changes

because of the update decreasing the timeout, which,

under the assumption that it is greater than 0, will

surely converge to 0. In this way, it is guaranteed that

the state of the ASM can change, and the computation

can evolve.

One more comment concerns the permanence in

the idle computational state: it is not a case of

starvation, but it simply indicates that the agent does

not need to execute any activity. In ASM terms: the

system evolution from idle only depends on the

wishToInitiate(self, dest) and isEmpty(requests(self))

functions. If no one of them changes its value means

that the agent is not proactive (it does not need to start

a new communication) neither reactive (it has not

received any RREQ).

4.3.2. Correctness of Received Packets

The ASM model shows that the correct packet is

received back by initiator. In particular:

a. initiator receives back one or more RREPs if and

only if a route to destination exists;

b. initiator does not receive back any packet if and

only if no route to destination exists, or if it is

isolated.

In order to prove issue (a) above, note that

receiving RREPs means that the replies queue in the

Initiator submachine is not empty, and this occurs if

and only if the UnicastRREP rule has been executed:

only this rule enqueues an RREP into replies. In turn,

according to the guard conditions, UnicastRREP is

executed if and only if that router or one of its

neighbors is the destination, or a route to destination is

recorded into its routing table. An analogous proof for

issue (b).

Finally, it is easy to show that the execution of the

protocol goes only through the described computational

state: the rules execution transforms the values of the

locations only into the desired way, so, no unexpected

behavior can occur.

5. CONCLUSION

In this paper, the Ad-hoc On-demand Distance

Vector routing protocol for Mobile Ad-hoc NETworks is

modeled by means of an Abstract State Machine-

based model. This case study allowed to show that the

ASM approach is very useful for capturing the specific

MANET features and for reasoning about them.

A MANET is characterized by a parallel composition

of network nodes in which different sequential activities

are, in turn, executed in parallel. The notion of run in a

Distributed ASM, in which several ASMs are

simultaneously executed, and the intrinsic parallel

computation of ASM rules allow to express the nodes’

execution in a very natural manner. Secondly, ASM

functions, that can be defined over universes of objects

of arbitrary complexity, can be used for representing

nodes in neighborhood, so abstracting from physical

features, and for recording the information about routes

stored in routing tables. Thirdly, broadcasting and

Suitability of Abstract State Machines for Discussing Mobile Global Journal of Advanced Software Engineering, 2014, Vol. 1 37

unicasting of packets can be simply modeled by

manipulating abstract messages and by inserting or

deleting them into abstract queues. Finally, the

similarity between the ASM pseudo-code and the

syntax of traditional programming languages provides a

way for describing algorithmic issues that developers

can find familiar for modeling the system at high

abstraction level and for investigating some properties

of interest.

Furthermore, the ASM framework is equipped with

several tools that allow to develop executable models

and then conduct simulations. This issue is outside our

purposes, so we do not consider it in this paper.

However it is worth noting that the translation of the

model we provided in Section 4 into the input required

by an ASM tool, e.g. CoreASM, is only an exercise.

The advantages provided by the ASM formalism

overcome the various drawbacks which affect other

formalisms applied for addressing the specific MANET

issues, such as process calculi, finite state machines

and Petri nets. Typically, these formalisms lack of

understandability and expressiveness features or of

frameworks for executing models. On the contrary,

ASMs do not suffer these limitations.

REFERENCES

[1] Agrawal DP, Zeng QA. Introduction to Wireless and Mobile
Systems; Thomson Brooks/Cole 2003.

[2] Lien YN, Jang HC, Tsai TC. A MANET Based Emergency
Communication and Information System for Catastrophic
Natural Disasters. In: 29th International Conference on
Distributed Computing Systems Workshops 2009; 412-417.

[3] Perkins CE, Belding-Royer EM, Das SR. Ad hoc On-Demand
Distance Vector (AODV) Routing. RFC 3561 2003.
http://tools.ietf.org/html/rfc3561.

[4] Jayakumar G, Gopinath G. Performance Comparison of Two
On-demand Routing Protocols for Ad-hoc Networks Based

on Random Way Point Mobility Model. American Journal of
Applied Sciences 2008; 5(6): 659-664.
http://dx.doi.org/10.3844/ajassp.2008.659.664

[5] Goyal P. Simulation Study of Comparative Performance of

AODV, OLSR, FSR and LAR Routing Protocols in MANET in
Large Scale Scenarios. In: World Congress of Information
and Communication Technologies 2012; 283-286.

[6] Cavin D, Sasson Y, Schiper A. On the Accuracy of MANET
Simulators. In: ACM Workshop on Princples of Mobile
Computing 2002; 38-43.

[7] Kurkowski S, Camp T, Colagrosso M. MANET Simulation
Studies: The Incredibles. ACM SIGMOBILE Mobile
Computing and Communications Review 2005; 9(4): 50-61.
http://dx.doi.org/10.1145/1096166.1096174

[8] Singh A, Ramakrishnan C, Smolka S. A Process Calculus for

Mobile Ad Hoc Networks. In: 10th International Conference
on Coordination Models and Languages 2008; 296-314.
http://dx.doi.org/10.1007/978-3-540-68265-3_19

[9] Delzanno G, Sangnier A, Zavattaro G. Parameterized
Verification of Ad Hoc Networks. In: 21th Int. Conf. of
Concurrency Theory 2010; 313-327.

[10] Bianchi A, Pizzutilo S. Studying MANET through a Petri Net-

Based Model. In: 2th International Conference of Evolving
Internet 2010; 220-225.
http://dx.doi.org/10.1109/INTERNET.2010.44

[11] Gurevich Y. Sequential Abstract State Machines Capture
Sequential Algorithms. ACM Transactions on Computational

Logic 2000; 1(1): 77-111.
http://dx.doi.org/10.1145/343369.343384

[12] Börger E, Riccobene E. Logic+ Control Revisited: An
Abstract Interpreter for Gödel Programs. In: Levi G. (ed.),
Advances in Logic Programming Theory 1994; 154-231.

[13] Németh Z. Denition of a Parallel Execution Model with

Abstract State Machines. Acta Cybernetica 2002; 15(3): 417-
455.

[14] Börger E, Stärk R. Abstract State Machines: A Method for
High-Level System Design and Analysis 2003; Springer-

Verlag.
http://dx.doi.org/10.1007/978-3-642-18216-7

[15] Gurevich Y, Rossman B, Schulte W. Semantic Essence of
AsmL. Theoretical Computer Science 2005; 342(3): 370-412.
http://dx.doi.org/10.1016/j.tcs.2005.06.017

[16] Farahbod R, Gervasi V, Glässer U. CoreASM: An Extensible

ASM Execution Engine. Fundamenta Informaticae 2007;
77(1-2): 71-103.

[17] Gargantini A, Riccobene E, Scandurra P. Model-Driven
Language Engineering: The ASMETA Case Study. In: 3rd
International Conference on Software Engineering Advances
2008; 373-378.

[18] Merro M. An Observational Theory for Mobile Ad Hoc

Networks. Information and Computation 2009; 207(2): 194-
208.
http://dx.doi.org/10.1016/j.ic.2007.11.010

[19] Fehnker A, Glabbeek RV, Höfner P, McIver A, Portmann M,

Tan WL. A Process Algebra for Wireless Mesh Networks. In:
21st European Symposium on Programming, 2012; 295-315.

[20] Jensen K, Kristensen LM, Wells L. Coloured Petri Nets and
CPN Tools for Modelling and Validation of Concurrent
Systems. International Journal on Software Tools for

Technology Transfer 2007; 9(3-4): 213-254.
http://dx.doi.org/10.1007/s10009-007-0038-x

[21] Nakhaee A, Harounabadi A, Mirabedini J. A Novel
Communication Model to Improve AODV Protocol Routing

Reliability. In: 5th International Conference on Application of
Information and Communication Technologies 2011; 1-7.

[22] Höfner P, van Glabbeek RJ, Tan WL, Portmann M, McIver A,
Fehnker A. A Rigorous Analysis of AODV and its Variants. In:
15th ACM Int. Conference on Modeling, Analysis and
Simulation of Wireless and Mobile Systems 2012; 203-212.

[23] Gurevich Y, Huggins J. The Railroad Crossing Problem: An
Experiment with Instantaneous Actions and Immediate
Reactions. In: 9th International Workshop on Computer

Science Logic 1996; 266-290.
http://dx.doi.org/10.1007/3-540-61377-3_43

[24] Börger E, Mearelli L. Integrating ASMs into the Software
Development Life Cycle. Journal of Universal Computer
Science 1997; 3(5): 603-665.

[25] Gervasi V. An ASM Model of Concurrency in a Web Browser.

In: 3rd International Conference on Abstract State Machines.
Alloy. B VDM and Z 2012; 79-93.

[26] Luzzana A, Rossetti M, Righettini P, Scandurra P. Modeling
Synchronization/Communication Patterns in Vision-Based
Robot Control Applications Using ASMs. In: 3rd International

Conference on Abstract State Machines, Alloy, B, VDM, and
Z 2012; 331-335.

[27] Bianchi A, Manelli L, Pizzutilo S. An ASM-based Model for
Grid Job Management. Informatica (Slovenia) 2013; 37(3):
295-306.

38 Global Journal of Advanced Software Engineering, 2014, Vol. 1 Bianchi et al.

[28] Benczur A, Glässer U, Lukovskzi T. Formal Description of a

Distributed Location Service for Mobile Ad-hoc Networks. In:
Börger, E., Gargantini, A., Riccobene, E. (eds), Abstract
State Machines 2003 – Advances in Theory and Applications
2003; 2589: 204-217.

[29] Bianchi A, Pizzutilo S, Vessio G. Preliminary Description of

NACK-based Ad-hoc On-demand Distance Vector Routing
Protocol for MANETs. In: 9th Int. Conference on Software
Engineering and Applications 2014; 500-505.
http://dx.doi.org/10.5220/0005105305000505

Received on 20-10-2014 Accepted on 10-11-2014 Published on 28-11-2014

© 2014 Bianchi et al.; Avanti Publishers.
This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License
(http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in

any medium, provided the work is properly cited.

